hERENTAFEEFEREE

R R 2 e T EEpA

Parallelism Exploitation in Superscalar Multiprocessing

FEHER

SIEHE,

Neng-Pin Lu and Chung-Ping Chung

B ZUBABEIATER
Department of Computer Science and Information Engineering
National Chiao Tung University
{nplu, cpchung} @csie.nctu.edu.tw

GRS

FELIREE A BT » i 8 ZEEE
HEF waﬁ?%wﬁ#ﬁf%?ﬁfmﬁﬂﬁﬁ’%‘ o BEFIE
B 5B R ATHISEE » BT T —EFE
SRR BT T 55 B TR SR fE RAERS - A5
LSRR . FePTREAE T UTE5E S SPLASH-2 (9
[T RS G B S B R HE e 2 TR HIG
TF o AT - FEEEIEHY PRAM FOIE R
T g B B A LA R B BRI
LSRRI TIE ¢ FE 1 1-issue &
FAEE » —(F AR 32 [[F 8-issue [EIEFHIEHELE
ERFREERT + AFTA IR 200 (ZH780775

Al BB SERE AR

Abstract

To exploit more parallelism in programs,
superscalar multiprocessor systems have been the
trend in designing high speed computing systems. In
this research, we developed a simulator for evaluating
superscalar multiprocessor systems. This simulator
models both superscalar processor that can exploit
instruction-level parallelism —and shared-memory
multiprocessor system that can exploit task-level
parallelism. We used this simulator to run four
applications chosen from SPLASH-2 benchmark suites,
and collected some performance data to investigate the
parallelism exploitation capability of the superscalar
multiprocessor systems. We observed that the
instruction-level and task-level parallelism — in
programs can be fully exploited by a moderate degree
of superscalar processing and a high degree of
multiprocessing when the memory system is the perfect
PRAM model. For example. .the speedup of 32-way
multiprocessor with 8-issue processors can be over 200
relative to a single-issue uniprocessor.
multiprocessing,

Keywords: superscalar processing,

parallelism

C-82

1. Introduction
To exploit more parallelism in programs, superscalar

multiprocessor systems have been the trend in
designing high speed computing systems. Example of

such systems include Cray SuperServer 6400 (8], Cray
T3D System [9], Kendall Square Research KSR-1 [12],
and Sun SparcCenter 2000 [6]. While superscalar
processing exploits the instruction-level parallelism
(ILP) within a processor, multiprocessing exploits task-
level parallelism between processors. Superscalar
multiprocessor systems provide enormous computing
power by exploiling both fine-grained and coarse-
grained parallelism in programs.

When designing a multiprocessor system,
performance projection is an important study to the
multiprocessor architecture decisions. There are three
methods to verity a multiprocessor system: prototyping,
analytical modeling, and simulation. Prototyping can
predict most accurately the behavior of the system, but
it is in general the most time-consuming and costly.
This is often done only at the last stage of sysiem
verification. Analytical modeling uses the simplified
parameter set or probability distribution to model a
system. However, due to the complexity of real
systemns, modeling is often too simple and naive to even
approximate the actual system. In contrast, simulation
can model the system at a variety of levels of detail, so
that different aspects of the system can be studied in
desired detail. Simulation also allows the study of the
behaviors of many design alternatives in a very short
turn-around time and at a relatively low cost, reducing
the effort and developing time of the system.

Currently, there are many multiprocessor simulators
available. Examples are the Proteus [5], RPPT 7], and
TangoLite [10). However, these multiprocessor
simulators model only the RISC processors with single
instruction issuing, static scheduling, and blocking
loads. In contrast, current superscalar processors
exploit high levels of instruction-level parallelism
through techniques such as multiple instruction issue,

. TERENAFZEHERSS

dynamic scheduling, speculative execution, and non-
blocking memory accesses. In this research, we
developed a simulator for performance evaluation of
superscalar multiprocessor systems. We also used this
simulator to run a number of benchmark programs to
investigate the parallelism exploitation capability of the
superscalar multiprocessor systems. o

The rest of this paper is organized as follows.
Section 2 describes our simulator that models
superscalar multiprocessor systems. Section 3
describes the benchmark programs. Section 4 presents
and discusses the simulation results of parallelism
exploitation capability of the superscalar
multiprocessor systems. Section 5 concludes this paper
and addresses our future work.

2. Superscalar Multiprocessor Simulator
2.1 MINT--A RISC Multiprocessor Simulator

Our superscalar multiprocessor simulator is based on
MINT [15], a RISC multiprocessor simulator that
supporis MIPS R3000 instruction set. The major
characteristics of the original MINT is brietly
described as follows. MINT is a program-driven
simulator as shown in Figure 1. MINT controls the
scheduling of processes so that the interleaving of
memory references is the same as it would be on the
simulated machine. A program-driven simulator can
be partitioned into two main parts: a memory reference
generator (also called the "front end"), and a target
system simulator (also called the "back end"). The
reference generator models the execution of an
application program on some number of processors.
When the program performs an interested operation,
typically the generation of a memory reference, the
front end sends an event to the back end. The back end
models the system interconnect and the memory
hierarchy. When the operations for an event complete,
the back end signals the front end that some process
can continue. Currently, MINT only supports MIPS
R3000 RISC core. By being linked to proper back-end
that describes the memory hierarchy, MINT can
simulate the multiprocessor system with single-issue
RISC processors.

memory hierarchy
(cache, memory, and
interconnection nesvork)

RISC core
(MIPS R3000 instruction set)

memory events target

reference =1 system

generator simulator

MINT

(front-end) |_, Pprocess (buck-end)
N control

ig. 1 MINT simulator.

2.2 SMIENT--
A Superscalar Multiprocessor Simulator

C-83

To enable accurate simulation of multiprocessor
systems using superscalar processors, we modified
MINT to support superscalar processing in the
processor core. We call the modified simulator SMINT
(superscalar MINT). SMINT uses the same MIPS
R3000 instruction set of MINT and supports a variety
of ILP features of contemporary superscalar
microprocessors Figure 2 shows the SMINT simulator.
SMINT has the following teatures:

-- Superscalar execution--multiple instructions can
be issued per cycle

-- Dynamic instruction scheduling (out-of-order
execution)

-- Register renaming

-- Dynamic branch prediction and speculative
execution '

memory fierarchy
(cache, memory, and
interconnection network)

superscalur RISC core
(MIPS R3000 instruction set)

memory avents target
teference 1 system
generator simulagor
superscalar

MINT- g PTOCESS (back-end)
{front-end) control

Fig. 2 The SMINT simulator.

By being linked to a proper back-end that describes
the memory hierarchy, SMINT can simulate the
multiprocessor system with superscalar processors.
Figure 3 shows an example of superscalar
multiprocessor system that SMINT can simulate. In
this system, an interconnection network connects all of
the processing elements (PEs). A processing element
is composed of a superscalar processor, an instruction
cache, a data cache, a shared memory module. and a
network interface.

Interconneetion Network

S |
Network Shared
Interface Memory
a
[}
§ ¥
&
v
Superscalar || cache
Processor memory
S vy

Fig. 3 A superscalar multiprocessor system.

hERENAFREHERSE

Figure 4 illustrates the processor microarchitecture
that can be modeled by SMINT. The instruction
control unit is the central controller of the superscalar
processor. It handles instruction address generation,
instruction fetching, interrupts, and so forth. In every
cycle, it can feich instructions from the instruction
cache into the instruction window, decode the fetched
instructions, and dispatch the issuable instructions to
the corresponding functional units for execution.
Before dispatching instructions, the instruction control
unit must detect data dependencies or resource
conflicts among these instructions. In addition, the
processor allows execution of instructions past
unresolved conditional branches. A branch target
butfer (BTB) with 2-bit saturation counters is used to
perform conditional branch prediction and- support
speculative execution.

Tustruction
Conteod
Unit

Register

Revrder
File

Butfer

A

V__§ + ¥

Funetional

Uiy

5

Instruction

Cache

\

Data Cache

3

§

System Bus

Fig. 4 The superscalar processor model.

To guarantee correct execution results, the
superscalar processor uses a reorder buffer to support
precise interrupts and speculative execution. In
addition to eliminating storage contlicts through
register renaming, the reorder butfer is used to bufter
speculated resuits and allow the processor to execute

instructions past unresolved conditional branches.
While the register file contains the in-order state data,

the reorder buffer contains the lookahead state data. If
an exception occurs, the contents of the reorder buffer
past the exception point are discarded, and the
processor reverts to accessing the in-order state data in
the register file after the exception handling. The
processor then refetches and re-executes the correct
instructions to generate correct results. In the
superscalar processor model, the execution time for all
instructions is one cycle. And the processor with
superscalar degree n is assumed to have n
“homogeneous function units, and it can fetch up to »
instructions, execute up to n instructions, and retire up
to n instructions, per cycle.

3. Benchmark Programs

C-84

In this section, we describe the benchmark suite we
used--the SPLASH-2 [14], which is also widely
accepted in studying centralized and distributed
shared-address-space multiprocessors. The original
SPLASH-2 programs were annotated by AINL macros
[3] for multiprocessor execution. After expanding the
macros into ¢ codes by UNIX utility md, the
benchmark programs are compiled into MIPS object
codes by cc of SGI IRIX System V.3. Then, the object
codes are fed into our superscalar multiprocessor
simulator to produce simulation results. Figure 5
outlines our simulation flow.

SPLASH-2
L g

i
- ¥

IRIX System V.3
cc

|
v

MIPS ohjectcodes

|
¥

superscalar
MINT

|
v

simulation results

Fig. 5 Execution flow of the simulation.

SPLASH-2 consists of a mixture of complete
applications and computational kernels. 1t currently
has 8 complete applications and 4 kernels, which
represent a variety of computations in scientific,
engineering, and graphics computing. In this research,
we chose the following programs as our benchmarks.
31 FFT

The FFT kernel is a complex 1-D version of the

radix-J; six step FFT algorithm descried in [1],
which is optimized to minimize interprocessor
communication. The data set consists of the n complex
data points to be transformed, and another n complex
data points referred to as the roots of unity. Both sets

of data are organized as «/; xJ; matrices partitioned
so that every processor is assigned a contiguous set of
rows which are allocated in its local memory.
Communication occurs in three matrix transpose steps,
which require all-to-all interprocessor communication.
Assume p is total number of processors, every
processor transposes a contiguous submatrix of

(«/; / p) X (J,_z / p) from every other proéessors, and

transposes one submatrix locally. The transposes are
blocked to exploit cache line reuse. To avoid memory
hotspotting, submatrices are communicated in a
staggered fashion, with processor / transposing first a
submatrix from processor i+1, then one from processor
i+2, etc.

FERENTAFZEHESES

32L0

The LU kernel factors a dense matrix into the
product of a lower triangular and an upper triangular
matrices. The dense n x n matrix A is divided into an
NxN array of Bx B blocks (n = NB) to exploit
temporal locality on submatrix elements. To reduce
communication. block ownership is assigned using a 2-
D scatter decomposition. with blocks being updated by
the processors that own them. The block size B should
be large enough to keep the cache miss rate low, and
small enough to maintain good load balance. Fairly
small block sizes (B=8 or B=16) strike a good balance
in practice. Elements within a block are allocated
contiguously to improve spatial locality, and blocks are
allocated local to processors that own them.
3.3 Ocean

The Ocean application studies large-scale ocean
movements based on eddy and boundary currents, and
is an improved version of the Ocean program in
SPLASH [13]. The major differences are: (i) it
partitions the grids into square-like subgrids rather
than groups of columns to improve the
communication-to-computation ratio, (ii) grids are
conceptually represented as 4-D arrays, with all
subgrids allocated contiguously and locally in the
nodes that own them, and (iii) it uses a red-black
Gauss-Seidel multigrid equation solver [4], rather than
an SOR solver.

3.4 Radix :
The integer radix sort kernel is based on the method
described in [2]. The algorithm is iterative,

performing one iteration for each radix r digit of the
keys. In cach iteration, a processor passes over its
assigned keys and generated a local histogram. The
local histograms are then accumulated into a global
histogram. Finally, each processor uses the global
histogram to permute its keys into a new array for the
next iteration. This permutation step requires all-to-all
communication. The permutation is inherently sender-
determined, so keys are communicated through writes
rather than reads.

In summary, Table | provides the input problem
sizes, of the benchmarks that we used.

Table 1. Input problem sizes of benchmarks

Code Problem Size
FFT 64K points
LU 256 % 256 matrix, 16 x 16 blocks
Ocean 130 x 130 ocean
Radix 256K integers, radix 1024

4. Simulation Results
In this section, we present the simulation results
about parallelism exploitation collected by SMINT. To

C-85

avoid the performance impact caused by memory
system, we assume that the memory system is perfect
(PRAM model [11]), so that all memory references
complete in a single cycle. To exploit parallelism at
different levels, we simulated the systems in
multiprocessing, superscalar processing, and
superscalar multiprocessing configurations as follows.

e ~o—FFT

e L @
e
Rinliy

Spwedup
—
\

Nuuber vt PEs

Fig. 6 Speedup due to multiprocessing.

4.1 Multiprocessing

Figure 6 shows the speedup of multiprocessor
systems with single-issue RISC processors. (Only the
parallelizable portions of the benchimarks are
measured.) From this figure. one can see that all the
benchmarks, except LU, can achieve a near linear
speedup. When 32 processors are used, the speedup of
FFT, Ocean, and Radix are 29.67, 25.12, and 26.68,
respectively. The reason why LU fails to achieve a
linear speedup is that LU spends much time in
blocking due to synchronization. For all the other
benchmarks, the blocking time also restrains them
from having a perfect linear speedup. Among these
benchmarks, FFT obtains the maximum speedup due to
the least blocking time.

WwE - - - - - - I
/ —— FFT
""" W ms & W
O
- Ralix

Insteucriuns Per Cyele
=

H Superseaky Provessine bedree

Fig. 7 Instruction-level parallelism of the four
benchmarks on a superscalar processor with perfect
‘branch prediction and infinite instruction window size.

4.2 Superscalar Processing
4.2.1 Instruction-Level Parallelism ,

To exploit the ultimate instruction-level parallelism
of the benchmarks, we assume an ideal superscalar
processor that has perfect branch prediction and
infinite instruction window size. Figure 7 shows the
achievable IPCs (Instructions Per Cycle) of the
benchmarks on the assumed superscalar processor with

hERE\ R I AR

varied superscalar processing degrees. It is observed
that the sustained IPCs of the benchmarks range from
4.29 (Radix), 6.25 (FFT), 10.48 (Ocean). to 12.08 (LU),
and further gain in IPC is little when the superscalar
processing degree is greater than 16. In the following,
we study the impact of branch prediction efficiency and
limited instruction window size on the instruction-level
paralielism.

4.2.2 Branch Prediction
Affecting Instruction-Level Parallelism

SMINT models BTB with 2-bit saturation counter.
Based on simulation results, we found that 256 BTB
eniries with 2-way set associativity are sufficient to
reduce the BTB miss ratio to zero and achieve the
maximum prediction accuracy for all the benchmarks.
The maximum prediction accuracies are 90.4%. 90.9%.
96.5%. and 99.9% for FFT, LU, Ocean, and Radix,
respectively. Thus, 256 2-way set associative BTB
entries are assumed in the following simulations.
Figure 8 shows the impact of real branch prediction on
the instruction-level parallelism. The sustained IPCs
of FFT, LU. and Ocean drop to 5.96, 10.74, and 9.63
due to imperfect branch prediction, respectively.
However. Radix retains the same IPC (4.29) due to its
99.9% prediction accuracy.

=2

2

)

o ~—FFT
[-

P w

= Oceun
3 - - Radix
2

g

{ 2 4 8 to n ot

'
Superscalur Processing Degree

Fig. 8 Instruction-level parallelism of the four
benchmarks on a superscalar with 256-entry, 2-way set
associative, 2-bit saturation counter BTB prediction.

4.2.3 Instruction Window Size
Affecting Instruction-Level Parallelism

Figure 9 shows the effect of instruction window size
on the exploitable instruction-level parallelism. The
instruction window size is the maximum number of
instructions that can be scheduled dynamically in the
processor. In general, the larger the instruction
window, the more the exploitable instruction-level
parallelism. However, the instruction window is very
costly, and its circuit complexity grows tremendously
as its size increases. Furthermore, the exploitable
instruction-level parallelism is very insignificant after
the instruction window size grows above a certain
threshold. From Figure 9, it is observed that an
instruction window size of 128 is sufficient to exploit

C-86

the most instruction-level parallelism. For this reason,
in the following simulations, we assume an insiruction
window size of 128.

—=FFT
L w B
Ocen|
- Radix

~ tastuctivn Per Cyule

i 2 4 8 w32 e 28 256 512

Size of Tistruction Winskiw

Fig. 9 Effect of instruction window size on
instruction-level parallelism.

4.3 Superscalar Multiprocessing

In this subsection, we present the simulation results
about parallelism exploitation in the superscalar
multiprocessor systems. Based on the simulation
results of Section 4.2, we define the superscalar
processor for constructing superscalar multiprocessing
systems as follows: It is an n-issue superscalar
processor which has n homogeneous functional units,
with a 2-way set associative BTB of 256 entries, and an
128-entry instruction window.

Assume that the execution time of the sequential
portions of all benchmarks are excluded. Let m be the
multiprocessing degree and n be the superscalar
processing degree. We define the multiprocessing
speedup as

Execution time of n - issue uniprocessor
Execution time of m - way multiprocessor with n - issue processors

and the overall speedup as

Execution time of | - issue uniprocessor

Execution time of m - way multiprocessor with n - issue processors

The idealized multiprocessing and overall speedups
are m, and m * n, respectively. However, the ideal
speedups are hardly achievable due to synchronization
blocking, load imbalance in multiprocessing, limited
instruction-level parallelism, branch misprediction, in
superscalar processing, efc.

Figures 10 shows the multiprocessing speedup of the
benchmarks. For the FFT, the multiprocessing
speedup is independent from the superscalar processing
degree. This is because FFT spends little time in being
blocked. so that as the processor element speed
increases, the multiprocessing speedup can still be
maintained. However, the multiprocessing speedups of
LU and Ocean are lowered as the processor element
speed increases, indicating that the systerns with high
speed processor elements will cause more time in

PERENTAER

blocking relatively. As for the Radix, the
multiprocessing speedup increases slightly as the
superscalar processing degree increases. This

phenomenon can be explained as follows. The Radix
has less instruction-level parallelism and near 100%
branch prediction accuracy, so that the instruction

window is often full in a high-issue degree processor.

Therefore, as the number of processors increases, more
number of instruction windows in the processors will
be able to exploit more instruction-level parallelism, so
that the multiprocessing speedup increases.

FFT

——n=|
-an=2

n=d
ER
et ST

o= 3l

Multipicessing Spredup

" 4 8 i 16 2 24 % 2
Nunsher of PEs

Lt

b = = o = = « = = « = = - - - ——a=1l
| s n=2
! n=4

n=g
ST
<oy = 32

Mubliprocessing Speedup
s

[} 4 R 12 13 20 24 R k33
Numher o PES

{hean

) 4 *® 12 [0 20 p23 P® a2
Numher of PEs

Ruudix

cE-n= 32

1" 4 R 12 i3 RIURE. 2 R 2
Nurdrer of PEs

Fig. 10 Muitiprocessing speedups of the four
benchmarks in superscalar multiprocessing.

Figure 11 shows the overall speedups of the
benchmarks. It is observed that the parallelism--both
instruction-level and task-level--is tully exploited in

C-87

FEReS

superscalar multiprocessing. When the total number of
PEs is 32, the sustained overall speedups of the FFT,
LU, Ocean, and Radix are 211.5, 30.4, 180.5, and
126.4, respectively. In summary, the FFT has the
highest task-level parallelism and a substantial
instruction-level parallelism so that it achieves the
highest overall speedup. Although the LU has the
highest instruction-level parallelism, it shows the
lowest overall speedup due to insufficient task-level
parallelism.

FFT

=
#* n=1
n=4
n=g

o=

Overutl Speedup

ez A2

0 4 & 12 i ptl 4 2K k5
Number ut PEs
w
I [EQ—
|
——n=t
° n=2
n=4
CER NS
oz
ce—n= 32
] 4 R () oW ¥ xR
Number o PEs
ey
——p= |
Az 1
n=4
n=¥
=
-z |
] 4 b 2 0 20 pa) 2K A2
Number of PEs
Rudix
- ——nz= |
% e-p=2
& =4
b h=
? o=
2 = u=)
~ ey = 1)
o 4 & 12 He pl] P23 pi} n
Nunper of PEs

Fig. 11 Overall speedups of the four benchmarks in
superscalar multiprocessing.

4.3 Discussion

Superscalar multiprocessing systems exploit both
instruction-level and task-level parallelism in programs.
From the above simulation results, it is noticed that

hERBNTAEREHEREER

exploiting task-level parallelism via multiprocessing is
much more useful than exploiting instruction-level
parallelism via superscalar processing. In the m-way
multiprocessing, the parallelization speedup can be
approaching perfectly linear. In contrast, the inherent
instruction-level parallelism of benchmarks ranges
only from 429 t 12.08. Thus, increasing the
multiprocessing power gains more performance than

increasing the superscalar processing power in general.

From the simulation results. we suggest that a system
with a moderate degree of superscalar processing and a
high degree of multiprocessing can exploit the most

instruction-level and task-level parallelism in programs.

-~

For example, a 32-way multiprocessor with 8-issue
processor elements can speed up the FFT by over 200
times refative to a single-issue uniprocessor (as shown
in Figure 11).
5. Conclusion and Future Work

In this paper. we investigated the parallelism

exploitation in the superscalar multiprocessor systems.

To enable accurate simulation of superscalar
multiprocessor systems behavior, we developed a
simulator, called ~ SMINT, for superscalar

multiprocessor systems. The SMINT models both
superscalar processor that can exploit instruction-level
parallelism and shared-memory multiprocessor system
that can exploit task-level parallelism. With this
simulator, we ran a number of applications chosen
from SPLASH-2 benchmark suite to examine the

parallelism exploitation in the systems of
multiprocessing, superscalar processing. and
superscalar multiprocessing. We found that the

parallelism in programs can be best exploited by a
moderate degree of superscalar processing and a high
degree of multiprocessing. For example, the speedup
of a 32-way multiprocessor with 8-issue processor
elements can be over 200 times relative to a single-
issue uniprocessor.

In this paper, we assumed a perfect memory sysiem
(the PRAM model).” We will study the impact of
memory system design on superscalar multiprocessor
systems in the future. Furthermore, we intend to study
a varicty of architectural designs of superscalar
multiprocessor systems, such as single-chip
multiprocessor and multiprocessor clusters, to exploit
all the possible parallelism and locality in programs.
The research topics about superscalar multiprocessor
systems will also include the tradeotfs of parallelism
cxploitation and locality management. the impact of
ILP processors on memory consistency models, and the

implementation of speculative memory access
techniques.
References

{1

(6]

(7)

(8l
1
[10]

[t

(14]

L15]

Hierarchical

in or

of

David H. Bailey, "FFT's External
Memory," Jowrnal
Supercomputing. 4(10):23-35, March 1990.
Guy E. Blelloch, Charles E. Leiserson, Bruce M.
Maggs, C. Greg Plaxton, Stephen J. Smith, and
Marco Zagha, "A Comparison of Sorting
Algorithms for the Connection Machine CM-2."
in Proceedings of the Svmposium on Parallel
Aleorithms and Architectures. pp. 3-16, July
1991.

J. Boyle. R. Butler. T. Disz. B. Blickfeld, E. Lusk.
and R. Overbeek, Portable Programs for Parallel
Processors. Holt, Rinchart and Winston, 1987.
Achi Brandt, "Multi-Level Adaptive Solutions to
Boundary-Value Problems," Mathematics of

“Computation, 31(138):333-390. 1977.

E.A. Brewer, C.N. Dellarocas, A. Colbrook, and

W.E. Weihl. "Proteus: A High-Performance
Parallel Architecture Simulator." Technical

Report MIT/LCS 516. Massachusetts Institute of
Technology, September 1991,

M. Cekleov. et al. SPARCcenter 2000:
Multiprocessing for the 90's!" in Proc. Compcon
Spring 93, pp. 345-353, Feb. 1993.

R.C. Covington, S. Madala, V. Mehta, J.R. Jump,
and J.B. Sinclair, "The Rice Parallel Processing

. Testbed," in ACM SIGMETRICS International

Conference on Measurement and Modeling of
Computer Systens, pp. 4-11, 1988. ‘
Crav Superserver CS6400 Product.
Research, Inc.. Eagan, MN, 1993.
Crax/T3D Technical Summary, Cray Research.
Inc.. Eagan, MN. October 1993.

H. Davis, S.R. Goldschmidt, and J. Hennessy,
"Multiprocessor Simulation and Tracing Using
Tango,” in Proc. 1991 Int'l Conf. Parallel
Processing, Vol. IL, pp. 99-107, 1991

S. Fortune and J. Wyllie, "Parallelism in Random
Access Machines,” in Proceedings of the Tenth
ACM Symposium on Theory of Computing, May
1978.

KSR Technical
Research, 1993.
Jaswinder Pal Singh, Wolf-Dietrich Weber, and
Anoop Gupta, "SPLASH: Stanford Parallel
Applications for Shared Memory," Computer
Architectire News, 20(1):5-44, March 1992..
Steven Cameron Woo, Moriyoshi Ohara, Evan
Torrie, Jaswinder Pal Singh, and Anoop Gupta,
“The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proceeding
of the 22nd Annual International Symposium on
Computer Architecture, pp. 24-36, June 1993.

J.E. Veenstra and R.J. Fowler, "MINT Tutorial
and User Manual." Technical Report 452,
University of Rochester, June 1993,

Cray

Summary, Kendall Square

