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Abstract
In general, synchronization mechanism can be used
to preserve dependence constraints of any nested
loops, and it can be combined with loop scheduling
scheme to form a uniform framework. Meanwhile,
correct execution order and balance workload dis-
tribution will be achieved. In this paper, we propose

a new scheduling scheme called M-hopping method

to schedule non-uniform dependence doubly nested
loop on multiprocessor systems. To initialize a set of
hopping information, our approach is based on the
concept of minimum dependence distance. During
runtime, hopping information will be used to adjust
number of parallelizable iterations. According to our
experimental results, if loops carry sufficient paral-
lelism, our proposed method will reliably exploit
parallelism, and outperform most of the existing
non-uniform dependence loop scheduling schemes
by 20.29% in average.

Keyword: Scheduling, Parallelizing Compiler, Loop,
Multiprocessor , Synchronization.

1 Introduction

Upon demanding of fast computation power, multi-
processor has been one of the popular architectural
designs. To fully utilize the entire system, workload
of each processor is expected to be as even as possi-
ble [10]. Ever since loops are major source of paral-
lelism, loop scheduling problem has been studied to
achieve equal and fair workload distribution; besides
reducing  synchronization, communication and
threads management overhead {4]. In spite of gener-
ality of DOALL loop scheduling schemes [4, 8, 10,
12, 14, 16], non-uniform dependence loop schedul-
ing schemes are rarely found.

Non-uniform dependence loops, which have ir-
regular dependence on iteration level, are mainly
due to coupled subscripis [1]. Fortran numerical
packages such as Linpack [19], Eispack {20], Itpak
[21] and Fishpak [22] are typical examples. They are
library packages and can be called very frequently in
users’ programs for scientific and engineering com-
puting. Henceforth, it is worthy and important to
develop an efficient loop scheduling scheme for
them.

Among the existing approaches, although Stag-
gered Distribution [5] performs outstandingly in
data-flow machine, the method is not adaptable for
shared memory muliiprocessor systems. On the
other hand, most of the later systems acceptable
scheduling schemes [2, 6, 7, 13, 15] introduce sig-
nificant delay overhead in preserving dependence
correctness. In this paper, we intend to develop a
non-uniform dependence loop scheduling scheme,
which is free from evident delay overhead, and ca-

pable of dynamically extracting parallelism. This
newly developed method is called M-hopping
method; the target platform is shared-memory or
distributed shared-memory MP system.

forI=11;
forJ=1,U;
Sq A(F(LI), HLAD) = ...
Su: . = (B, T4(1Y))
endfor
endfor

Figure 1 Program Model

To simplify discussion, program model as shown
in Figure 1 is used for description and preliminary
evaluation. Tt has been widely discussed in several
previous researches [2, 3, 6, 9, 11, 13, 15). Only
loops that are parallelizable along outermost loop
level are considered. Each iteration will be given a
unique identifier by the formula (I-1)*U; + J; and
iterations are scheduled in order.

Performance evaluations are carried out on

CONVEX SPP 1000. According to our evaluation
result, regardless with number of available proces-
sors, M-hopping method substantially eliminates
delay overhead as well as multi barrier synchroniza-
tion. When eight processors are used and real
benchmarks are considered, M-hopping method is
better than Index Synchronization Method [15] by
15.25% in average. If it is compared with loop parti-
tion techniques [9,11], it is superior by 25.33% in
average. The amazing outcome has truly inspired the
further extension.
_ Organization of this paper is as follows. Section 2
is related work; section 3 gives the basic concepts
and principles of M-hopping method. Further gener-
alization of the method is also done in this section.
Performance evaluations will be presented in section
4 and section 5 is concluding remarks.

2 Related Work

Conventionally, performance of a loop scheduling
mechanism is determined by five factors, workload
balancing, scheduling overhead, communication
overhead, threads management overhead and syn-
chronization overhead [4]. Among them, synchroni-
zation, scheduling and threads management over-
heads are our major concerns. Execution time of
loop body is assumed consistent for all iterations.
Therefore, workload imbalance would be simply
caused by scheduling mechanism.

Several previous works had been devoted to ef-
fectively schedule non-uniform dependence loops,
including Index Synchronization Method [15],
Group Synchronization Method [13], Static Sirip
Scheme {2,6] and so forth.

Index Synchronization Method (ISM) is proposed
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to schedule uniform dependent two-way nested loop
obtained from Dependence Uniformization. The
basic idea is serially executing inner loop, and the
outer loop is performed concurrently with insertion
of synchronization, which is implemented through a
globally shared array incorporated with delay opera-
tion. Performance of ISM will probably be con-
strained by Dependence Uniformization, because
additional delay overhead is introduced. One of the
variations of ISM is Group Synchronization Method;
delay overhead is also inevitable, and it may restrict
the performance gain. )

Static Strip Scheme (SSS) is another approach
that also associates with Dependence Uniformiza-
tion. A strip is a group of iterations to be sequen-
tially executed. Cross strips dependence are pre-
served through explicit synchronization primitives,
for instance, post&wait. As the name implies, SSS is
classified as static scheduling. Again, it is also con-
strained by Dependence Uniformization technique.
Besides, different synchronization primitives result
in distinct performance behavior.

Another intuitive approach is scheduling the tiled
loops, since a DOACROSS loop can be partitioned
into a few totally parallelizable tiles. Dependence
analysis is handled with loop partition techniques
during compile time. Any existing chunk size con-
trol functions can be applied to guide the scheduling
manner such as Pure Self Scheduling, Chunk Self
Scheduling and Guided Self Scheduling [10]. Bar-

rier synchronization is inserted at the end of each tile.

In spite of its intuitiveness and simplicity, it is
closely restricted by both loop partition techniques
and loop scheduling schemes. Multi barrier syn-
chronization are unavoidable at the end of each tile,
but poor choices of scheduling scheme can further
‘incur apparent overhead.

Following, we will study a scheduling scheme,
which is inessential to decompose iteration space
into either parallelizable or sequential blocks.
Meanwhile, delay instructions, synchronization
primitives, and multi barrier synchronization will be
eliminated.

3 Basic Concepts and Principles of
M-hopping Method

M-hopping method is named after the feature that
number of parallelizable iterations (M) hops across
subsequent iterations as a result of relaxation of
dependence constraint. The basic concept of
M-hopping method is illusirated in Figure 2 and
Figure 3.

)
W "

Figure 2 Before execution Figure 3 The first hop of M

To achieve the goal, we simply keep two global
variables to track the dependence constraints, they
are hopping gate and hopping distance. Hopping
gate is set to monitor the occasion of M’s hopping;
while hopping distance is used to define distance to

hop. In Figure 2, initially, hopping gate is set at it-
eration (1,2) and M covers the first 20 iterations
range from (1,1) to (2,10). Once iterations (1,1) and
(1,2) have been executed, 30 iterations from (3,1) to
(5,10) are releasable. By the time, M will be incre-
mented by 30 iterations and hopping gate shifted
ahead by 10 as shown in Figure 3. These 30 itera-
tions are so called hopping distance. If iterations
before (2,2) have also been executed, another 30
iterations range from (6,1) to (8,10) will be added to
M. Our approach to dependence analysis is based on
Dependence Convex Hull Theory [15]. For program
model presented in Figure 1, diophantine equation
set and dependence vector functions can be ex-
pressed as below:

Diophantine Equations (1)
81,82, 83, &, fp, t3 € R
=X
ji=>

=855t §,7+5,

°

J,Shr Y+,
Dependence vector functions (2)
di(x, y) = (81-1)x + 52y + 83

di(x, y) = tix + (t2-1)y + t3

Following, a simple application of M-hopping
method will be illustrated.

3.1 M-hopping Method for Backward
Growing Pattern Loops
Dependence vectors of some loops may increase
progressively along particular loop dimension. In [9],
this kind of loop is said to have growing pattern on
that loop dimension. If a loop has growing pattern
on outermost loop level and dependence vectors are
all flow dependent, it is called Backward Growing
Pattern Loops, we give their formal definitions as
below.
Definition 1 (Backward Growing Pattern Loop
(BGPL)): Given a two way nested loop L as shown
in Figure 1, and dependence vector function on out-
ermost loop level Vy is positive real. If V,(i;) € V((iz)
for any x and y satisfy 1<i;<i,<Uy, then L is said to
have backward growing pattern on loop dimension I,
and L is called Backward Growing Pattern Loop
(BGPL).O

If a loop is BGPL, then Vi = {di(x, y) | di(%.y) =
(s1-1)x + s3 and [(5;-1)%; + 83 ] < [(s4-1)x, + s3 ] for
any Li< X< X2 £ U]}.

Example 1(L;) s

Fori=10
forJ=1,10 )
Sa AGLSDH = ...
Sy =AL D) A
endfor Ve
endfor
TN
Figure 4 Array as- Figure 5 Dependemce
signment pattern of L, graph of L;

Consider example 1, L; is an example of
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non-uniform dependence loop, its dependence graph
is shown in Figure 5. The diophantine equation set is
{iy = X, ji = ¥, iz = 3%, j2 = 5y}, and dependence
vector set = {(3-1)x, (5-1)y} = {2x, 4y}. Depend-
ence Convex Hull (DCH) is the intersection of eight
half spaces [15], {(x, Y) |1 <x <10} N {(x, y) |1 <
y<10) {0,y |1<3x<10} N {(xy) |15y <
10}, it forms a rectangular shape in dependence
graph. For all 1 <1i; <i; £ 10, 21;<2i,, therefore it is
aBGPL.

From the definition of BGPL, a few properties of
BGPL are summarized.
Property 1: Integer Dependence Convex Hull
(IDCH) [11] of BGPL always situates at the side of
di(x, y) > 0. Geometrically, it tells that dependence
vectors within an outer loop instance I; or
anti-dependence are impossible.
Property 2: For any two dependence tails (i, j) and
(i+1, j), their dependence heads are shifted rightward
by s;, and s; represents initial dependence offset
along loop index I. Consider the dependence graph
of L,, dependence heads of (1,1) and (2,1) are (3,5)
and (6,5). Their dependence distance on I dimension
is6-3=3.
Property (3) : s, is always 1 for BGPL; dependence
heads of the two dependence tails (i, j) and (i, j+1)
locate at the same outer loop index i + di(x, y) =i+
(s1-1)x + s3. For example, dependence tails (1,1) and
(1,2) on Figure 5 have dependence heads on (3,5)
and (3,10). They both situates at the same column
Ii=3'
The above features of BGPL and hopping informa-
tion will be maintained as follows.

3.1.1 Determination of M
Given an iteration space, M represents the number
of parallelizable iterations. We formally define it as
below.
Definition 2 (M): Given a normalized two-level
nested loop L, let lower and upper bound on outer
loop index I be Ly and Uy respectively. Uy is upper
bound on inner loop dimension J, and I to I; are
adjacent columns of iterations on loop dimension I,
where L; < I; < Ijy; < Uy For any iterations i € [I; ,
L), if it satisfies one of the following conditions :
(i) itis dependence free;
(i) it is dependence tail, but the corresponding de-
pendence head i’ & [I; , Lijl;
(iii)it is dependence head, but the corresponding
dependence tail i’ ¢ [, Lyl
we say these iterations are parallelizable and denote
the number of these parallelizable iterations as M,
M=[( Iiy; - I+ 1)*U,). O
For DOALL loops, M is initially equal to the
total number of iterations on iteration space (N), or
(L , Tyl=lLs, Uy, and M=[(U-L+1)*Uj). However,
M always less than N for non-uniform dependence
loop initially, due to existence of dependences. To
initialize M, the number of parallelizable iterations
before IDCH and the first group of parallelizable
jterations on IDCH are computed. It is formally
stated in Theorem 1.
Theorem 1 : Given a BGPL (L) as shown in Figure
1, M is initialized as L(s,*iier) +53-1] * Uy, where iieq
is lefimost extreme of IDCH on loop dimension I, s,
and s, are two coefficients in diophantine equations

1.

Proof: Parallelizable region before IDCH covers
[(es-1)*U;] iterations. Subsequently, the first group
of parallelizable iterations next to the region is cer-
tainly contribuied by the leftmost extreme points of
IDCH according to the definition of BGPL. Property
(3) implies that dependence distance of the leftmost
extreme is exactly [(8,-1)*ijr]+s3. So that, the initial
value of M is :
[Gier-1D¥U] + [(51-1)*iects3] * Uy
= {1 + [(s1-1)*ige] +53}* Uy
= [(s1*ige) +83-11% Uy
= L(Sl*i‘eft) +83 -LI_[ *Uj (convert real to integer) O
Consider example 1, set of extreme points is
{@,1), (1,2), (3,1), (3,2)}. Among them, the leftmost
extreme point on loop dimension I is 1, therefore M
is initialized as l_(3*1)+0-1 1¥10 = 20. Geometrically,
it indicates that there are 20 parallelizable iterations
at first, any idle processor can schedule iterations
from them.

3.1.2 Determination of Hopping Gate
When iterations before hopping gate have all been
executed, the corresponding dependence heads will
be released. Therefore, hopping gate specifies the
relaxation occasion of dependence heads. It is de-
fined as below.
Definition 3(Hopping Gate): Given a two-way
nested loop L, let n be identifier of an iteration and
M as defined in Definition 2. If iterations i < n are
all parallelizable, and before their complete execu-
tion, any iterations j > M cannot be executed; we
call n as hopping gate. D

For BGPL, hopping gate is set at the last depend-
ence tails of an outer loop instance I;. However, the
last dependence tail on each outer loop instance
may vary from each other, we will conservatively
choose the largest one as hopping gate. Based on
theorem stated in linear programming [11], the ini-
tial value of hopping gate can be defined as below

_directly.

Theorem 2: Given a BGPL (L) as shown in Figure 1,
hopping gate is initialized as [(iis-1)* Uil +j, where
j = max(j) and @i}, j) are extreme points of IDCH,
ijeqr is the leftmost extreme of IDCH on loop index 1.
Proof: The proof is trivial. Hopping gate is invalid
for parallelizable region; if it exists at left of IDCH,
hopping gate will be shiftéd ahead by (irs-1)* Uy
Since the maximum j appears at extreme points,
hopping gate is initialized as [(ir-1)* Ul +. O

Consider L, in example 1 again, among the ex-
treme points (1,1), (3,1), (1,2) and (3,2), maximum j
is 2 and ig is 1, so that hopping gate will be initial-
ized as (1-1)*10+2 = 2. It means that, once iterations
(1,1) and (1,2) are completely executed, their corre-
sponding dependence heads will be released. At the
same time, hopping gate increments by 10 (Uy), the
newly updated hopping gate situates at iteration 12
or (2,2).

3,1.3 Determination of Hopping Distance
When hopping gate is reached, hopping distance
defines the total number of releasable iterations. The
formal definition is drawn below.

Definition 4 (Hopping Distance): Given a two-way
nested loop L, let Uy and U; be upper bound on loop
indices I and J respectively. M as defined in Defini-
tion 2, hopping gate (G) is defined in Definition 3,
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and T; to I,; are adjacent columns of parallelizable
iterations on loop dimension I satisfy (M / Uy) <L <
Ii;; < Uy For all iterations j < G, if they have been
completely executed, then iterations i € [I; , L] are
all releasable. The maximal length of [I; , Iyl is
called the hopping distance. O

For BGPL, hopping distance can be determined
by Theorem 3. ’
Theorem 3 : Given a BGPL (L) as shown in Figure
1, hopping distance of L is (LSI_‘*U_]).
Proof : The proof is straightforward. For BGPL,
each time hopping gate is reached, iterations be-
tween two adjacent columns of dependence heads
will be freed. According to Property (2), dependence
distance between two adjacent columns of depend-
ence heads is s, therefore hopping distance is as-
signed with ( I_SI_I*UJ)- O

Unlike M and hopping gate, hopping distance is
determined at compile time, but remains unchanged
permanently. In example 1, hopping distance of L, is
(3*10) = 30. When iterations (3,5) and (3,10) are
released, M is incremented by 30, or M has totally
20+30 = 50 parallelizable iterations range from it-
erations (1,1) to (5,10). Both the hopping gate and
hopping distance will be active until iterations
within IDCH have all been executed.

The following corollary guarantees that hopping
gate is less than or equal to M.
Corollary 1 : Given a BGPL (L) as shown in Figure
1, hopping gate always less than or equal to M.
Proof : Initially, hopping gate is less than or equal to
M

L(s1*ies) +53-11 % Uy

=L (s1-1)¥irege +ireret 53-1) % Uy

2 L -1 Uy + L (31-1) it 53] * Uy

2 [l -11% Uy + Uy

(di(iies0)= [(81-1)*ipegt 83] = 1, else it is mean-
ingless)

2 (- D* Uy +j (1<j<U)

When execution commences, M together with
hopping gate will be updated by the same processor.
Each time hopping is taken place, M increments at
least [s,| * Uy (hopping count); and hopping gate
increments by Uy. Since s;> 1 for BGPL, imply that
(I_SIJ*U]) 2 Uy, Therefore at any time instance, hop-
ping gate always less than or equal to M. O

Based on the corollary, when M-hopping
method is applied, dynamic parallelism extraction is
achieved by earlier relaxation of parallelizable itera-
tions. Following, we will discuss the generalization
of the M-hopping method.

3.3 Generalization of the
Method
If the loop does not belong to the BGPL, M-hopping
method works similarly to BGPL, but slight modifi-
cation on initialization of hopping information. Due
to probable existence of coefficient s, in the de-
pendence vector function di(x,y), number of
parallelizable iterations is determined through the
concept of minimum dependence distance [14]. If
di(x,y) = 0 does not pass through the IDCH, then the
absolute minimum and maximum values of di(x,y)
appear on the extreme points.

Consequently, minimum dependence distance
of a flow dependence loop is {md | md = min[d;(x,y)]

M-hopping

where (x, y) are extreme points of IDCH and md <
R}. Let Uj as defined in Figure 1, iterations within
Lmd] * Uy are parallelizable [14]. The hopping in-
formation can then be determined by Corollary 2.
Corollary 2 : Given a non-BGPL flow dependence
loop (L) as shown in Figure 1, hopping information
is initialized as follows :
) M=Llies-1) + md]* Uy
(ii) hopping gate I_i]eﬁ +md-2]* Us+j
(iii)hopping distance = | md] * Uy
md is minimum dependence distance of L, and j =
max(j), where (i’, j*) are extreme points of IDCH.
Proof: (i) Similar to Theorem 1, M is initialized as:
(Gier-1) * Uy +Lmd] * U
= I.(ileﬁ’l) + IIldJ * U;.
(ii) Since iterations in L md] * Uy are parallelizable,
and so Lmd-1] * U; + j. Therefore, hopping gate
can be initialized as:
[Giere) * Uy] + Lmd- 10 Uy +
=lipg +md -2]* Uy +j.
(iii) Given M and hopping gate as defined in (i) and
(i), assume that once iterations before hopping gate
have all been executed, total number of releasable
iterations is.|_dJ * Uy If d > md, there may exist
dependence vectors locate within [ d * Uy, then LdJ
* U; will definitely not parallelizable. If d < md,
iterations in [d] * Uy are surely parallelizable, but d
is not the maximal length of parallelizable iterations.
As a result, d must be equal to md, and thus hopping
distance = md] * U;. O

On the other hand, If di(x, y) = 0 passes through
IDCH, iterations within IDCH can be
flow-dependence tails or anti-dependence heads. By
using  array  duplication and  renamning,
anti-dependences can be removed completely.
Moreover, some dependence tails may have de-
pendence heads locate at the same loop instance I,
Dy(x, y) = 0 implies that there exists intra-iteration
dependence for all iterations along the line segment
di(x, y) = 0. As long as single iteration will be exe-
cuted serially, intra-iteration dependence is pre-
served. M-hopping method works similarly, but
determination of minimum dependence distance
follows Theorem 4.
Theorem 4: If d(x,y) = 0 passes through IDCH, and
d(x,y) = 0, then absolute minimum value of dj(x,y)
appear at either extreme points or iterations next to
intersection points of line segment di(x,y) = 0 with
IDCH.
Proof : Let E represents set of exireme points, E’ is
subset of E, (x,, y1) and (x3, y,) are iwo intersections
points of the line segment d(x,y) = 0 with parameter
of IDCH. If di(x,y) = O passes through IDCH, it
divides IDCH into unique tail set and unique head
set [16]. The two unique sets are subsets of IDCH. If
they are denoted S¢ and S,, then exireme points
around their parameter would be union of E’ and {(x,
¥) | (%, y) is coordinate on the parameter of IDCH,
and it is closet to the intersection points (x;, y,) or
(X3, y2)}. Their respective absolute minimum de-
pendence distance can be determined. Assume they
are md; and md,. The overall minimum dependence
distance is min[md;, md,}. O

3.4 Algorithms of the M-hopping Method
Base on the above analysis, our M-hopping method
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can be generalized easily. During compile phase,
loop is examined whether interchangeable [15]. If so,
M will hop across loop dimension which has more
parallelism; or smaller value of ijgn. Detail proce-
dures are stated in Algorithm 1.
Algorithm 1: Compile phase of M-hoppmg method
begin
hopping_gate := 0;
hopping_distance := 0;
S := Banerjee(L); /* Determine diophantine equation
sets */
D := Tzen_and_INi(S); /* Determine IDCH */
if (Is_DCH_Empty() = TRUE)
then /¥ identify L as DOALL loop */
M:=N;
else
I := Transform_DCH_To_IDCH(D);
switch (Determine_Position_Of_IDCH(S,V))
begin
case 1: the loop can be reconstructed as DOALL
loop
M:=N;
case 2: (IS_BGPL(S) = TRUE)
M ;=L (51 *ige) +53 -11#* Uy; /* Theorem 1#/
hopping_gate = [(ier-1)* Uyl +j;
/* Theorem 2*/
hopping_distance :=|s,] * Uj;
/* Threorem 3%/
case 3: d(xy) = O does not pass through the
IDCH
md := Determine_Minimum_ Depend-
ence_Distance(V, D);
M =L (ipeg-1) + md ] * Uy; /* Corollary 1%/
hopping gate Lijege + md 2% Uy +j;
hopping distance = Lmd | * Uy;
case 4: di(x,y) = 0 pass through the IDCH
md := Determine_Overall_MDD(V, D);
M = (isi-1) + md] * Uy; /* Corollary 1%/
hopping gate Lijese + md -2 * Uy + j;
hopping distance = =|md]* Uy,
endswitch
end

The complexity of this algorithm is bounded by
forming DCH, transforming DCH to IDCH, deter-
mining position of IDCH and finding minimum
dependence distance. The worst case complexity is
O(n?) + 30(m), where n is number of half space and
m is number of integer points along parameter of
DCH.

During execution phase, M-hopping method fol-
lows Algorithm 1. Notice that, M-hopping method
defines the number of parallelizable iterations, but it
does mnot tell the scheduling manner. So that
M-hopping method must be incorporated with a
predefined chunk size control function.

Algorithm 2: Execution phase of the M-hopping
method
begin

/¥ Count is used to record id of the currently
scheduled iteration and Executed is used to record id
of currently executed iteration. */

Count :=0;

Executed := 0;

{#* Start parallel execution */
while (Count < N)
Get_A_Chunk_Of_Tterations(Count);

Execute_A_Chunk();
FM<N)
lock(t);
Executed = max(Executed,
bound[processor_id].ub);
J*processor triggers hopping™/
if (bound[processor_id].lb < hopping_gate
and
bound([processor_id].ub 2 hop-
ping_gate)
/*check whether within IDCH region.*/
if (hopping_gate 2
[(iign-1)*Uythopping_gate])
M:=N;
else
hopping_count = [(Exe-
cuted-hopping_gate)/Uy + 1];
hopping_gate := hopping_gaie +
(hopping_count*Uy);
M = M + (hopping_count *
hopping_distance);
unlock(t);
end

4 Preliminary Performance Evaluations

In this section, performance evaluations are studied
to practically verify the effectiveness of M-hopping
method. The experimental programs include pro-
gram models used to be discussed in the previous
section, and some practical code segments. The ex-
perimental evaluations are carried out on CONVEX
SPP-1000 clustered multiprocessor system [17,18],
which has eight PA-RISC processors, and memory is
configured as distributed shared.

Our interesting performance metric is execution
time. It is further divided into five components, they
are busy time (average parallel execution time of
each activated processor), waiting time (processors’
average waiting time while others are busy execut-

“ing), scheduling overhead (average latency of

scheduling a chunk), fork and barrier overhead (av-
erage time spent at the end of each tile) as well as
initialization overhead (the time consumed in ini-
tializing scheduling scheme and chunk to be exe-
cuted).

The comparative mechanisms include Index Syn-
chronization Method (ISM) [10], Minimum De-
pendence Distance Tiling (MDT) [14], Paralleliza-
tion Part Splitting (PPS) [15] and Growing Paitern
Detection (GPD) [15] will be taken into account.

As described in section 3, M-hopping method
ought to be associated with. one of the dynamic
scheduling schemes. To determine which is best, we
have applied Pure Self Scheduling (PSS), Chunk
Self Scheduling (CSS), Guided Self Scheduling
(GSS) [1] and Trapezoid Self Scheduling (TS) {3] on
L,. As you can see in Figure 7, association with G535
is superior most.

=5
O Schedding Oreread Proczsers

88y Time oy Tiene
DFort + e Ovrbest ko Ovrsent

Figure7 M-hopping method associated with vari-
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various chunk size control functions
Chunk size of PSS is constant 1; processors spend
a lot of time in parallel executing single iteration,
causing heavier initialization and scheduling over-
head. These overheads can be reduced by increasing
chunk size; by the time, subroutine is called to com-

plete a chunk of iterations rather than single iteration.

The faster the chunk size converges to 1, the fewer
scheduling overhead and initialization overhead
would be. CSS, GSS and TS are beneficial from the
feature. Formula of TS may fail sometimes, and
result in imbalance workload. In the following
evaluations, M-hopping method will be incorporated
with GSS to reliably extract parallelism, GSS will
also be applied on PPS, MDT and GPD if they are
available.

4.1 Performance Evaluation on Program
Model )

Table 1 shows the detail of program model L, with
associations of different scheduling approaches.

Scheduling (L,

Schemes

IsM BDVS = {(0,1), (1,-1)}

PPS IDCH covers from I = 1 to 10;
BDVS = {(0,1), (1,-1)}

MDT Tile length = 2; Tile size = 60

GPD Tile lengths = 2, 4, 12, 12; there

-|are 4 tiles totally.

M-hopping |M = 120; Hopping gate = 10;

Method Hopping distance = 150; isg = 6

Table 1 Scheduling related information of vari-
ous approaches

g

s & 2

5 8

Execution Time (msecs)
* w
=3

=3

Tta8f 1E88] 263
pet | sl peg o

T i i
Figure 8 Execution time of L,

Figure 8 is execution time of L, incorporated
with different scheduling and partition mechanisms;
number of processors (P) varies from 2 to 8. Among
them, execution time of MDT is the longest no mat-
ter how many processors are used. It involves 15
times processes fork-join and so barrier synchroni-
zation; the overhead gets apparent when P becomes
large. Besides, the limited tile size diminishes paral-
lelizable iterations; consequently, delay the schedul-
ing time. While L, is scheduled with ISM, system
consumes visible time waiting for the completion of
other iterations. Finally, the delay overhead causes
low performance gain. Performance behavior of PPS
is similar to ISM, because scheduling manner of
iterations in IDCH region follows ISM. In case of
IDCH region is large, performance of PPS will be
bounded by the delay overhead inherited from ISM.
Although GPD is specific to growing pattern loop, it
is still restricted by multi barrier synchronization

O Scheduling Overhead

overhead. Its execution time is eventually worse
than M-hopping method. In overall, M-hopping
method takes fully advantage of removing system
waiting time and multi barrier synchronization; as a
result, it outperforms any others.

4.2 Performance Evaluation om Practical

Code Segments
DOI=1Q DOI=1,Q
DOJ=1,R DOJ=1,R
AR(LJ) = AR(LJ) BA.D) =B(J,1)
CONTINUE CONTINUE
CONTINUE CONTINUE

Figure 9a Code segment 1 Figure 9b Code segment 2

.......

Figure 9¢ Dependence graph

In addition to the program models, practical code
segments have also been taken into account. Evalua-
tions on Propogate code segment are given at first,
It is one of the dependence pattern widely found in
Linpack and Eispack. The code segments are shown
in Figure 9a and Figure 9b, both of them share a
dependence graph as presented in Figure 9¢c. Result
computed by iterations (1,j) will be propagated to-
ward iterations (i,j) for all i € [1, Q). Detail sched-
uling information of distinct scheduling schemes are
presented in Table 2,

Figure 10a and 10b are execution time and
speedup of propagate code segment. Upper loop
bound is set as 30 on either dimensions, For this
particular code pattern, MDT tiles the iteration space
with tile length equals to 1, or each column of itera-
tions forms a parallelizable tile. The 30 times proc-
esses fork-join and barrier synchronization result in
extremely significant overhead, therefore seriously
degrade performance. ISM schedules the loop with
delay factor equals to 1. Both the ISM and PPS are
rather worse than M-hopping method because of
their  substantial waiting overhead. Again,
M-hopping method retains its superiority. According
to Figure 10b, we can further conclude that, if a
given loop inherits adequate parallelism, M-hopping
method affords to extract it with little hopping over-
head.

Scheduling| ToPagate Swap Code
Schemes |-0de Segment|Segment
30x30) (30x30)
BDVS = {(0,1),|BDVS =
ISM
(1,0} {0,1), (1,0)}
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IDCHatl=1; |[IDCH covers

PPS BDVS = {(0,1),j/from I = 1 to
(1,0)} 30;
BDVS =

{©0.1),d, 0)}

Tile length =1
MDT Tile size =30 | '°"

M = 30; Hop-|M = 30; Hop-

1;11\];;%?;1 ping gate = 3Q ping gate =
; Hopping  dis-|30;
tance =0 Hopping dis-
tance = 30
Table 2 Scheduling related information of
various approaches
[ =M —a—PB§ —2—MDT ——Mopping_|

0 . M ) . 1 : Numbes of
1 2 3 4 5 6 7 8 Processors

Egure 10a Execution time (Propagate)

Propogate Code Segment (30x30)

Execution Time (secs)

P2 TP=4 7 P=6 ¥ p=f  Procesom

@ By Time @ Waiting Time Q Schedding Overhead
O Fork + Barrier Overhead @ Inithalization Overhcad

Figure 10b Speedup (Propagate)

Another evaluated code segment is called
Swap code, which serves as kernel of Fishpak.
Figure 11a and 11b are code pattern and their
dependence graph. We find that IDCH occupies
the whole iteration space, moreover di(x,y) = 0
goes through IDCH vertically and di(x,y) = 0.
By the time, MDT fails and PPS works com-
pletely identical to ISM, because both the left
and right tiles are empty. Right half of Table 2
lists the ISM and M-hopping method when
they are applied on swap code.

Execution time and speedup graphs of swap
code segment are presented in Figure 12a and
Figure 12b respectively. Since there are at most
30 parallelizable iterations to be executed at
any time, the limited parallelism causes sig-
nificant scheduling overhead for M-hopping
method. Except when more than 5 processors
are used simultaneously, performance gain of
M-hopping method is just as good as ISM.

In summary, performance of M-hopping
method is exactly proportional to the underly-
ing parallelism. If parallelism is sufficiently
large, M-hopping method will reliably extract

parallelism without iniroducing intolerable
scheduling overhead. Consequently,
M-hopping method is a well-encouraged ap-
proach for scheduling non-uniform dependence

doubly nested loops.
DOI=110
DOJ=1,10
Al=Y(, D)

Y{J,D=Y{J, N+1-I)
Y(IN+1-I) = Al
CONTINUE
CONTINUE
Figure 11a Swap code segment

| DcR

o 1 2 3 4 s|6 7 &8 9 10 1

Figure 11b Dependenicé graph of swap code

Swap Code Segment (30x30)

Execution Time (msecs)
“w
(=1

P=2 Number of|
Processors

@ Busy Time © Waiting Time 0 Scheduling Oveshead
O Fork + Barricr Overhead @ Initiatization Overhead

Figure 12a Execution time (Swap)

| —=—ISM ~g-M-hopping r

|
0 - : : : : : - } Number of|
12 3 4 s 6 7 g Poceson

Figure 12b Speedup (Swap)

5 Concluding Remarks

Due to the rich parallelism, concurrent execu-
tion of loops is vital to the performance of
shared-memory multiprocessors. An efficient
non-uniform loop scheduling scheme, called
M-hopping method, is studied in this paper;
and its effectiveness is shown by practically
executing program code on CONVEX SPP
1000 machine. Based on solving set of dio-
phantine equations and idea of minimum de-
pendence distance, we have presented the de-
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termination procedures of hopping information,

including number of parallelizable iterations,

hopping gate and hopping distance. Ever since

M-hopping method does not define the sched-

uling manner, it must be incorporated with one

of the chunk size control function. The pre-
liminary evaluation ensures that Guided Self

Scheduling is more profitable to M-hopping

method.

Our performance evaluation shows that the
proposed method is significantly affected by
the parallelism of target program. If parallelism
is sufficiently large, M-hopping method will
reliably extract parallelism without introducing
serious synchronization overhead. Unlike any
loop partition techniques, it can successfully
eliminate multi barrier synchronization, and
release parallelizable iterations earlier. Instead
of relying on cross-block synchronization
primitives and delay instructions, it dynami-
cally adjusts the hopping information to main-
tain dependence correctness.

In: the future, we will further extend the
M-hopping method to multiple-dimensional
iteration space and establish an appropriate
dynamic data allocation mechanism to reduce
data conflict.

NSC 87-2213-E009-049.
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