Proceedings of International Conference on Image
Processing and Character Recognition

Computational Experience About Clustering Using Tabu Search*

Wu-Ja Lin and Ja-Chen Lin

Department of Computer and Information Science

National Chiao-Tung University

Hsinchu, Taiwan

g1s82802@cis.nctuedu.tw

Abstract

In this paper we present our ezperience aboul us-
ing tabu search (T.5.) to cluster data. Ezperimental
results show that the T.S. approach is in general supe-

rior to the k-means method and simulated annealing
(S.A.) method.

1 Introduction

Clustering has beed developed for several decades
and it can be applied to many fields such as medical,
behavioral and politics [1]. Clustering can be consid-
ered a process that partitions data into several clus-
ters so that every point in the same cluster is similar
to each other. One criterion that is commonly used to
measure the goodness of clustering results is the sum
of square error (SSE) defined as

SSE=3_ > Mo -l (1)

S5; TES;

where x are data points, and c¢; is the centroid of the
generated cluster S;. Many clustering methods [2]
developed so far intended to minimize SSE. However,
it is difficult in general to find the global minimum
for SSE. An increasing trend is to apply some heuris-
tic search methods [4][7] to accomplish it. T.S. is a
heuristic search method and is receiving increasing at-
tension for its good performance on the applications
to many fields [3]. In this paper, we apply T.S. to
clustering data and compare it with the k-means and
S.A. method.

*This work was supported by National Science Council, Re-
public of China, under contract number NSC85-2221-E-009-012

56

2 A review of tabu search (T.S.)

Before introducing the proposed method, we briefly
describe the tabu search method. It is a heuristic
search method which not only avoids exploring previ-
ously searched paths but also tries to jump out of the
traps of local optimum 8] [9]. T.S. has received much
attention in the solving of scheduling problems. Ba-
sically, T.S. is a neighborhood search method (stated
below) [10] and it has a memory structure to store the
moves (Step 3) previously made in the searching pro-
cess. Two rules, resiriction and aspiration, are used
in T.S. to direct the searching.

Neighborhood search procedure:

Step 1: Start searching from an arbitrarily chosen so-
lution. Call this solution the current solution.

Step 2: Generate a set of solutions from the neighbors
of the current solution.

Step 3: Move the current solution to a neighbor (cho-
sen by a selection criterion). In other words,
update the current solution using that neighbor.

Step 4: Repeat steps 2 ~ 3 until a predetermined ter-
mination criterion is met. 0

The restriction rule of T.S. stipulates that the new
move in Step 3 must not be found in the memory.
That is, it forbids the moves that had ever been made
previously. If the move is found in the memory struc-
ture, one should choose another neighbor from the
remaining ones whose moves are not forbidden and
yields the next best value. Then move current so-
lution to it. (Once the moves from the current so-
lution to the remaining neighbors are all forbiddem,
one should re-generate another set of neighbors of the
current solution and repeat the same examination to
make the next move.) On the other hand, the aspi-
ration rule states that the restriction rule could be
overridden if the forbidden move can reach a solution
which is better than the best one that had ever been
found so far.

Note that the size of the memory structure used by
T.S. determines the capacity of memorizing the his-

torical moves. The larger the size is, the more moves
the memory can memorize. In practice, the mem-
ory size 1s not infinite. Therefore, the contents of the
memory must be consecutively updated during the
searching process so that the memory always stores
the moves recently made. The major idea of using a
memory structure in T.S. is to avoid the possibility of
exploring searched solutions so that the diversity of
the explored solutions can increase. This diversity is
helpful for the effectiveness of finding the globally op-
timal solution. We adopt this strategy in our method
to solve clustering problem. The details of our method
are introduced in the next section. :

3 The proposed T.S5. method

We solve clustering problems by searching for a
set of specific points (called class centers) and using
these points to partition the given data sets. Bach
set of class centers will be called a possible solution.
The major idea of our method is to apply T.S. to
search for a good solution, i.e., a set of class centers
that yields a good partition of data. Before apply-
ing T.S. to searching for a good solution, we first
encode each possible solution as a binary string us-
ing the method described in [4]. In other words,
given a set of d-dimensional data points, we sub-
sampe the range (MINp, MAXp) of every dimension

D (D =1,2,...,d) into, say, 2¢ values (the sampling

step is MAX%ZI INe and the subsampled values are
MINp, MINp+ MAXp-MINo = MAX,) Here

MINp and MAXp is the minimal and maximal value
of input points on the Dth dimension. Therefore, we
can use { bits to represent the 2¢ subsampled val-
ues for each dimension, and hence, we can use ¢ x d
bits to represent a d-dimensional point. When pro-
ceeding our searching to a better solution, we only
consider data points (d-dimension) that can be repre-
sented with these (x d bits. The details of the method
are described in the following.

ALGORITHM

Step 1: Assign desired values to T.S. parameters: \
(number of candidate solutions), w (memory
size), P, (the disturbing rate used to gener-
ate candidate solutions from current solution),
TIN (total iteration number) and ((stated in the
above paragraph). Moreover, set the content of
T.S. memory unit to empty.

Step 2: Randomly generate A solutions for the given
clustering problem and use the one with the low-
est SSE, say, solution S as the current solution.
Note that we represent every solution in binary
form and calculate the corresponding SSE by
setting the solution as initial seeds of k-means
method and then run ten iterations for the k-
means method.

Step 3: Disturb current solution S to generate A can-
didate solutions, say, S!, S?,...,S*. Here we
generate every candidate solution by the follow-
ing method: to decide every bit value of every
candidate solution, we randomly generate a real

57

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

number & € (0,1). If § > P. we set the bit
value identical to the corresponding bit value of
S; otherwise, take complement bit value.

Step 4: Calculate the SSEs of all candidate solutions
St, 82,...,5*, and choose the one possesses the
best SSE. Let S be the best one. Let AS be a
number defined by AS = (S*) XOR (S), where
XOR denotes exclusive or. (AS is used to keep

the bit positions of S® on which the values are
different from that of 5.)

Step b: Check whether AS is stored in the T.S. mem-
ory unit. If not, the move AS (which means

currently the move from S to S*) is said to be
not forbidden, and we proceed to Step 7. Oth-
erwise, go to Step 6.

Step 6: If the SSE of S? is better than that of the best
solution we have ever found so far, restores AS

(of 5) so that it is the newest stored value in
T.S. memory unit and go to Step 8. Otherwise,
choose the best solution from the remaining can-
didate solutions {S*|1 < &k < A,k # b} whose
move (from S to S*) are not forbidden. For con-

vinence, we still use S° to denote this solution
and compute AS by the formula listed in Step
4. (If the moves from S to all S* in the remain-
ing candidate solutions are forbidden, however,
go to Step 3.).

Step 7: Store AS in T.S. memory unit. If the number
of stored values exceeds w, remove the oldest one
before memorizing AS.

Step 8: Move S to S? (i.e., set S = S;) and remember
the best solution met so far.

Step 9: Repeat Steps 3 ~ 8 until a pre-determined
iteration number TIN is reached. O

In the above, we use AS to represent the move
from one possible solution to another one (see Step

4) and we use further a memory unit to keep track

of the moves made recently (see Step 7). Whenever

we want to make a move, we always check whether
this move had been taken recently (see Step 5). We
usually avoid repreating those moves made recently

(see Steps 5 and 6). The reason is that this restric-

tion usually reduce the chance of being trapped in a

local minimum. However, this restriction can be vio-

lated in a special case - that is, it is allowed to take

a forbidden move when this move can reach a solu-

tion better than the best one that we had ever met

(see Step 6). This exception is reasonable and is also

called the aspiration criterion in the T.S. method [3].

Applying the above steps, we continnously search-
ing for a good neighbors of current solution and use

a memory unit to direct our searching (on moving

the current solution to the next one). Although this

searching process could not guarantee a global mini-
mum, we found it usually reach good solutions. (The

performance of our method is listed in Section 4.)

4 Parameter setting

The parameters used in our system include A\, w, ¢,

TIN and P,. The choice for the values of A, (and TIN

Proceedings of International Conference on Image
Processing and Character Recognition

is a trade-off between solution goodness and compu-
tation effeciency. The larger the values of A, (and
TIN are, the more solutions could be explored, and
thus the more chance to obtain the optimal solution. Tumber of classes
However, the searching space will also grow accord- 9 3 4
ingly. The size of w determines the capability of

Table 1: The SSE of our method, the k-means method
and the S.A. method for the GFB data.

s : > k-means 3598 E10 [3.061 E10 | 2.951 K10
memorizing the history of moves and a special case TA 7093 B10 [0.825 E10 | 0.642 E10
of w = 0 makes the tabu search become the neighbor- S method TT.740 BI0 1 0.756 E10 | 0.534 EI0

hood search method. On the other hand, a large value
of P. means the differences between the current solu-
tion and each generated candidate solution is large. If
P, is too large, it may make the tabu search behave
like the random search. Awaring of the characteristics
of these parameters, we use several data sets to test
various(36) distinct parameter settings (with P.=0.3,
0.2, 0.1, 0.05, A=10, 15, 20 and w=3, 10, 15) and
we found that P.=0.05, A=15 or 20 and w=10 or 15,
usually yields good results. (Here we use (=4 and
TIN=100.)

5 Experimental results and conclusion

We used three real data sets, namely, GFB [5], Iris
[6], and 8ox [6], to examine the performance of our
method. The GFB data set contains 89 postal zones
in Bavaria (Germany), and their four attributes as
self-employed people, civil servants, clerks and man-
ual workers. In other words, this data set contains 89
4-dimensional data points. The Iris data set consists
of 150 samples of four variables each. The variables
are sepal length, sepal width, petal length, and petal
width of various species of iris. Moreover, the Sox
data set contains 15 handwritten characters ’8’, 15
handwritten characters 'o’, and 15 handwritten char-
acters 'x’. Each character is represented by eight mea-
sured features. Namely, the 8ox data set contains 45
8-dimensional data points. The parameters we used
~were P, = 0.05, A = 15, w = 10, ¢ = 4 and TIN=100.
Moreover, we also included the resulis of k-means and
Simulated Annealing for comparisons. All the results
were measured in terms of SSE and shown in Tables
1, 2 and 3. From these tables, it can be seen that
our method is superior to the k-means method and
the S.A. method excepts the 4-class case in Table 2 in
which the SSE of the k-means is 57.2 whereas ours is
57.88 (the difference is small comparing to the other
cases in which ours are better than that of the k-
means), and S.A. gets 60.8 (in fact, the SSEs of our
method are all better than that of the S.A. method in
Tables 1 and 2). Table 3 shows that the results of our
method, the k-means method and the S.A. method
are all of the same when the data used is the 8ox.

In this paper, we successfully apply the tabu search
to clustering problem. The method is found to per-
form well and is observed to be competitive, usually
superior, to the k-means and S.A. methods.

58

Table 2: The SSE of our method, the k-means method
and the S.A. method for the Iris data.

number of classes
2 3 4
-means 152.4 142.8 572
S.A. 15624 93.6 60.8
our method | 150.69 78.65 57.88

Table 3: The SSE of our method, the k-means method
and the S.A. method for the 8ox data.

number of classes
2 3 4
k-means 1507.5 1201.2 1026.2
S.A. 1507.5 1201.2 1026.2
our method | 1507.5 1201.2 1026.2
References

[1] L. Kaufman and P.J. Rousseeuw, Finding
Groups in Data. New York: John Wiley &
Sons, 1990.

[2] A.K.Jain and R.C. Dubes, Algorithms for clus-
tering data. New Jersey: Englewood Cliffs,
1988.

[3] F. Glover, J.P. Kelly and M. Laguna, “Ge-
netic algorithms and tabu search: hybrids for

optimization,” Computer operation researches,
Vol. 22, No. 1, pp. 111-134, 1995.

[4] G.P. Babu and M.N. Murty, “A near-optimal
initial seed value selection in k-means algo-
rithm using a genetic algorithm,” Patlern
Recognition Letters, Vol. 14, pp. 763-769, 1993.

[5] H. Spath, Cluster analysis algorithms for data
reduction and classification of objects, Wiley,
New York, pp. 103-104, 1980.

[6] R.A. Fisher, The use of multiple measurements
in tazonomic problems, Contribution to Math-
ematical Statistics. Wiley, New York, 1950.

R.W. Klein and R.C. Dubes, “Experiments in
projection and clustering by simulated anneal-
ing,” Patlern Recognition, Vol. 22, No. 2, pp.
213-220, 1989.

F. Glover, Tabu search—part I, ORSA Journal
on Computing, Vol. 1, No. 3, pp. 190-206, 1989.

59

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

9]

[10]

F. Glover, Tabu search—part 11, ORSA Journal
on Computing, Vol. 2, No. 1, pp. 4-32, 1990..

T.E. Morton and D.W. Pentico, Heuristic
scheduling systems: with applications to pro-
duction systems and project management, John
Wiley & Sons, New York, pp. 82-120, 1993.

