rhERE/\+/\FEEEEREE®

A Practical Clock Tree Synthesis Flow

Mely Chen Chi
Department of Information and Computer
Engineering
Chung Yuan Christian University,
Chung Li,-
Taiwan

mlchen@ice.cycu.edu.tw

Abstract

In deep sub-micron era, an ASIC chip may
contain millions of gates and have the requirements of low
power and high performance. The ability to construct

multiple clock trees effectively is very important.

After conducting many clock tree synthesis
experiments, which explore various configuration of clock
tree structures and layouts, a guidance for clock tree
synthesis is generated. By applying this guidance, the clock
tree design procedure is simplified and the design time is
shortened. This methodology has been used to implement
clock trees on the chips designed in the Computer and
Communications Research Laboratories. Qur experience
shows that for single clock trees the intra-clock skew is
confined within 0.1Ins in one design pass for 0.3511 CMOS
technology chips. For multiple clock trees, which are
originated from the same clock source, the inter-clock skew
may also be controlled easily. This design methodology is
proven to be an effective method to implement clock trees

on ASIC chips.

Keywords: Clock Tree Design, Clock Tree Structure,
Clock Skew Minimization, Clock Tree Synthesis,
ASIC Design

L Introduction
Due to the progress of IC processing technology, a chip

Shih-Hsu Huang
IC Design Department
Computer & Communications Research
Laboratories
Industrial Technology Research Institutes
Hsinchu, Taiwan
shhuang @itri.org.tw

may have millions of gates with a very complex structure.
The synchronization of clocks on a chip is critical to the
performance and reliability of the chip [1,2,3). There are
different ways to implement a distributed clock network . A
distributed clock tree structure, as shown in Fig.l is
commonly used in VLSI designs. Clock tree synthesis is a
technique that is used to dynamically insert clock drivers
between the clock source pin and multiple receiver pins,
physically place the drivers on the chip, and route the clock
net. After routing, the largest difference in delay among all
the branches from the source pin to driver pins is called
clock skew. The clock skew should be minimized in order
to speed up the circuit.

In many ASIC applications low power is a very important
requirement. The gated-élock technique is used in many
designs in order to save power. When a chip has multiple
clocks how to control the inter-clock skew is a challenge
work. Designers not only need to construct individual
balanced clock trees to minimize intra-clock skew but also
to balance multiple clock trees simultaneously to minimize
the inter-clock skew.

In a traditional ASIC design flow, a clock tree generation
is done after the logic synthesis before the layout stage.
There are two drawbacks in this approach. It lacks of
physical locations of the receiver elements such that the
wire delay can not be obtained during the clock tree driver
assignment. Also it will require engineers to spend efforts
to balance the clock trees on the chip during layout.
Usually it takes many iterations between synthesis and
layout before a satisfactory result is achieved.

In order to solve this problem, a series of experiments
were conducted. As the result of these experiments, a clock
iree design methodology is developed. It helps designers to
balanced clock trees

construct effectively. This

A-532

methodology is described in this paper. This procedure has
been applied to many chips designed in the Computer and
Communications Research Laboratories of Industrial
Technology Research Institute (CCL/ATRI).

| .Clock Tree Synthesis Flow

As shown in Fig. 2, in an ASIC design procedure, afier
the logic synthesis the logic designers will define clock tree
structures and pass it to a layout engineer. After all the cells
are placed, the layout engineer will input the information of
the tree structure to a layout tool. The tool will insert
drivers in the placement and update the net list. Then all the
nets are routed. We use Avant!//Apollo for the clock tree
synthesis. After layout is done, the distributed RC of the
clock network is extracted by a distributed RC extractor
(Avant!/StarRC).
(Ultima/MDC) to calculate timing delay for all branches
and generate a Standard Delay Format (SDF) file which

Then we use a delay calculator

stores the timing delay data of the drivers and the
interconnects. The clock skew is the maximum difference
in delay among all branches. Then the updated netlist,
which includes the clock drivers, and the SDF file are fed
to a timing simulator (Cadence/Verilog) for post-layout
simulation.

If the delay or skew requirements are not satisfied then
the clock tree structure will be modified. The loop starting
from the clock tree synthesis to the timing analysis will be
repeated until the timing constraints are met. Usually it
took several loops to complete the design. It is very time
consuming. To reduce the number of iterations, we
developed a methodology that is described in the next

section.

w _ Clock Tree Design Methodology

In order to reduce the iterations of the clock tree synthesis,
a clock tree design methodology is developed. It provides a
guidance to layout engineers to synthesize clock trees for
each chip without extra effort from logic designers.

To construct clock trees in an ASIC chip, two major
techniques are required. First technique is to design the tree
structure and the second technique is to layout the tree.
These two techniques are described below.

To design the tree structure, as shown in Fig. 1, includes
the decision of how many levels of drivers are in the tree,
how many branches of fanouts are at each level, and which
driver to be used at each branch. The design of the tree
should conform to the skew and delay constraints. In the
tree structure, each level is balanced one by one. There will

have some amount of capacitive variation at each level. So
less levels means less chances to have variability, that
means less skew. The number of branches at each level is
also an important factor. High fanouts means more drivers
and more interconnects. It will result in a larger area and
more potential for skew variability due to interconnects.
Low fanouts may results in many levels, which may also
cause the skew variation. Therefore, designing a clock tree
structure which satisfies the timing requirements usually
take iterations to complete. In order to reduce the design
time, a series of experiments which simulate clock tree
design in real circuits are performed and the results are
summarized as a guidance for clock tree design. This
guidance provides data for tree construction according to
the number of clock receivers. After logic synthesis, logic
designers do not need to design the tree structure. Layout
engineers just follow the guidance and pass the tree
structure data to the P&R tool. As to our experience, all
chips design in the Computer and Communications
Research Laboratories satisfied the clock skew requirement
in one pass.

The clock tree structure design includes two parts. Part
one is for the synthesis of a single clock tree. The second
part is for synchronizing multiple clock trees of the same
clock source. They are described in Section # and
Section $ respectively.

Design Methodology for a Single Clock Tree

We first conduct many experiments that resemble the
clock trees in real chips to generate a guidance table for the
clock tree structure design. The methodology is described
in this section.

.1 Clock Tree Structure Guidance Generation
for a Single Clock Tree

Our goal is to generate a clock tree design guidance,
which may be applied to the majority of chips designed in
the Computer & Communication Research Laboratories. To
generate the guidance, first a set of netlists which resemble
real circuits of different sizes are generated. Then various
Clock
tree synthesis and timing analysis for each clock tree

clock tree structure are explored on each netlist.

structure are performed. Finally, among all results the
best tree structures for different number of receivers are
extracted which to be used later as guidance. The details of
these steps are described below.

.1. 1 Generate Netlists with Specific Number of
Receivers in a Clock Tree

In order to resemble real designs, a netlist generator is
developed. By specifing the number of clock receivers as

input, it will generate different netlists with logic

A-533

connectivity distribution similar to the connectivity
distribution of real circuits. The distribution of nets with
specific number of fanouts is summarized from the
statistics of the chips designed in the Computer and
Communications Research Laboratories. The percentage
range of the net distribution in a netlist is listed in Table 1.
Different netlists are randomly generated for the same
number of clock receivers. This netlist will not only have
similar logic connectivity to real circuits but also have
reasonable chip areas for constructing clock trees.

.1.2. Design the tree structure using bottom-up
process

We first define different levels of tree structures to be

used in one experiment, for example, using 2, 4, 6, 8 levels
in a tree. For each type of tree structure, we build the tree
level by level from the leaves (flip-flops) to the root (clock
source). In ASIC designs, the drivers are selected from the
standard cell library. In our design, inverter cells are used
as drivers. We study the driving capability and timing
characteristics of the available inverters. We first select
drivers for the lowest level which directly drive the
flip-flops. The number of flip-flops may be driven by each
driver is calculated by equation (1) where the wire load
capacitance is an estimated value.

Maximum Number of flip-flops

= (Maximum driving capacitance - Wire load capacitance)
/ Input pin capacitance of flip-flops N

We select drivers with lower driving capability at the
bottom level. After the bottom level drivers are defined,
then the input capacitance of these drivers are used as the
capacitance load for the selection of drivers of one level
above it. Repeating this process until the clock source is
reached. The choice of driver used in different levels is
made according to the following considerations. First, the

driver should have sufficient driving capability to handle)

the variation of the loading capacitance. High drive
inverters will add high capacitance load to the driver of the
previous level. It will increase insertion delay. Also the use
of strong drivers may result in Iafge power dissipation. So
at different levels, inverters are chosen to balance the
driving capability and the capacitance load to minimize
insertion delays.

.1.3. Use layout tool to synthesize a clock tree

Afier choosing one clock tree structure, we supply the
number of level, number of fanout at each level, and the
driver type at each level to a layout tool. We also supply a
netlist, which has the correspondent number of flip-flops, to
the tool as an input. We use Avant!/Apollo as P&R tool to

insert the driver cells after logic cell placement. It will also
perform the clock routing, and update the netlist.

1.4, Analyze the delay and the skew of the
clock net

After layout is completed, the distributed RC network of
the clock tree is extracted and fed to a delay calculator. The
calculator will also use the timing information of the driver
cell provided by the standard cell library to calculate the
timing delay from the clock source to the driver pins of all
branches. We can then calculate the skew of the clock tree.
This calculation is performed on all timing corners
including best, typical, and worst cases of the driver cells.

.1.5. Construct the clock Tree Guidance after
many layouts

As described in the previous sections, different clock tree
structures are explored. Different combination of driver
types are applied to many netlists. That means given a
specific number of flip-flops, the total number of layout
may be calculated using the equation (2).

No. of layout = No. of the sample netlist X No. of clock

tree structure x
No. of different combination of driver types V3]
The delay and the skew of the clock tree are calculated for
each layout. We look for a specific tree structure and
types of driver that consistently results in small values of
timing delay and skew for all layouts. The design of this
tree is recommended as the guidance for constructing the
clock tree with the specific number of receivers
(flip-flops). From our study, it is found that using 2-level
tree structure is the best choice. The clock skew is found to
be less than Q.1ns for 0.35% CMOS technology designs.
The experiments are done for different numbers of
receivers (flip-flops). The recommended tree designs are
summarized in a table. The table includes the number and
the type of drivers at each level for different number of
receivers (flip-flops). Table 2, lists the tree structure for
clocks with receivers (flip-flops) ranging from 200 to 900.
If a clock has 200 receivers (flip-flops), the tree structure
has two IND type drivers at level 1 and twenty INC type
drivers at level 2. Each INC driver at level 2 will drive
about 10 flip-flops. The driver IND has higher driving
capability than a driver INC does. The tree structure is
similar to that in Fig. 1. If the clock has 250 receivers, then
the clock tree structure of 200 receivers is used. The tree
structure is customized for the specific library.

.2 Clock Tree Synthesis
The second technique in clock tree implementation is to
layout a balanced clock tree. The layout technique is to

A-534

place the drivers such that after the clock routing the clock
tree branches are balanced and the signal propagation
delays from the clock source to all receiver pins are as
equal as possible. Both interconnect wire capacitance and
input loading capacitance affect the signal delay. The
maximum difference among all delays is the clock skew of
the clock tree. To balance the tree network, the root driver
is confined at the center of the chip by layout engineer. The
rest of work is usually done by an automatic placement &
route tool. Some commercial tools can do the job very well.
In general, if the receiver pins are unevenly distributed in a
large area or there are routing blockages on the chip then it
is difficult to have balanced distribution of the tree.

V. Multiple Clock Tree Design Methodology

In the previous section, we have discussed how to
implement each individual clock tree. In this section, we
describe procedures of how to balance multiple clock trees
which are originated from the same clock source. The goal
is within the allowable bound of delay of a chip, we try to
develop a procedure which may be used to minimize the
inter-clock skew effectively.

Because the skew of each individual clock tree is
confined within a small value, so the structure of each
individual clock tree is preserved. To equalize the timing
delay of all trees, a series of 4 larger drivers are used to
replace the root driver of each tree. We use inverters as
drivers. Because at the root level the interconnect wire is
longer, the capacitive load and capacitive variance is larger.
The larger drivers have larger driving capability and are
less sensitive to the capacitive variance. These four
inverters are called delay-control drivers of the individual
clock tree.

After the delay-control drivers are inserted in all clock
trees, the synthesis of each clock trees is performed as
described in the previous section. The timing delays of all
branches of all clock trees are calculated and sorted by the
descending order. We use the longest path as the reference
to calculate inter-clock skews. If all inter-clock skews are
within the range of timing constraint then the clock tree
construction is done. If some of the inter-clock skews are
larger than the requirement, the delay-control drivers of a
shorter delay tree are replaced by smaller inverters one at a
time. This new clock structure may be analyzed using
Synopsys /DesignTime without re-do the clock synthesis.

This process is repeated until all the inter-clock skews
satisfy the timing constraint. Replacing the delay-control
inverters with smaller inverters has the advantages of less

power consumption and smaller area. Also in physical

design, it is easier to replace big inverters with smaller ones
than vice versa. The algorithm is described in the next
paragraph.

Suppose CLKi is a clock tree. We define its delay-control
buffers, i.e., four inverters, as CLKi[1], CLKif2], CLKi{3],
and CLKif4]. The output of inverter CLKi[4] is the starting
point of a single clock tree. Following clock tree guidance
table, the skew of a clock tree is confined within a very
small value. Suppose delay(CLKi) is the delay of clock tree
CLKi. Assume there are m clock trees on a chip. We sort all
the clock trees such that delay(CLK1)& delay(CLK2)& ...
& delay(CLKm). If using delay(CLKm) as the reference,
assume n clock trees exceed inter-clock skew requirement,
ie., CLKI1, CLK2, , and CLKn. Fig. 3 shows the
pseudo code of Procedure minimize_inter_clock_skew. As
shown in Fig. 3, the procedure minimize_inter_clock_skew
minimizes inter-clock skew by adding delay to CLKI,
CLK2, ... ,and CLKn. Let's define the term size(bufferi) is
the size of bufferi. By reducing the size of delay-control
buffer, we can add delay to the clock tree. The
methodology of adding delay to a clock tree is shown in
Fig.4.

. Example & Results

After applying the methodology to all 0.35u technology
chips designed in the CCL, it is found that the skews of all
single clock trees are less than 0.1ns in one pass of clock
tree synthesis. For the application on multiple clock trees
design, we use a wireless communication chip as an
example for illustration. The chip has 12,611 nets, 11,090
standard cells, and 4 macro cells. Because of the low power
requirement, the system clock is divided into 6 gated clocks,
Each gated clock is enabled at different condition for power
saving. The architecture of the clock enabling circuit is the
same as the concept of gated clocks. Because these 6
clocks are originated from the same clock source, they are
required to remain synchronized.

The clock tree design methodology is applied. The
intra-clock skews of all the individual clocks are confined
within 0.1ns in one pass. The requirement of inter-clock
skew is also met in the second pass. Some resulis of delays
of all clocks are listed in Table 3 and Table 4. Table 3
shows the delay of all clocks by applying 3.3 volts of
voltage and using the worst case timing corner of drivers.
The second column in Table 3 shows the minimum delay
among all branches of the correspondent clocks. For
example, the minimum delay among all branches of clockl
is 1.013983 ns. The same explanation holds for the

maximum delay. It shows the longest delay occurs on

A-535

clock5 and the shoriest delay occurs on clockl. The
inter-clock skew is within 0.3 ns.

Table 4 shows the clock delays by applying 3.3 volis of
voltage and using the best timing corner of the driver cells.
It shows the longest delay still occurred on a branch of
clockS. The shortest delay is also on a branch of clockl.
The inter-clock skew is less than 0.2 ns.

(. Conclusion

An effective clock tree design methodology is developed
and it is in production use. A clock tree structure design
guidance is summarized from the results of many clock tree
synthesis experiments. Logic designers do not need to
spend time to design the clock tree siructures for each chip.
With the help of the guidance, layout engineers may obtain
the tree structure from the guidance. From the past
experiences, the inter-clock skew of an individual clock
tree may be confined within 0.lns for 0.350 CMOS
technology chip in one pass of clock tree synthesis. The
inter-clock skew among multiple clock trees, which are
originated from the same clock source, may be controlled
easily. It simplifies the design process and reduces the
number of iterations of design cycle. The clock tree design
methodology is proven to be very effective in ASIC chip
design.

NSC Project Number: 89-2215-E-033-008

Clock Sourea—|

Root Level 1
(Clock Source) (Drivers)

VIHI. References

(11 J. Burkis, "Clock Tree Synthesis for High Performance
ASIC”, in Proc. The 4th Annual IEEE ASIC Seminar
& Exhibits, pp. p9-8.1~p9-8.3, 1991.

[2] E.G Friedman, editor, “Clock Distribution Networks
in VLSI Circuits and Systems: A Selected Reprint
Volume”, IEEE Press, 1995.

[3] A. Takahashi and Y. Kajitani, “Performance and
Reliability Driven Clock Scheduling of Sequential
Logic Circuits”, in Proc. of ASP-DAC, pp. 37-42,
1997.

[4] C. Y. Lee, Y. R. Lin, M. C. Chi, S. H. Huang, K. C.
Jung, “Clock Tree Synthesis Flow” , in Technical
Journal of Computer & Communications Research
Laboratories, pp. 28~31, 1997.

[5] S. H. Huang, “ A Design Methodology for a 0.35um
IC Project”, in Technical Journal of Computer &
Communications Research Laboratories, pp.42-47,
1999

[6] C.H. Chien, “CCL 0.35um Standard Cell Library”, in
Technical Journal of Computer & Communications
Research Laboratories, pp. 32-40, 1998.

[71 Apollo User Guide 1998.4, Avant! Inc.

Level 2
(Drivers)

Leaves
(Receivers)

Fig.1. A two level clock Tree structure

A-536

Updated
netlist

Synopsys/iDC

Logic Synthesis

v Designer

Define clock Tree
structure <

AL S

Plal.cement

v

i
]
|
|
|
|
]
:
Clock Tree Synthesis !
]
]
1
]
]
]
[}
]
]

v

Routing

Distributed RC Extraction
+ Ultima/MDC

Delay Calculator
* CadencelVerilog

Timing Analysis

Timing No
constraint
satisfied?

Fig.2 Clock Tree Systhesis Design Flow

A-537

Procedure minimize_inter_clock_skew()
{
integer index;
forindex=1tondo /*assume n clock trees exceed skew requirement™®/
while (delay(CLK,,)-delay(CLK ..)>skew_requirement)
call procedure downsize_maxbuffer(CLK;,,,.); /*as shown in Fig.4%/

Fig.3 The pseudo code of Procedure minimize_inter_clock_skew.

Procedure downsize_maxbuffer(CLK,)
{
integer maxbuffer_index , index ;

maxbuffer_index = 1;

forindex =210 4 do

if (size(CLK ;[maxbuffer_index])< size(CLK,[index]))
maxbuffer_index = index;
reduce the buffer size of CLK [maxbuffer_index];

Fig.4 The pseudo code of Procedure downsize_maxbuffer.

Table 2. Clock tree guidance table for number of

i ing from 200 to 900.
Table 1.Distribution of nets with corresponding receIVers ranging from °

fanout numbers in generated netlists. Clock Tree Structure
Number
Number of fanout per [Percentage range of the of - Level 1 Level 2
net type of net in a netlist Receivers | Driver [Number | Driver | Number
1 70%) 75% Type Type
2 10%) 15% 200 IND 2 INC 20
3 %) 10% 30 | IND | 3 | INC | 24
5 1% :
6 1% 400 IND 4 INC 32
7 1% 500 INE 4 IND 20
8 1% 600 | INE | 4 | D | 24
700 INE 4 IND 28
800 INE 4 IND 34
900 INF 4 IND 36

A-538

Table 3. The minimum and maximum delays of
each clock by applying 3.3v and using the worst
timing corner of clock drivers.

Clock tree [Minimum |[Maximum |Skew (ns)
delay (ns) |delay (ns)
Clock0 1.099331]1.128136 0.0288050
Clockl 1.013983 |1.045422 0.0414390
Clock2 1.165690 |1.196863 0.0311730
Clock3 1.118894 |1.153306 0.0344120
Clock4 1.104621 }1.159723 0.0551020
Clock5 1.231235 |1.313325 0.0820900

Table 4. The minimum and maximum delays of each
clock by applying 3.3v and using the best timing
corner of clock drivers.

Clock tree [Minimum [Maximum {Skew (ns)
delay (ns) |delay (ns)
ClockO 0.5948546 10.6149276 [0.0200730
Clockl 0.5240446 [0.5415518 }0.0175072
Clock2 0.6037482 [0.6282231 10.0244749
Clock3 0.6153231 }0.6327919 0.0174688
Clock4 0.5769332 10.6118916 10.0349584
Clock5 0.6381470 0.7058691 10.0677221

A-539

