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Abstract

This paper studies the codebook design problem arising in vector
quantization, and presents a novel algorithm of polynomial time for this
problem. The proposed algorithm first performs a step, called clustering,

which partitions the given set of training vectors into a collection of
disjoint clusters subject to a user-specified distortion constraint. Then, the

proposed algorithm proceeds to reorganize the clusters and arrange them

as a linearly ordered set. Finally, the dynamic programming technique is

applied to further partition the linearly ordered set into a user-specified
amount of groups, each of whose centroids corresponds to a codevector.

The proposed algorithm has been implemented in C language, and the

preliminary experimental results indicate that the proposed algorithm is

capable of designing a better codebook in shorter run time than the well-

known LBG algorithm.

1 Introduction

Vector quantization has been a very important technique for compressing both the
image and the speech data [7]. One of the key problems arising in vector quantization is
the codebook design problem. A popularly adopted methodology for solving the
codebook design problem is to partition the given set of training vectors into a user-
specified amount of disjoint groups, and to use the centroid of each group to form a
codevector. Depending on how the partitioning is generated, different algorithms were
proposed previously. For example, the well-known LBG algorithm [9] uses the iterative
improvement technique to repeatedly generate a better partitioning based on the previous
one until convergence is met. Although the LBG algorithm is easy to implement, it
suffers from both its expensive run time and its solution being just locally optimum. To
avoid generating a locally optimum codebook, the simulated annealing based algorithms
were proposed [5,7], but their run times were much worse than the LBG algorithm. On
the other hand, there were algorithms proposed to shorten the run time [4, 7], but their
codebooks were not as good as the LBG algorithm. The details of other previous work on

145



Proceedings of International Conference on Image
Processing and Character Recognition

codebook design can be found in [7].

In this paper, a novel a'lgorithrri of polynomial time is presented for the codebook
design problem. To reduce the problem size (i.e., the amount of training vectors), the
proposed algorithm first performs the clustering step, which partitions the data into a
collection of disjoint clusters subject to the constraint that the average distortion per
vector in each cluster cannot exceed a user-specified value. To make the clustering step
efficient and effective, it is designed based on the idea of building a k-d tree [6] but with
several modifications. Once the clustering step is done, the clusters are then reorganized
and arranged as a linearly ordered set, and finally, the dynamic programming technique is
applied to partition the linearly ordered set into a user-specified amount of groups, each
of whose centroids corresponds to a codevector. The proposed algorithm has been
implemented in C language, and the preliminary experimental results demonstrate that the
proposed algorithm is capable of designing a better codebook in shorter run time than the
LBG algorithm.

The rest of this paper is organized as follows. Section 2 gives a formal description of
the codebook design problem considered in this paper. Section 3 gives a brief review of
k-d trees. The proposed algorithm is described in Section 4. Section 5 reports the
experimental results, and concludes this paper.

2 Problem Formulation

Let O denote a vector quantizer which maps a set X of M k-dimensional training
vectors to a codebook Y of N  k-dimensional codevectors, where

X ={x]i=12., M;x; eR¥}, and V= {y;li=12,.,N;y; € R¥1). Let d(x) denote
the distortion between two vectors x and y, and be defined as the square of the Euclidean
distance between them. Under the assumption that the full-search encoding scheme is
used, we have for each training vector x;, Q(x;)=arg min y,e¥ d(x;, y;).

The codebook design problem considered in this paper is formulated as follows. Given
a set X of M k-dimensional training vectors, the objective of this problem is to find a
codebook ¥ of N k-dimensional codevectors in such a way that the total distortion caused

by using ¥'to encode X, i.e., X {‘:41 d(x;,0(x;)), is minimized. The meanings of M, N, and
k mentioned in this section will be used in the rest of this paper.

3 K-d Trees

The idea of building a k-d (k-dimensional) tree is briefly reviewed in this section since
the clustering step of the proposed algorithm is based on it. The k-d trees are first
proposed by Bentley [3], and can be built to store k-dimensional real data. A k-d tree is a
binary tree, and consists of internal nodes and external nodes. When an internal node is
built, it is assigned a set of data to be further partitioned into two sets. The partitioning is
done based on two components stored in the internal node; one component is a
discriminating axis out of the k axes, and the other is a partition key on that
discriminating axis. However, since each internal node is used only for partitioning and
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searching the data, there is no need to store the data assigned to that node (except the
discriminating axis and the partition key) after the partitioning is done. On the other hand,
a node is said to be external if it does not have any children. The external nodes are the
only nodes which store data. Therefore, the collection of external nodes in a k-d tree
denotes a partitioning of the given set of data.

The process of building a k-d tree is briefly described as follows. Initially, the root is
created and both its discriminating axis, say a (1<a<k), and its partition key, say b,
are determined. The two children of the root are then created, and based on g and b, the
data is partitioned into two sets, which are assigned to the left and the right children of the
root, respectively. Any data whose component on axis a has the value less than or equal
to b is assigned to the left child, and any data whose component on axis « has the value
greater than b is assigned to the right child. If the amount of data assigned to a newly
created node does not exceed the user-specified value, then that node becomes an external
node, otherwise that node becomes an internal node. For any newly created internal node,
both its discriminating axis and its partition key need to be determined, and the set of data
assigned to it needs to be partitioned into another two subsets. The whole process is
finished when no node in the tree needs to be partitioned further.

Depending on how to determine the discriminating axis and the partition key, different
algorithms, such as [3,6], for building a k-d tree were proposed. To achieve the expected
logarithmic time for searching any data, the authors in [6] set the partition key of an
internal node to the median of the data assigned to that node with respect to the
discriminating axis. On the other hand, to get a better partitioning, the authors in [6] set
the discriminating axis of an internal node to the one with the largest variance with
respect to the data assigned to that node among all the axes.

4 The Proposed Algorithm

Before describing the proposed algorithm in details, the following definitions are
given.
Definition 1: A set C is said to be a cluster if C is a subset of the set of training vectors.
Definition 2: The average distortion of a cluster C is defined as
(N CDZxec d(x, centroid(C)), where |C| denotes the number of training vectors in C,
and ceniroid (C) denotes the centroid of C (i.e., the centroid of the training vectors in C).
Definition 3: A set S = {C1,Cs,...,C,,} of m clisters is said to be a linearly ordered set if
the ordering of the clusters in S is fixed (i.e., C ; 1s the ith element in S, where 1<i<m).
Definition 4: LetS = {C|,C>,...,C,,} be a linearly ordered set. A partitioning P is said to
be a g-way linear partitioning on S if

p=HC o G 1 AC 41, Gy € (AT LT IO o S

for some 17y, iy,..., Ig—1, Where 1<i) <ip <..< lg-1 <m. Here, each element in P must

be a set of consecutive elements in S,
Now, it is ready to describe the proposed algorithm. The algorithm consists of the
following four steps whose details are given in the subsections.
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Step1: Perform clustering.

Step 2: Reorganize the training vectors into another set of clusters.

Step 3: Arrange the set of new clusters as a linearly order set.

Step 4: Determine an N-way linear partitioning P on the linearly ordered set, and output
the centroid of the training vectors in each element of P as a codevector.

4.1 Step 1

Let W denote the user-specified upper bound on the average distortion of each cluster
to be generated. Step 1 partitions the set of training vectors into a set of disjoint clusters,
each of whose average distortions does not exceed /. This step is done by an approach
similar to the idea of building a k-d tree as presented in [6] but with the following three
major modifications.

1. Unlike the approach in [6] which chooses the median as the partition key, Step 1
chooses the mean. There are two main reasons for such a choice. Firstly, the coefficient
of the linear term of the time complexity of finding the mean is much smaller than that
of finding the median although both problems can be asymptotically solved in linear
time [1]. Secondly, the algorithm for finding the mean is much easier to implement
than the linear-time algorithm for finding the median.

. Unlike the approach in [6] which stops further partitioning an internal node when the
number of training vectors assigned to that node is no more than a user-specified value,
Step 1 stops partitioning a node when the average distortion of the training vectors
assigned to that node is no more than /7.

3.Unlike the approach in [6] which keeps all the nodes in the k-d tree, Step 1 deletes an

internal node right after that node is partitioned, and hence uses less memory space.

8]

As mentioned in Section 3, the set of external nodes in a k-d tree forms a partitioning
of the set of training vectors, and hence each external node generated by Step 1 will form
a cluster. The time complexity of Step 1 is analyzed as follows. Let L denote the number
of clusters generated by Step 1. Since there are a total of 2L-1 internal and external nodes
generated and each node can be checked in O(kM) time to see whether it needs to be

further partitioned, the time complexity of Step 1 is O(kLM), which is O(kM 2) as
L=0(M).

4.2 Step 2

Since partitioning the data into two sets is only based on the values on one axis, the
amount of clusters generated could be a very large number (due to the user-specified
distortion constraint) and could substantially increase the run times of the subsequent
steps. To remedy this problem, Step 2 reorganizes the set of training vectors into another
set of clusters. This is done as follows. Firstly, the centroid of each cluster generated by
Step 1 is used as a codevector, and then the full-search scheme is applied to encode each
training vector. Finally, for each codevector, the training vectors encoded by it form a
new cluster.
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Again, let L denote the amount of clusters generated at Step 1. Since encoding each
trairiing vector can be done in O(kL) time and there are M training vectors to be encoded,

the time complexity of Step 2 is O(kLM), which is O(kM 2) as L=0(M). Throughout the
rest of this paper, L will be used to denote the number of clusters generated after Step 2.

4.3 Step 3

After Step 2 is done, the problem remained to solve is to find a partitioning of the
clusters generated at Step 2 into a set of groups, each of whose centroids forms a
codevector. Since the remaining problem is still very hard to solve, a methodology used
to solve the multi-way circuit partitioning problem arising in VLSI design [2] is adopted
here to help simplify the remaining problem. This methodology consists of two steps
corresponding to Step 3 and Step 4 of the proposed algorithm, respectively. The objective
of Step 3 is to arrange the clusters generated at Step 2 as a “good” linearly ordered set,
and the objective of Step 4 is to find an N-way linear partitioning on the linearly ordered
set with “good” quality.

In the current implementation of the proposed algorithm, Step 3 uses a greedy method
to generate the linearly ordered set by adding one cluster at a time. This greedy method
works as follows. Initially, the set is empty, and the first cluster to be added to the set is
the one whose centroid has the shortest distance from the origin vector among all the
clusters. Now, consider adding the ith cluster to the set, where #>1. Suppose the current
set is  {C},Cy,...,Ci1}, and let C be the vector represented by

ngzl](centroid(c j)/ oi-1-J )). Then, the ith cluster to be added to the set is the one

whose centorid has the shortest distance from C among all the remaining clusters. This
selection is mainly based on the following two heuristics. Firstly, any two consecutive
clusters in the set are expected to have the distance between them as short as possible.
Secondly, for each cluster in the set, the clusters with short distances from it are expected
to be added to the set as soon as possible. It is clear that since adding one cluster to the set
can be done in O(KL) time and there are L clusters, the time complexity of Step 3 is

O(kL*), whichis O(kM?) as L=O(M).
4.4 Step 4

Before describing the details of Step 4, the following notations are given.
@ 5={C},(,,...,C}: the linearly ordered set generated at Step 3.
@ C;;=1{C;,Chy.--,C;}: the set of j—i+1 consecutive clusters in S starting
from C;.
® wCij)=ZXcec,,Zxecd(x,centroid(Uj_;C,)): the total distortion caused
by using the centroid of the training vectors in the union of the clustersin C i

to encode all the training vectors in the union of the clusters in C i
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P g =i Ciaty>ees Ci(i-] +1,j}: @ g-way linear partitioning onCj ;.
® cost(P jq4)=2cer,, w(C): the total distortion caused by P ;. -

AN .
® Py jg:2qg-way linear partitioning onC ; with the minimum total distortion

among all possible g-way linear partitionings onCj ;.

The objective of Step 4 is to find an N-way linear partitioning on S (= ;) with the

A
minimum total distortion, i.e., to find a Py 1y . According to the notations defined above,
the following equation can be easily derived:

A A
oS H{(P1,jg)=ming jro j{COSIH(PY j7,g~1)+ w(C oy )} ()
N
Based on Equation (1), cos#(Pyz n )can be obtained using the dynamic programming
. /\ . /\ . .
technique [1]. Once cos#(Pyz y) isknown, Py n can be easily obtained based on the

information which is stored during the process of computing all cos t(IAJL jq) s 1]

To compute Equation (1) more efficiently, the term w(C 4, j)in Equation (1) needs
to be computed only once and stored in a table; thereafter, its value will be obtained in
O(1) time by table lookup. Moreover, each w(Cj: ;) can be also computed efficiently,
wherel < j' < j< L. That is, for eachj’, w(Cj»’ch),w(er’ju,z ),.‘.,w(er,L) are
computed in that order. Since each Cj ., can be obtained by the union of
Ciojrar—1a0dCjopp iy W(Cp ry,) can be efficiently computed using the following
equation as reported in [4], where 1<r<L-;'.

W(C e Y=WChr )T WMC iy jrar)

Mjr jlar=1 %' er, j'4r

X A(Xj jp—1sX jrar, jl4r) (2)
(”j',j’+r—l +n "+r,j'+r)

In Equation (2), nj j ., and 7, oy, denote the numbers of the training vectors in

Cjojrar-t and Cjryp oy, respectively; x j jrypop and X joyy joir denote the centroids
of the training vectors in Cj oy, g and Cjrp, »,,., Tespectively. Based on Equation (2),
computing w(C ;.. )takes Ok) time as W(C v jryp1)s WC gy jryp)s Mjrjrgp 1 and

njier j+r €ach can be obtained in O(1) time by table lookup. Therefore, computing all

w(C e i) ’s takes O(/cL2 ) time as there are O(fL2 ysuchw(C e iy ) ’s.
A
- According to Equation (1), it is clear that each cos#(P1 j4) can be computed in O(L)

A
time, since there are O(L) possible values of 7', and cost(Py j7 4-1) and w(C o))
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A
each can be obtained in O(1) time by table lookup. Since O(NL) such cos#(Py j 4) s need
A A
to be computed in order to get cos/(Py N ), obtaining cos#(Pyr ) takes O(NL2 )

A A
time. Finally, based on cos#(Py 7 N ), P1,,N can be generated in O(L) time based on the
stored information.
According to the time complexities analyzed in the above paragraphs, the total

complexity of Step 4 is O(kL*)+O(NL*)+ O(L), which is O((k+N)M?) since
L=0(M).

4.5 Overall Time Complexity

By summing up the time complexity of each step, the total time complexity of the
proposed algorithm is as follows:

OCkM? )+ O(kM? )+ O(kM* )+ O((k+ NYM?)= O((k+N)M?).
S Experimental Results and Conclusions

The proposed algorithm has been implemented in C language on an SGI Challenge L
workstation . Two 512 x 512 monochrome images (i.e., the peppers and the F-16 airplane
images) were used as the training data. Each vector was a 4 x 4 block of pixels (i.e., 16
dimensions), and each codebook was designed to have 256 codevectors. In the current
implementation of the proposed algorithm, the upper bound # on the average distortion
of each cluster was obtained using the following simple approach. Firstly, 256 vectors
were randomly chosen as codevectors from the training data. Then, the training data were
encoded using the full-search scheme. Finally, the average distortion per vector based on
the encoding result was computed and then multiplied by a user-specified parameter R to
get . The time spent on obtaining ¥ was also added to the run time of the proposed
algorithm.

The proposed algorithm was compared with the well-known LBG algorithm. The
results are given under “Training data” of Table 1 where four different values of R were
used in the proposed algorithm. Clearly, the proposed algorithm was able to design a
better codebook in shorter run time than the LBG algorithm for each value of R. In
particular, the PSNR could be improved by more than 0.8dB, and the run time could be
reduced by at least about 50%. To further demonstrate the effectiveness of the proposed
algorithm, the codebooks designed by the proposed algorithm and by the LBG algorithm
were used to encode the Lena image, which is a 512 x 512 monochrome image and is
outside the training data. The results are given under “Lena” of Table 1. Again, the
proposed algorithm was able to generate a higher PSNR than the LBG algorithm for each
value of R. In particular, the PSNR could be increased by more than 0.7dB. Due to space
limitation, some other experimental results which have been obtained cannot be given in
this paper, but their details can be found in [8].
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Algorithm Training data Lena
# of Clusters | PSNR Run PSNR
Time(sec)

LBG Algorithm 30.030 1027 30.007
Proposed | R=0.077 1190 30.597 367 30.671
Algorithm| R=0.073 1284 30.695 408 30.805
R=0.069 1358 30.697 443 30.731

R=0.065 1505 30.835 519 30.728

Table 1: Experimental results.

Recently, the idea of the proposed algorithm has been also extended to solve the
codebook design problem for entropy-constrained vector quantization, and the
experimental results are very promising [10]. Currently, several possible directions to
further improve the idea of the proposed algorithm is under study.
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