FERBAATNE2HEGEReS

A Bucket Index Scheme for Error Tolerant Chinese Phrase Matching
Min-Wen Du Hsi-Hso Wu
Dept. of Information Science Dept. of Information Science
National Chiao -Tung Univ. National Chiao-Tung Univ.
Hsinchu, Taiwan Hsinchu, Taiwan

Mwdu@cis.nctu.edu.tw

Abstract -- Error tolerant capability is very desirable in designing a Chinese computer input method. It is
especially useful in designing an input method based on speech recognition technology because where errors are
inevitable. In practical applications, such as natural language speech recognition, we need to handle very large

phrase tables. How to do error tolerant phrase matching with very large phrase tables in a real -time speech

recognition environment is the problem we are facing.

This paper developed an index scheme to help the error tolerant phrase matching calculations with

very large phrase tables. The approach is based on three concepts. 1. Cartesian Product File. 2. Covering between

buckets. 3. Gradual expansion of search region. The results sho

that doing multiple error tolerant phrase

matching with very large phrase tables in real-time is feasible.

Index terms — Error tolerant, phrase matching, index scheme

L. Introduction

L1 The Problem

Error tolerant capability is very desirable
indesignin g a Chinese computer input method.
Because of the non -alphabetic nature of Chinese
language, traditional Chinese input methods require a
user to encode every Chinese character into a symbol
sequence to input it into a computer. Chinese input
methods are normally designed according to either the
patterns of Chinese characters or their phonetic
symbol representations or the mix of the two. The
encoding processes often require non -trivial mentor
efforts, which cause errors easily.

Using speech recognition asa means to
communicate with a computer has become feasible
recently, thanks to the research work done in the past
few decades and the rapid improving of computer
speed in these years. Today, a Pentium PC can
process speech recognition inreal -time. The very
nature of using speech as a computer communication
medium is that people can do it effortlessly. Itis

foreseeable that people will increasingly use speecht
communicate with a computer. Also, non-alphabeti
languages such as the Chinese language will be nefit
from the speech recognition technology the most.
Error tolerant technique 'is important in
designing application programs such as adictation
machine because people still need to correct a large
amount of errors manually after speech recognition
algorithms are applied. The technique is even more
important in designing input methods for Chinese
language because there is a high percentage of wrong
pronunciation in Chinese speaking. Chinese language
has many confusing consonants, such as " 7" and "W
", and confusing vowels, such as" %" and "Y". It is
hard for many people to pronounce those ambiguous
syllables clearly. Also, because that the Chinese
language is non -alphabetic, a person does not know
how to pronounce a character if that character is new
to him. Pronouncing by arbitrary guessing according

A-435

to half character or a component of it is a very
common practice for Chinese speaking people.

In this paper we will siudy the problem of
doing error tolerant phrase maiching with a very large
phrase table. This problem is a fundamental one in
speech recognition because any sentence matchin
can be decomposedinto sub -problems of phrase
matching. Our objective is to develop an algorithm
that can find the most likely phrase or phrases
efficiently giving a matching phrase that may contain
S0me eIrors.

1.2 Assumptions and Considerations

Our study will be based on the followin
assumptions and considerations.
1. P hrase table contents

We consider every Chinese phrase as a
sequence of Chinese characters associated with a
sequence of syllable codes. Because Chinese language
is mono-syllabic, the character sequence and the
syllable code sequence are always of equal length.
The ith syllable represents the pronunciation of the ith
character of the phrase.

We will limit our discussion to only the
Mandarin dialect of the Chinese language. In our
current phrase collection, there are 1412
distinguishable Mandarin syllables. Each of these
syllables is represented by a 16-bit internal code
(I_code). Each Chinesec haracter will also be
represented by a 16-bit code (BIG-5 code).
2. Error model

Because the phrase matching considered
here is a sub-problem of the sentence matching
problem in speech recognition, the phonetic sequence
part of a phrase is the main information of our concern
Therefore, every phrase can be thought of as simpl
an 1_code sequence. The problem of finding the most
likely phrases giving a phrase containing errors is ver
similar to the Approximate String Matching (ASM)
problem defined on a set of symbol strings [4], [5], 61,
where the problem has been formulated as finding the
nearest neighbors of a given string among a set of
possible words.

There are some fundamental differences
between the ASM problem of a set of character strings
and the error tolerant phrase matching problem in
Chinese speech recognition, however. In the ASM
problem, the insert, delete, change a character, and
transpose two characters are considered to be the most
common ermors to occur. In Chinese speech
recognition, the i nsert, delete, and transpose errors
seldom occur. Which may be attributed partly to that
the Chinese language is mono-syllabic, and it is
relatively easy to do correct syllable segmentation on
the speech input.

Therefore, inour discussion we will
assume t hat the model contains only change errors,
i.e., ertors where the I_codes may change to other
L codes in the phonetic sequence of a phrase.

- k-syllable 91:1hrases. This upper bound is

3. Phrases and Large Phrase Tables

For the phrase matching purpose, we may
consider a phrase as a sequence of _¢ odes. In any
application, the I_code sequence of a phrase must be
meaningful in the sense that it is actually used inan
application domain. In many situations the phrase
table can be huge. Given the 1412 distinct syllables,
there can be at most 1412k distinct (phoneticallgl)

2x10°,

2.8%107, and 4x10" fork equal t0 2, 3, and 4.
It is conceivable that in an application such as the
speech recognition of Chinese natural language, the
size of the phrase table will be huge, although it is
much smaller than the upper bound given above. Note
that a phrase is defined here as a sequence of syllables
not an idiom in the common sense.
4. R eal-time Performance Requirement

A special requirement in speech
recognition applications is that the user must get the
response in real-time. During the input phase of a
Chinese dictation system, onlysub -second response
will be acceptable for a continuous operation. In a
Chinese text editing application, where human
interactions are involved, a few seconds delay of
response are ordinarily considered endurable. These
real-time requirements set the limits on the algorith
performance of our design.

5. System Architecture

We will assume that a two-level storage
hierarchy is available to store the phrase table in our
algorithm design. We also assume that the two levels
of storage are thc main memory and a hard disk
storage. At present, the size of main memory available
for workin§ area in most personal computer is several
mega (10%) bytes. The memory access speed is of
the order of 10% instruction cycles per second. The
size of the hard disk storage is several giga (10%)
bytes, while the disk access time is about 10 ms, i.e.,
100 times per second.

In this paper we will design indexes to
help data accessing in the two -level storage hierarchy
for error tolerant phrase matching calculations. There
are many ways to organize t he data structure on a
two-level storage hierarchy. Different schemes will be
suitable for different sizes of the phrase tables. We
will adopt the scheme where the whole phrase table is
stored in the hard disk and buffer areas of reasonable
large size are available to load the index and data into
memory for fast calculations.

H. Error Tolerant Phrase Matching Scheme
IL1 Set of Syllables in Mandarin

In Mandarin there are 21 consonantis, 16
vowels, and 5 tones. There are also diphthongs each
begins with a vowel of "—", " X", "LI" and ends with
other vowels. :

The pronunciation of every Chinese
character, called a syllable, can be represented by

A-436

combination of these phonetic symbols. We can
represent any syllable by the follow four components

C: Consonant, can be nil.

H: Head of Diphthong, can be either "—", " A",

"U" or nil.
V: Vowel.
T: Tone.
In Mandarin, there are 5 tones from tone 0

to tone 4. Tone O1is the neutral tone. The C, H, V, T
components can be packed into a 16 -bit code called
I_code (internal code). The numbers of bits used for
storing the C, H, V, T components are 5, 3, 5, 3
respectively. '
Example 1. Fig.1 shows the encoding of " A € V", the
syllable corresponding to "¥", in CHVT format.
There is no consonant. The head vowel, H, is " A"

The second vowel, V,is "T". The tone, T,is " V" or 3.

So, checking with Fig. 1, we get C=0, H=2, V=2, T=3.
Therefore, the I_code of the syllable " A T v " is 6240
in hexadecimal.

™

ARV RN
Lrl v o] ¢ |
Fig. 1. The I_Code of "$".

In different application domains the
numbers of totally used syllables may be different. In
our collections of Chinese phrases, there are 1412
distinct syllables.

IL.2 Partition of Syllable Domain

Cartesian Product Fil concept has been
proved to be a good method to manage files,
especially when used in Partial Match Query systems
[2], [3]. A Cartesian product file that contains many
buckets is a structured file. Each bucket contains data
that have highly relevant attributes. The Cartesian
product file shows highly cluster property. Fewer disk
accesses are needed in a partial match search if the file
to be searched is a Cartesian Product File. We will
adopt Cartesian product file concept in designing the
index scheme and store phrases.

To apply Cartesian product file concept,
we need to group together closely related elements in
the domain into sub-domains (partitions or blocks). I
practical situations of speech recognition applications,
we can observe a phenomenon that if we determine
that a syllable is s, it is much likely that the syllable is
actually a syllable x in a set L (including s) other than
any syllable outside of L. We associate such set L with
s as its likelihood set, also denoted as L(S) .
Likelihood sets can be viewed as sub-domains. In
general, syllables in a likelihood set have similar
pronunciations. We may partition the set ofall
syllables according to their pronunciations.

We will view all the 1412 Mandarin
syllables as one big Domain D . Partitioning D, we

can get many sub-domains. For example, we may
partiion) in the following way. Two syllables
1, =CHVT, and I, =C,H,V,T, will be
put into the same sub-domain iff V1 = V2 . We have
L(1,)=L(1,).

The domain D will be partitioned into 8
sub-domains of similar pronunciations as shown in

Fig. 2.
Sub-domain |
e, 7T

Sub-domain 3

Sub-domain 6
Sub-domain 5

9T,
—RA Vi

—t,
Bk YN

K3, ..

Sub-domain 4 Sub-domain 7

BV, 5A,

Sub-domain 8

Y=, &l

Fig. 2. A partition of Mandarin syllabl
domain into 8 sub-domains.

I1.3 Cartesian Product of Syllable Domain an
Phrase Bucket
The Cartesian product of two sets D and E,

representedas DD X E | is the set of all possible pairs
(d, ¢) withdin Dand ein E. The Cartesian product
of more than two sets is defined similarly. Assume
that the whole syllable domain D is partitioned into k
sub-domains. Then the Cartesian product of two
syllable domains D, and D, will be naturally
partitioned into k* groups. Two combinations
(anbl) and (a2 ’bz) will be put into the same
group if @, @, are in the same sub-domain of
Dl and bl R b2 are in the same sub-domain of
Dz. In general, the Cartesian product of r syllabl
domains D, to D, will benaturally partitioned
into K" groups. We call each of these groupsa
bucket of the Cartesian product of the syllable
domains.

Let P be a table of phrases each of len gth r.
The buckets of the Cartesian product of r syllable
domains also partiion P into subgroups. If two
phrases are put into the same group, they should
belong to the same bucket of the Cartesian product.

II4 Am Error
Procedure

How do we do the error tolerant phrase
matching? We describe it in the following paragraph.

Assume that the phrase table that we are
dealing with is P, and the syllable sequence
determined by the speech recognition algorithm is
S = 5,8, ++*§,. To find which phrase or phrasesi
P matches S best, we will consider phrases
L(s,)< L(s,)x---xL(s,) in P first. If the

Tolerant Phrase Matching

A-437

intersection is not empty, we mayload it into the
memory and perform a detail matching analysis to
determine the best matched phrases. If the intersection
is an empty set or phrase is not found, we will relax
one compohent in the Cartesian Product to the
whole syllable domain and load those phrases in the
enlarged new Cartesian product sets into the memory
and perform the detail matching calculations. This
procedure will continue (ie., relax & of the
components in the Cartesian product, with k&
increasingby one each time) until a set of best
maiched phrases is found.

Let T =¢t,--1, be a sequence ofn
syllables. If k of the components of LIy et are
not inthe corresponding L §;), we say thatth
error distance from $,8, -5, to 7, ool is k
blocks, or S is & blocks from 7. Because we have
already considered the possible change errors in the
notion of likelihood set L(S,. , @ phrase which is &
blocks from § will match S much better than another
phrase which is more than & blocks from S. This
Justifies the best match searching procedure described
above.

The remaining problem is, how do we do
the error tolerant searching efficiently, in terms of
time and memory space to use. In Section 3 we will
develop an index scheme to support the searching
procedure.

111 Bucket Index Structure
IIL1 Buckets and Partitions of Phrase Table
Assume that we are given a set of phrases.

Because we consider only change errors, which will
not alter the length of a phrase, it is convenient t
classify the sentences into equal length phrases tables.
Therefore in our discussion we may consider tables of
phrases of fixed length. Let P be a phrase table
containing phrases of length .

Let D be the syllable domain, i.e., the set of all
the syllables. Let R = {R,,RZ,'~',Rk} be a
partition of D. Then R also implies a partition on the

Cartesian product of D) XD, X-+-X D, where -

D;=D for an 1<i<n Every
B, XB, X+++X B, with each B, inRisa
bucket of D) XD, X--XD,_ . In fact, R also

implies a partition on P where two phrases are in the
same partition if they belong to the same bucket of
D XD, x--xD_.
Lz Buckets
Components

To perform the error tolerant phrase
matching described in Section 1.4, we need to be able
to do the following sub -task: Given a syllable
sequence 5 =8, -+, , find all the buckets that
contain aphrase (a syllable sequence)
T =t1,+-1, suchthatSis k blocks from T. If all
thebuckets of D, XD, X+-XD_ with the
domain partiion R = Rl,Rz,“',Rk} are

with Unknown X

stored in the hard disk, this sub -task can be done
easily by checking each §; with each sub-domain
R;. A bucket B =B, XB, Xe++X B, contains
aphrase that is k blocks from S if there are exactl &
§; not in B; . Once these blocks having been found,
they can be loaded into the memory to perform a
detail matching analysis.

There is a practical issue here, however

“The number of buckets in a typical application will be

too large to allow an efficient implementation. To see
this, let’s assume that the syllable domain is
partitioned into 100 sub -domains. There will be
100’ buckets to consider for aphrase table

containing phrases of length 7

Here the idea of covering comes to pla
[4]. We will also implement the bucket covering index
scheme of [4] to help our emror tolerant phrase
matching operations. We will describe the idea
informally by using examples.

The X symbol [4] is very useful in
explaining the covering idea. It can also be called an
unknown symbol. Let 12345 be a simplified notation
of thebucket B, X B, X By X B, X B . Then
123X5 will beused to represent the set of all the
phrases with 4 in 12345 r eplaced by an arbitrary
syllable. In other words, 123X5 is the Cartesian
Product B) X B, X By X DX By where D is the
syllable domain. It can also be considered as an
enlarged bucketof B, X B, X B, X B, X B
IIL3 Covering Relations Between Enlarge
Buckets

Given a phrase table P with phrase length
5, and a syllable sequence § =5,5,85,5,8;. Let §
be in the bucket12345. Then a phrase
T =11,1,t,t5 which is 1 block error from § will
be contained in one of the following enlarged buckets
X2345, 1X345, 12X45, 123X5, and 1234X. If we
have built inverted files on arbitrary 4 components of
the phrases in the phrase table P, then it is very easy
to check whether such T exists in P. The covering idea
of [4] tells us that we can do better.

We use [i, j] to denote an inverted index
file built on the ith (from left) and jth components of a
phrase table. For instance, [1, 3] represents an
inveried index file for P built on the 1st and the 3rd
syllables of the phrases in P.

To check whether aphras e
T= 11,158 ,E5 isinan enlarged buckets B, we may
check whether T is in another enlarged bucket which
contains B. For example, to check whether T is in the
bucket 1X345, we may check whether T is in the
bucket 1X3XX. I T is indeed in 1X3XX, we can
further examine components 4 and 5 of T to verify
that T is also in 1X345, Otherwise, T cannot be in
1X345.

If an enlarged bucket B; contains another
enlarged bucket B,, we say that B; covers B, Fig. 3
shows an example of these covering relationship

A-438

between (enlarged) buckets. The covering relation is
indicated by " x" symbols at the intersections of the
rows and columns.) :

From the figure, we see that the buckets [1
2] and [4, 5] covers all the buckets X2345, 1X345,
12X45, 123X5, and 1234X. Therefore, inverted
indexes built for [1, 2], [4, 5] can be used to check
whether a phrase T =1,,,,15,%,,%s is contained
in one of the X2345, 1X345, 12X45, 123X5, and
1234X buckets.

1X345 123X5
X2345 12X45 1234X
v na >
03 —¥
I
23] 7 <
N [4,5)

Fig. 3. Covering relations betwee
enlarged buckets.

IIL4 Bucket Index Structure

Fig. 5. shows the structure of the bucket
index system. We store the whole phrase tables in the
external disk memory. Buckets of Cartesian products
corresponding to a partition of the syllable domain are
also stored in the hard disk. Buckets will be 1 0aded

Disk Memory: External
MainMemory Bucket | |
__Indes Fite Bucket2 | 9
/ Bucket3] 3 | Buket 3 3
: | Buketd | 4
Phrese Bucket5 | S
Matching
\ Bucket6 | 6
Bucket 5 Buket? | 7

Fig. 5. Structure of the bucket index scheme.

into main memory only when needed. Locating the
buckets is helped by the bucket indexes. We assume
that the whole index files are loaded into the main
memory at system initialization.

II1.5 Example of Bucket Searching

Example 1. We are given the phrase (¥ &, Y, — 7,
LN, {—4) ,aphrase of length 5 containing 2
block errors. The correct phrase is (¥4, N, — 7,
PN, {—2L7),ie, "BEE—{t{E" or "True love is
everlasting." Assume that the syllable domain is
partitioned into 8 sub-domains as shown in Fig. 2.

The four inverted indexes and buckets correspondin
to (W, ¥, —7, L, {—L /) is listed
below:

[1,2}: "® & "belongs to sub -domain 6,and Y
belongs to sub-domain 2, so the bucket is
bucket(623XX).

{1,3): "W & " belongs to sub-domain 6, and " — /"

belongs to sub-domain 8, the bucket s
bucket(6X83).

2,3]: "Y "belongs to sub -domain 2, and — /"

belongs to sub-domain 8, so the buckei is
bucket(X28XX).
[4,5}: " £." belongs to sub-domain 7, and " { — £ /"
belongs 'to sub-domain 6, the bucket s
bucket(XXX76).

We assume that the system has built the four [1, 2], {1,
3], [2,3], and [4, 5)inverted indexes and their
corresponding buckets to cover phrases of length 5
containing 2 possible block errors. Only 4 buckets of
the phrases will be loaded into the main memory for
further detail examination. The flow is

1. #Errors=0. Either (1, 2], [1, 3], [2, 3], or [4, 3]
is desirable. If [1, 2] is selected, bucket(62XXX) is
loaded into the memory. The phrase isnot found
within 0 error, go to step 2.
2. #Errors=1. Both of [1, 2] and [4, 5] are used.
Bucket(62XXX) and bucket(XXX76) are required
be loaded. Bucket(62X3X) has been loaded in step 1,
so only bucket(XXX76) is loaded in this step. The
phrase is not found within 1 error, go to step 3.
3. #EBrrors=2. All of (1, 2], [1, 3, [2, 3], and [4, 5]
areused. Bucket(62XXX), bucket(éXSXX),
bucket(X28XX), and bucket(XXX76) are requiredt
be loaded. Bucket(6233{X) and bucket(XXX76) has
been loaded in previous steps, so only bucket(6X8XX
and bucket(3(28XX) are loaded. The phrase is found
within 2 errors! The most likely phrase is found.
IV. Performance Analysis :

The memory space required to implement
the bucket index scheme and the time required t

" perform the error tolerant phrase matching using the

scheme arethe two items to examine for the
performance analysis. Both the space and the time
required depend on the error tolerant capability the
system wants to implement.
IV.1 -Number of Inverted Files Required

We assume that the index scheme
discussed in Section 3 is implemented by usin
inverted files [8]. The number of inverted files
required in an implementation depends on how many
block errors the system plan to handle. For example,
for a table with phrases of length 5, we ‘need 2
inverted files to cover 1 block error (Fig. 3), and 4
inverted files to cover 2 block errors (Fig. 4).In
general we use two syllable positions in building an
index file. When the number of the syllables -is less

- than 3, we use only one syllable position for ihe

purpose. Table 1 lists the numbers of index files
required for other cases. The * symbol represents "not

A-439

supported.”
Errors 12]13]4]5
\ #Syllables
0 1f1yp1]11]1
1 *1213]2
2 ¥l *p*1 6] 4

Table 1. Number of index files required to cover block
errors.

IV.2 Memory Requirements

The major memory space required is to be
used to-store the phrase tables, buckets, and inverted
files. A phrase table consists of two parts, an I_code
part for phonetic information and a BIG -5 code part
for Chinese character information. An I_code and a
BIG-5 code both require 2 bytes to represent. For a
table of phrases with phrase length / and n phrases, the
space required is 2X[Xn for the phonetic part,
and the same amount for the BIG-5 code part.

The major part of an inverted index file is a
table of the form shown in Fig. 6. Each entry of the
table consists of a key field of bucket namedby its
value at the selected positions of the syllables and a
field for the address of a bucket in the disk. As sume
that 2 syllable positions which require 2 bytes to
represent are used for the key field and 4 bytes are
required for the bucket address, each index file
requires a space of size (4 + 4)>< m bytes, where
ni is the number of buckets used for the phrase table.
Let the number of phrases in the table be n, and the
av7rage bucket size be s, then m is approximately
ns.

.
o

11 Address of Bucket(11XXX)
12 Address of Bucket(12XXX)

88 Address of Bucket(88XXX)

Fig. 6. The structure of the index file.

The content of abucket file of a phrase
table is the same as the phonetic part of the phrase
table, except that the entries are grouped according to
the bucket structure. Therefore, aspace of 2X[X5
bytes is required for each of the inverted index files,
where [is the phrase length and n is the number of
phrases in the table.

Note that the phrase tables and the bucket
tables can be kept in the hard disk. The index files can
be loaded into the memory if there is enough space in
the memory. Because the index files are soried files,
they can also be implemented in two-level structures.

In that case only a small firsi-level header index need
to be kept in the memory during execution. One extra
disk access is required to load a portion of the index
file into memory before the searching of the buckets
can be done.
IV.3 Execution Time Requiremenis

The major time spent in performing an
error tolerant phrase matching using the bucket index
scheme is on 1. Loading of buckets, 2. Detail
calculation of the distance of the phrases (syllable
sequence) in the loaded buckets and the given
possibly erroneous phrase. Assume that buckets are
stored on a continuous spéce in the disk. The loadin
of abucket will require one disk access time,
including seek time, rotational delay, and block
transferring time [8] from the disk to the memory for
the bucket. Both of the seek time and rotational time
are always counted in average, so they are always
conceived stable. The block transferring time is
proportional to the size of the bucket. The time
required to do the detail distance calculation is also
proportional to the total size of the buckets. Therefore,
the time required to perform an error tolerant phrase
matching using the bucket index scheme can be
estimated by the following formula

Maiching _Time = ny, Xt, +bXvy X1,
+CXvy X1, ’

where 71, = total number of di sk access times,
equal to the number of buckets to
be loaded,
I, = disk seek time and rotational delay,
b = apositive constant for the block

transferring term,

Vp = total size of the buckets transferred,

Tz = data transferring rate of the disk,

¢ = apositive constant for the
calculation term,

I- = average instruction time of the
CPU.

For today’s personal computers, , is of
the order of 10—2 second. I, is of the order of
1077 second. ¢ isofthe orderof 10~ second.
The constants b and ¢ can be assumed to be of the
order of 10.

Obviously, 7, is much large than 7 B
and Z.. Thus, the time required to transfer the block
from the disk to the memory and the time required to
do the detail distance calculation can be negligible.
We will examine how much disk access time required
to perform the error tolerant phrase matching usin
the bucket index scheme in Section 5.

V. Experimental Results

From formula matching_time we see that
the major factors affecting the performance of the
error tolerant phrase matching of the bucket index

A-440

scheme are F, and Vg. 71, is the toial number
of disk access times, equal to the total number of

buckets fetched in the process. Vg is the total size of
the buckets transferred. In this Section we will test on
data of real phrase tables to see how the 7, and
Vp values vary.

V1 The Buckets Creation

We have gathered 60345 Chinese phrases
to be processed in our experiments. The phrases are
put into sub-tables according to phrase lengths, as
shown in Table 2.

Length 1 2 3 4 . 5
Phrases | 14098| 20490] 13022| 11938| 797
Table 2. The number of phrases of different phrase
lengths.

We have to create buckets t o store the
phrases of different phrase lengths. In our experiment,
the buckets we created for different phrase lengths are
listed inTable 3.

Phrases of| The indexes to be created

length .

2 (1, 12

3 [1,2], [1,3], [2,31

4 [1,2], [1,3], [1,4], [2,3], [2,4], [3.4]

5 [1,2], (L3}, [14), (1,5, [23], [24],
[2,5], [3.,4], [3.5], [4,5]

Table 3. The list of indexes we created for the
experiments.

In Table 3, the inverted index of the
phrases of 1 syllable is not listed because there is onl
one choice to build the inverted index. After indexes
are created, the buckets will be stored in the disk.
Associated index files are also created and stored.

V.2 Domain Partitioning

We are interested in how to partition the
whole syllable domain D. Because how you pa rtiti
D will change the way the buckets created. It is
believed that partitioning D intomore sub -domains
can decrease the number of phrases of every bucket.
The system can then perform the error tolerant phrase
matching with fewer phrases among the buckets.

We will compare the effect results of 8, 16,
24, and 32 sub -domains. We will partition D into 8
sub-domains by the similarity of vowels, as shownin

. Table 3. In Table 7, 16 sub-domains are createdb
dividing the 8 sub-domains with reference t
consonants. Let "9 2T 439 E" bepartt 1,
and "{ G UL TR A PP 5L be part 2. If the
vowel of the syllable belongs to Y %" and the
consonant of the syllable belongs to part 1, then the
sub-domain of the syllable is 3.

In the same way, a partitionof 24

trisecting the 8§

sub-domains are created by

sub-domains each into'3 by consonants. Let "7 &M
Chks % bepartl, "5 U { TE" bepart 2,
and "W 4 P 7+ L" bepart 3. Apartition of 32
sub-domains are created by dividing each of the 8
sub-domains into four blocks by consonants. Here w
use "7 % 474" as partl, "M T 5 % & " as part 2, "¢
TGy {T"aspart 3, and "® { P P -5 L" as part
4.

V.3 Maximum Bucket Siz

Fig. 7 shows the maximum bucket sizes created for
the phrase tables of Table 2. Bucket size represents
how many phrases actually contained in the bucket.
The phrase tables with phrase length less than 3 will
use only one syllable position to create buckets. For
tables with phrase length equal to 3 or greater than 3,
two domain partitions.

4D p
3
O}m 1
sm|
—94) ;
2190
100
W F
0 B
1 2 3 4 5
#9Hs

Fig. 7. The maximum bucket sizes of different domain
partitions.

From Fig. 7, we see that the maximu
bucket sizes of 24 and 32 sub-domains are very close.
This situation may result from that the creation of the
sub-domain is not good enough or the phrases we
gathered are not fair.

Let's consider the case of phrase table of 4
syllables, 2 possible errors, and 32 sub -domains. In
this situation, the system needs to load at most6
buckets to search the phrases. In the worst case, we
can assume that all the 6 buckets each contains 127
phrases. There are onl 762 phrases required to be
maiched. These phrases are 6.38% of 11938, the
number of all the phrases of length 4in Table 2. '

We can find that the more sub -domains we
partition the Domain into, the smaller the bucket sizes
are. The number of the sub -domains will affect the
number of buckets, so increasing the number. of
sub-domains will increase the number of the buckets,
and decrease the size of the buckets.

V4 Total Number of Buckets Fetched
When we build the bucket index, we can

-find that some bucket may contain no phrases. Those

buckets need not be loaded during execution. Here we
are interested in testing how many buckets are there

A-441

that actually contain phrases when we apply the
buckeis index scheme to actual phrase data. We did an
experiment to test this. We select 500 phrases with
phrase length of 5. Then artificially insert one, two,
and three errors into the phrases. By doing this, we
obtain 4 sets of testing phrases containing one, two,
and three ervors. The testing resulis are shown in
Table 4 and Fig. 8.

Sub-domains | 1 2 3
\ # Errors

8 500 {1000 12000 |5000
16 500 1979 | 1967 |4871
24 C]500 |832 [1168 |3231

Table 4. The number of searched indexes.

#Hias

Fig. 8. The number of searched indexes.

According to Table 4, the phrases of 5
syllables should search 1 bucket if there is no error, 2
buckets if there is 1 error, 4 buckets if there are 2
errors, and 10 buckets if there are 3 errors. Thus the
number of searched buckets is less than 500, 1000,
2000, 5000 under different number of errors if system
processes 500 phrase inputs. The actual number of
buckets searched is very close to these upper bounds.
The discrepancy comes from that some buckets may
be empty and therefore unnecessary to search.

VI. Conclusion

This paper studies the problem of
designing error tolerant phrase matching algorithms
for very large phrase tables. The design goal is t
implement algorithms with sufficient error tolerant
capability and with real-time performance. Our
approach was based on three major concepts. 1.
Cartesian Product File concept, 2. Covering concept
of enlarged buckets, 3. Gradual expansion of
near-neighbor searching concept.

To achieve the error tolerant ability, the
Cartesian Product File concept is used to partition the
phrases into buckets according to the similarity of
their pronunciations. All the buckets are stored in the
external disk memory. To decrease the number of
indexes required in the calculation, the Coverin

concept is applied in creating the index files. By
searching fewer indexes, including empty indexes,
fewer buckets are needed to load into the internal
memory. Thus fewer phrases are checked. When
searching for the best match phrases, we gradually
expand the search region. If the best match phrases are
in the near neighbor of the given testing phrase, whic h
is often the case, only small amount of buckets are
needed to be loaded into the memory. ¥t makes
handling of multiple errors in real -time possible.

The research reported in this paper
provides a foundation to_do multiple error tolerant
phrase matching with very large phrase tables.
Because of the difficulty of collecting actually used
phrase data, we have tested the algorithms only on
medium size phrase tables. It would be interesting to
test the scheme developed on really large phrase
tables in the future.

References

[1] L.S.Lee, C.Y.Tseng, HY. Gu,F. H. Liu, C. H.
Chang, Y. H. Lin, Y. Lee, S.L.Tu, S. H. Hsieh,
and C. H. Chen, "Golden Mandarin (I) — A
Real-Time Mandarin Speech Dictation machine
for Chinese language with Very Large
Vocabulary," IEEE Transactions on Speech and
Audio Processing, vol. 1,10.2, pp. 158-179, Apr.
1993.

[2]1 C. C. Chang and M. W. Du, "The Hierarchical
Ordering in Multiattribute Files," Information
Sciences, vol. 31, pp. 41-75, 1983.

[3] C. C. Chang, R. C. T. Lee,and M. W. Du,
"Symbolic Gray Code as a Perfect Multiattribute
Hashing Scheme for Partial Match Queries,"
IEEE Transactions on Software Engineering, vol.
se-8, no. 3, pp. 235-248, May 1982.

[4] M. W. Dy, and S. C. Chang, "An Approach to
Designing Very Fast Approximate Sixin
Matching Algorithms," IEEE Transactions on
Knowledge and Data Engineering, vol. 6, no. 4,
pp. 620-633, Aug. 1994.

{5] M. W.DuandS. C. Chang, "A model and a Fast
Algorithm For Multiple Errors Spellin
Correction, Acta Informatica, vol. 29, pp.
281-302, 1992.

[6] J. T. Wang, and C. Y. Chang, "Fast Retrieval of
Electronic Messages That Contain Mistyped Words
or Spelling Errors, IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, vol. 27
no. 3, pp. 441-451, June 1997.

[7]1 H. L. Morgan, "Spelling correction in systems
programs, Commun. ACM, vol. 13, no. 2, pp.
90-94, Feb. 1970.

[8] M. J. Folk, B. Zoelick, File Structures. Reading,
MA: Addison-Wesley, 1992.

A-442

