Integrating Active Rules with Data Warehouse Systems

Shi-Ming Huang andYuan-Mao Hung*

Department of Information Management, National Chung Cheng University,
Ming-Hsiung, Chia-Yi 621, Taiwan
*Department of Computer Science and Engineering, Tatung University, Taiwan
Tel: +886-5-2720411 ext 6403, Fax: +886-5-2721501

E-mail: smhuang@mis.ccu.edu.tw

Abstract

Although many data warehouse systems have been
developed in recent years, the practice of data
warehouse is still immature. Most of current systems
have some limitations in terms of flexibility, efficiency
and scalability. Furthermore, the contents of a data
warehouse are becoming a large and messy jungle. It is
difficult to maintain and analyze the data. Much research
has been done in data mart [1; 2; 3; 4] to solve the
problems. Unfortunately, the solutions isolate the
information into an independent data cube. Users will
only retrieve the knowledge from one single angle, but
not from a global view. This is due to:
® The presented data warehouse models lack human
involvement, particularly in the form of guidance
and user control.
® The presented data warehouse systems do not
allow users to define the relationship within data
marts.
To deal with the above problems, this study intends to
design a novel architecture for a data warehouse
augmented the active rule technique. The proposed
architecture focuses on the uniform metadata model and
the active monitor conditions triggered in data
warehouse, which employs inference engine to go
further analysis or warning.

1. Introduction

Data Warehouse is an architectural construct of
information systems that provide users with current and
historical decision support information that is hard to
access or present in traditional operational databases. It
is a cornerstone of the organization’s ability to do
effective information processing, which, among other
things, enable and share the discovery and exploration

of important business trends and dependencies that
otherwise would have gone unnoticed.
Active rules have been used in databases for several years
[5; 6; 7]. The aim of an active database is to perform
automatic monitoring of conditions defined over the
database state and then to enable the ability to take action
(possibly subject to timing constraints) when the state of
the underlying database changes (transaction-triggered
processing). Most active database rules make definitions
like production rules. They use the event-based rule
language, in which a rule is triggered by events such as
insertion, deletion or modification of data. The form of an
active database rule is:

On event

If condition

Then action
Recently, active rules have also been integrated into data
warehouse architecture to maintain data consistency in
the materialized views [8; 9].
This paper describes a novel architecture for an Active
Data Warehouse System (ADWS), which integrate active
rule technology and data warehouse technology. First of
all, we have to define the ADWS.
Definition: Active Data Warehouse System
Active Data Warehouse System (ADWS) is a data
warehouse system, which provides active rule’s
functionality to monitor the multi-dimensional query
events and to go a step further analysis or warning.
The data warehouse will become alive when augmenting
with active rules. The active rule is triggered when the
event occurs, and once the rule is triggered, the condition
is checked. If the condition is satisfied, then the action is
executed.

2. System Architecture

This section describes our novel architecture for an
ADWS. Figure 1 illustrates the basic architecture of our

Active Data Warehouse Syetem
IE Cube Database
o D | e - - -

— Multi-dimensional

Active Cube Query Language
Browser S QL
Active Data Warehouse Engine

l Query Manager I

| Q@D I

l Active Rule Metadata l

l Mechanism -t - Manager

(ARMD) (MVMINVID) l
—
S~—
Active Rule Metadata
__Repositories Repositories
s = - - -) — ~etiffff————-
Query Access Flow Internal Module Communication Flow Relational Cube Access Flow

Figure 1: Active Data Warehouse System

system. There are two repositories and three basic process
modules in this data warehouse. The two repositories are
(1) a metadata repositories and (2) an active rule
repositories. The metadata repositories store the translated
database schemas of source databases, the global database
schema, the star schema of the data warehouse
application, and system information of the data
warehouse. The active rule repositories store the active
rules of data warehouses.

The three basic procedure modules are (1) a Query
Manager (QM) module, which provides to analyze multi-
dimensional query from active cube browsers, (2) a
Metadata Manager (MM) module, which contains the
communication mechanism to manage the metadata
repositories, and (3) an Active Rule Mechanism (ARM)
module, which provides a inference engine to go step
triggered rules and inference correctness of result. The
detail mechanisms of each module are discussed in the
later.

The working environment of this ADWS involves three
parts, i.e. the active cube browser as a user interface, a
cube database, and an active data warehouse engine. The
physical data of the data warehouse is stored in the cube
database which is implemented on relational databases.
The active cube browser will send a request to active data
warehouse engine. The request is represented by our

multi-dimensional query language which includes the
events information.

The QM module of active data warehouse engine will
process the query reguest and translate to SQL. It will also
pass the event information to ARM. The ARM may
trigger the event information and go a step further analysis
or warning.

2.1 Metadata Repositories

2.1.1 Global Database Schema Metadata

Multi-database users view the global schema as the
definition of a single database. The heterogeneity of local
DBMSs are masked through the global database schema.
The global database schema approach requires a total
integration at the schema level. In this approach, all local
DBSs are translated into EER models. These EER models
will be integrated into a reconciled EER model as a global
database schema. The meta-data of our global database
schema need to represent the EER model. Figure 2
displays ours global database schema metadata by using
OMT [13] model.

2.1.2 Star Schema Metadata

GDB DBName

-GDB_Name:
-DB_Type:

D -Owner:
-Create_Date: -DBType:

-Description: -BriefDesc:

l -DataCreate:

Attribute_Mapping
-G_Class:
-G_Attribute:
-Set(.DB.attribute):
-Key:

-Database_Name:

-IL.DB_Name:
-DB_Type:

“+Integration_Method()

Server
Global -Server_Name:
-Server_Type:
Database -Database_Type:
-Server_Il.ocation:
Schema ~Description:

-Entity_ Name:
.| -Entity_Type:

Entity EATT

-Database_Name: -Database__Name:

.| -Entity_Name:
-Attr_Name:
-Data_Type:
-Width:

Connect

-Database_Owner:
-Entity_Name:
-Relationship__Name:
-Cardinality:

RATT

-Database__Name:
- -Relation_Ship:
-Attr_Name:
-Data_Type:
-Width:

Relationship

-Database_Name:
-Relation_Ship:
-Rel_Type:

Figure 2: The OMT model of global database schema metadata

Dim_Table Dim_Data
-Cube_Name: -Cube_Name:
D T\T . -Dim_Name:
-Dim_Name: -Dim_Attr:
-Attr_Type:
Cube_Database -Attr_Width:
[FeameName: -Dim_Level:
-Cube_Owner: -Total_Level:
-Cube_Date: -Parent_Dim:
-Cube_Descript: -Source_Database:
-Source_Table
Fact_Table
S tar -Fact_Name -Fact_Name:
-Cube_Name: -Attr_Type:
Schema -Attr_Width:

Active Rule
SChema Coupling_Model_Table

Rule_Body_Table -Rule_Name:
_Cube Name: -Query_coupling:
-Rule_Name: —ECfcoupl%ng:
“Event: -CA_coupling:
_Condition: -Execute_mode:
-Action -Precedes_Follows

Figure 3: The OMT model of star schema

The most popular design technique used to implement a
data warehouse is the star schema. The structure of star
schema takes advantage of typical decision support
queries by using one central fact table for the subject area,
and many dimension tables containing de-normalized
descriptions of the facts. After the fact table is created,
OLAP tools can be uses to pre-aggregate commonly
accessed information. Figure 3 displays the OMT model
of star schema metadata.

2.2 Active Rule Schema Metadata

There are many useful semantics presented in this active
rule schema metadata. The active rule schema can be
expressed in two parts: a rule body table and a coupling
model table. The rule body table describes the ECA base
active rules schema, and the coupling model table
describes how the active rules can be integrated into the
MDQ. Figure 4 tabulates OMT model of active rule
schema.

3. Active Rule Mechanism

Figure 4: The OMT model of active rule
schema

Figure 5 depicts the architecture of the active rule
mechanism for our ADWS. When Rule Activation module
receives an event, it will retrieve the related active rules
from active rule repository. The conflict resolution
module will deal with the rule conflict situation. Finally,
an active rule will be executed and a new event occurred.

3.1 Data Warehouse Event

Figure 6 shows the event hierarchy, which we have
developed to depict the event classification of multi-
dimensional query data warehouse. Events can be broadly
classified into: I) Multi-dimensional query events — events
which act as the basic building blocks and for each of
which an detector need to be associated and embedded in
the system and ii) data consistency events — in which case
the event is raised by an operation on some piece of
structure. (E.g., insert a tuple, update a tuple, update a
schema, and drop a schema). The OLAP operators
defined in literature [1] and considered in this paper are
drill-down, roll-up, push, slice, pull, dice, and select. We
have developed to depict the event classification of multi-
dimensional data warehouse. Our approaches focus on
multi-dimensional query events, which can be classified

\I/read

S

—_——
Active Rule
Repository

Rule
Execution

event occule Rule R Conflict
———— Activation ‘| Resolution Cube Database
™ notification
Active Rule Mechanism
Figure 5: Architecture of Active Rule Inference Engine
Events
Multi-dimensional Data Consistency
query events events
Dimension Measurement Schema Data
events events events events
drill down rollup push slice pull dice select alter drop insert delete update

Figure 6: Event Classification

into two categories: Multi-Dimensional events and
Measurement events.

3.2 Active Rule Syntax

Active Data Warehouse Management Systems couple
database technology with rule-based programming to
achieve the capability of reaction to database stimuli,
called events. An ADWS consists of a data warehouse and
a set of active rules; the most popular form of active rules
is the so-called event-condition-action (ECA) rule, which
specifies an action to be executed upon the occurrence of
one or more events, provided a condition held. In this
section, we provided our active rule syntax, which
extended the standard ECA rule.

Figure 7 shows the syntax of our active rule. The syntax
has two parts: a rule body and a coupling model. The rule
body is to describe the ECA (Event-Condition-Action)
base active rules, and the coupling model is to describe
how the active rules can be integrated into the database
query. The rule body is composed of three main
components: a query predicate, an optional condition, and

an action. The query predicate controls rule triggering; the
condition specifies an additional predicate that must be
true if a triggered rule is to automatically execute its
action. Active rules are triggered by database state
transitions — i.e., by execution of operation blocks. After
giving a transition, those rules whose transition predicate
holds with respect to the effect of the transition are
triggered. By using a coupling model, database designers
have the flexibility of deciding how the rule query
integrates within the Multi-Dimensional Query (MDQ).
There are five different execution attributes to determine
semantic of an active rule in our ADWS. They are:

Query coupling: the execution of a rule is treated as a
query in our ADWS, ie. rule query. If the
Query coupling is set to ‘same’, then the MDQ is
committed only when the RQ (Rule Query) and DQ (Data
Query) both are committed. If the Query coupling is set
to ‘separate’, then the MDQ committed will only depend
on the DQ. It suggests that the Query coupling is set to
‘Separate’, when the active rule does not have any effect
on the DQ. This will enhance the system performance in
terms of query execution time.

Rule Body:

Coupling Model:

Define Rule <rule name>

On <query predicate>

[if <conditions>]

then

[evaluate query-commalist]

execute <action>

query_predicate ::= event [,event [,event]]
event ::= drill down | roll up | push | slice]
pull | dice | select

condition ::= query commalist
query_commalist ::= query [,query]*
query ::= table expression

Query coupling = Same | Separate

EC coupling = Before | After,

CA coupling = Immediate | Deferred,
Execute_mode = Repeat | Once,
[Precedes <rule names> |

[Follows < rule names>]

Figure 7: The Syntax of our Active Rule

EC coupling: defining the execution sequence of the
event and condition part for a relational active rule. The
‘before’ EC coupling means that the rule condition is
evaluated immediately before the DQ is executed. The
‘after’ EC coupling means that the rule condition is
evaluated after the DQ is in the prepare-to-commit state.
CA_coupling: presenting the execution sequence of the
condition and action part for an active rule. The
‘immediate’ CA coupling means that the rule action is
executed immediately after the rule condition is evaluated
and satisfied. The rule action executed after DQ is in the
prepare-to-commit state, when CA_coupling is specified
to ‘deferred’.

Execute_mode: the triggered rule will automatically be
deactivated after it is committed, when its Execute_mode
is specified to ‘once’. On the other hand, the rule is
always active if Execute_mode is specified to ‘repeat’.
Precedes Follows: The optional ‘precedes’ and ‘follows’
clauses are used to induce a partial ordering on the set of
defined rules. If a rule r; specifies a rule r, in its
‘precedes’ list, or if 12 specifies rl in its ‘follows’ list,
then ry is higher than r; in the ordering.

3.3 Active Rule Inference Engine

In our ADWS, the rule activation process flow is
delineated in the following steps:

Step1: Query coupling evaluation:

If Query coupling is Separate, the system will submit the
triggered rule to QM (query manager) as a new query.
Otherwise, the system will continue the following steps.
Step 2: Event-Condition coupling evaluation-- Before

2a. Reasoning rules, which its EC coupling is equal to
Before.

2b. If the condition evaluation result is true, the following
two possible situations may happen.

2b.1. The action part will be executed immediately if its
CA_coupling is equal to Immediate.

2b.2. The action part will be save into a queue if its
CA_coupling is equal to Deferred.

2c. Repeating the steps 2a, 2b until no more rules is
reasoned by step 2a.

Step 3: Executing the data query.

Step 4: Executing the queued rules, which are stored by
step 2b.2.

Step 5: Event-Condition evaluation--After:

5a. Reasoning rules, which its EC coupling is equal to
After.

5b. If the condition evaluation result is true, there are the
following two possible situations.

5b.1. The action part will be executed immediately if its
CA_coupling is equal to Immediate.

5b.2 The action part will be save into a queue if its
CA_coupling is equal to Deferred.

5c. Repeating steps 5a, 5b until no more rules is reasoned
by step Sa.

Step 6: Executing queued rules, which are stored by step
5b.2.

Step 7: Committing the query if and only if all sub-queries
are committed.

3.4 Rule execution

Active rules are activated automatically as a result of
database state transitions caused by externally generated
operation blocks. Suppose that a stream of operation
blocks is submitted for execution. If execution begins in a
state CS, and active rules are not considered, then the
system behaves becomes:

> (YY)
Ti Ta T3

where T, T, T;.... are unique transition labels; and &£,
&, &3... are the effects of the transitions. Recall that
each transition effect is actually a pair of /X DIM,
Y DIM]. In this section, we assume that externally
generated operation blocks correspond to data warehouse
query. That is, each state in execution sequence above
corresponds to a state in which a query begins execution;
the subsequent state corresponds to the point at which the
user or application program requests that the query be
committed. This one-to-one correspondence between
transitions and queries holds only for externally generated
operations. When rules are executed, a single query is
composed of one externally generated transition followed
by some number of rule-generated transitions. Consider
now an arbitrary point in rule processing. A state CS, has
been reached, resulting form execution of a user-
generated operation block followed by some number of
rules:

‘ H XY %
T2 [AR] Tn [AR]

In state CS,, rules are triggered based on composite
transition effects; the transition tables in their conditions
and action are defined accordingly. If a rule AR, has not
yet generated any transitions in the sequence (i.e., AR;’s
action has not been executed since the most recent
externally generated transition), then AR is triggered in
state CS, if its transition predicate is satisfied by the
composite effect since state CS):

E10E20eee0E

N
- e Ok i,
oo
T2 [AR]] Tn [ARJ]

If rule AR is indeed triggered and it is chosen for
consideration, then its transition tables are based on
transition effect £; 0 &, o ... 0 &, current state CS,,
and pre-transition state CSy. We now give an algorithm of
semantics for rule execution. The algorithm is more
“procedural” than the previous semantics as described
above. This information can be used at any time to
determine if the rule is triggered and, if so, to construct
the relevant transition tables. Each rule’s transition
information is modified incrementally as operation blocks
are executed and new transitions are created. The main
algorithm is given in figure 8, along with its three function
calls.

The blow algorithm loops indefinitely as long as there are
externally generated operation blocks to be executed.
Each iteration of the loop corresponds to a single query
containing an externally generated transition followed by
consider action and possible execution of some number of
rules. With each rule AR we associate an attribute

Repeat forever
/* Execute externally block, initialize transition information */
Old-state <— current-state();
& <— execute-external-blockQ;
[X_DIM,Y_DIM] <— Init-trans-info (€ , old-state);
For each AR active-rules () do
AR.trans-info <— [X_DIM,Y_DIM];
/* Begin rule execution */
AR <— select-eligible-rule();
‘While AR # null do
/* Execute rule block */
old-state <— current-state();
& <— execute-rule-block(AR);
/* Rule AR gets new transition information */
AR.trans-info <— Init-trans-info (€ , old-state);
/* Modify transition information for all other rules */
for each AR' active-rules () do if AR' #* AR then
AR'.trans-info <— modify-trans-info(AR'.trans-info, & , old-state);
AR < select-eligible-rule O
End while

Function Init-trans-info (€ , old-state)
X_DIM <— X_DIMENSIONC(€);
Y_DIM <— Y_DIMENSIONC(€);
Return ([X_DIM, Y_DIM])

Function select-eligible-rule()

Repeat
AR <— select-triggered-rule (active-rulesQ);
If AR #null then

cond-holds <— check-condition(AR);

else cond-holds <— false

Until cond-holds or AR = null;

Return (AR)

Function modify-trans-info([X_DIM,Y_DIM], &
X_DIM <— X_DIM U X_DIMENSION(E)
X_DIM <— X_DIM U X_DIMENSIONC(€);

Return ([X_DIM, Y_DIM]

, old-state)

Figure 8: Rule Execution Algorithm

AR.trans-info. This attribute is a pair of [X DIM,
Y DIM].

4. Multi-Dimensional Query Language

Data analysis applications look for unusual patterns in
data. They categorize data values and trends, extract
statistical information, and then contrast one category
with another. The active cube browser will send a query
to our ADWS. The protocal of the query is our Multi-
Dimensional Qrery Language (MDQL) which include the
events information.The Query Manager (QM) module of
active data warehouse engine will process the MDQL and
translate to SQOL.

4.1 Multi-Dimensional
Syntax

Query Language

In relational data warehouse systems, users (or application
programs) submit streams of multi-dimensional query
operations for execution. The operations in a model of
system behavior are grouped into various operation
blocks. The operation blocks (rather than individual
operations) for generality may permit formalism that
adapts easily most relational database languages and
assumes some familiarity with SQL. So the SQL-like
syntax is used to implement the MDQL. That can make

SELECT
[Alias.] Select_Item [AS Column_Name]

[, [Alas.] Select_Item [AS Column_Name] ...]
FROM GlobalTableName/StarSchemaName [Alias]

[, GlobalTableName [Alias] ...]
Operation_Block := sgl-op; seq-op; *****.; sql-op
Sql-op := X_DIMENSION | Y_DIMENSION
[X_DIMENSION BY
Column_Name[OLAP_OPERATOR][LEVEL Number]
[, Column_name [OLAP_OPERATOR] [LEVEL Number]...]]
[Y_DIMENSION BY
Column_Name[OLAP_OPERATOR][LEVEL Number]
[, Column_name [OLAP_OPERATOR] [LEVEL Number]...]]
OLAP_OPERATOR =
[RollUp/DrillDown/Push/Pull/Slice/Dice/Select]
[WHERE condition expression]

Figure 9: Multi-Dimensional Query
Language Syntax

the users to implement the multi-dimension query in the
ad hoc application easily. In addition, The SQL like
syntax can give user less effort to learn the new syntax.
Then the X DIMENSION and Y DIMENSION fields are
designed to match for our output format. The query
language syntax is illustrated in Figure 9.

Example: Let us consider the data cube represented in
Figure 10 and its “multidimensional” view is illustrated.
Let us suppose a user is browsing the cube data in
countryside level and a new query defined as below.

“Select Vendors for which the total sales is > 37000 units
in each County of the North”

Using our MDQL as the following can represent this
query as the following:

SELECT County, Vendors, Drink Sales

FROM Sales_Cube

X DIMENSION: = Roll-Up from Countryside to Region,
Select Region = North,

Drill-Down from Region to County

Y DIMENSION: = Push Vendors, Pull # of sales, Dice #
of sales = 37000

4.2 Active Cube Browser

The active cube browser (see figure 11) provides an
OLAP function when users use it to query the data of the
cube database. It will occure several events when users
interact with the browser. The Active Data Warehouse
Engine receives the event and empolys an active
rulemechanism to go further analysis and to feedback a
warning to the active cube browser. Figure 11 shows that
the Active Data Warehouse Engine will detect the
occurrence of dimension-drill-down events. Then the rule

Dimension 1:
Year

> Dimension 2 :
[] Location = Countryside

| | L]
Y
Dimension 3: instance of the\measure
Ve n dor ' stored into a cube cell
measure = "Drink sales”
Location
Region T——> North seses East
County > Taipei Hsichu Tlan Taitung

I

Countryside T Wanli Jinshan « *Shrmen Jubeiee Emei Jiaushi »e Nanau Liudau ¢ Daren

Figure 10: Example of a data cube with
hierarchy

of Great Sales is trigger to decision for next month
market and material supply chain relationship.

5. Conclusion

Because of traditional data warehouse systems are
passive, they execute queries or transactions only when
the users or the application programs explicitly request.
This paper incorporates active rules into the data
warehouse system. The result of this integration is that the
data warehouse becomes active but not passive. It can go
further to analyze the data automatically.

Our approach is based on the following major features:
Create the active data warehouse architecture.

Create the relational metadata for global database schema,
star schema, and active rule schema to represent the
ADWS metadata.

Describe our active rule syntax and its activation
mechanism in detailed.

Design a multi-dimensional query language for active
cube browser.

The ADWS architecture introduced in this paper can meet
the objectives of this study.

Acknowledgement

The work presented in this paper has been supported by
the National Science Council, Taiwan, R.O.C., under the
Grant No. NSC 89-2213-E-194-041. We deeply
appreciate their financial support and encouragement.

LIS - BMOLIMNT

TEMR AR
AROA ST
. Descrption :
| = Evenl
o Concdition =
Aclion
Ballar
0 T
Coale Makar
0 L
Hﬂﬂl.lltl Cancal |
Figure 11: Active Cube Browser
[8] Adelberg B., Garcia-Molina H., and Widom J., 1997,
References “The STRIP Rule System for Efficiently Maintaining

[1] Elaheh Pourabbas, and Maurizio Rafanelli, 2000,
“Hierarchies and Relative Operators in the OLAP
Environment” ACM SIGMOD, Vol. 29, Num. 1, March.
[2] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, and M. Venkatrao, 1997, “Data Cube: A
Relational Aggregation Operator Generalizing Group-By,
Gross-Tab, and Sub-Totals”, Data Mining and
Knowledge Discovery 1, 29-53.

[3] Jiawei Han, Laks V.S. Lakshmanan, and Raymond T.
Ng, 1999, “ Constraint-Based, Multidimensional Data
Mining”, Computer, Auguest 1999.

[4] E. Baralis and J. Widom, 2000, “Better Static Rule
Analysis for Active Database Systems”, To appear in
ACM Transactions on Database Systems, 2000.

[5] Huang Shi-Ming and Huang Chien-Ming, 1998, “A
Semantic-Based = Transaction Model for Active
Heterogeneous Database Systems”, The Proceeding of
1998 IEEE International Conference on Systems, Man,
and Cybernetics, IEEE Press. (to appear)

[6] Paton W. and Diaz Oscar, 1999, “Active Database
Systems”, ACM Computing Surveys, Vol. 31, No. 1.

[7] S.M. Huang and J.K. Liu, 1997, “Developing an
Active Heterogeneous Database System”, Proceedings of
Intelligent Information Systems, pp. 415-419.

Derived Data”, Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp
147-158.

[9] Ceri S., Fraternali P., and Tanca L., 1994, “Automatic
Generation of Production Rules for Integrity
Maintenance”, ACM Transactions on Database Systems
19(3): 367-442.

[10] Shi-Ming Huang, Ming-Yi Chen and Joseph Fong,
1999, “A Database Schema Integration Methodology for
A Data Warehouse”, 9" International Database
Conference (IDC’99), Hong Kong, July, 1999, ISBN 962-
937-046-8,pp415-418.

[11] Shi-Ming Huang, Shing-Han Li, and Joseph Fong,
1997, “Translate Relation Database Model Into Extended
Entity Relationship Model: A Reverse Engineering
Approach”, Tatung Journal, Vol 26, pp 175-186, ISSN
0379

[12] Shi-Ming Huang, Ming-Yi Chen, and Irene Kawn,
2000, “Conflict Resolution and Reconciliation in
Multidatabase Systems", International Journal of
Information and Management Sciences, Vol. 11, No. 3.
(to appear)

[13] James Rumbaugh, Michael Blaha, William
Premerlani, Fredrick Eddy, and William Lorensen, 1991,
“Object-Oriented Modeling and Designing”, by Prentice-
Hall, Inc. A Division of Simon & Schuster Englewood
Cliffs, New Jersey 07632

