
 1

TEST CASES GENERATION FOR

DISTRIBUTED REAL-TIME SOFTWARE SYSTEMS
Wen-Kui Chang, Tzu-Po Wang

Deptpartment of Computer Sciences & Information Engineering
Tung Hai University, Taichung, Taiwan, R.O.C.

Email:wkc@mail.thu.edu.tw

ABSTRACT

Testing is an experimental method aimed at checking the
correctness of a system implementation. Industrial
companies are paying enormously for test development, as
the presence of faults in distributed systems is not always
tolerable. The interest for distributed real-time software
systems testing is growing as these systems are more and
more involved in the design of new communication
standards. However, test cases of the kind of systems
testing are the key points of test efficiency. We will apply
statistical usage model into distributed real-time systems,
by generating test case statistically with coverage of whole
system, and implementation under testing (IUT) approach,
testing process is more acceptable and efficient.

1. INTRODUCTION

The recent technological advances in the field of computer
and communication lead to distributed real-time control
software systems, available approach in test cases
generation of such systems are not sufficiently adequate.
It’s expensive both in the model definition and in the
model analysis because of the structural complexity and
the large system dimension.

As previously discussed, the test case is the heart of test
approach, especially in distributed real-time control
software systems. In the paper, we will discuss quality
performance of distributed real-time systems in section 2
first. Then, detailed statistical usage testing approach is
provided in section 3. Section 4 shows a demonstration
example to compare the three test cases, and common on
advantage of the test cases of statistical usage testing.

2. QUALITY PERFORMANCE

In the section, we discuss some quality performance of
distributed real-time systems.

2.1 Property of Distributed Software Systems

There are properties of distributed software systems:

2.1.1 Replication

Data replication is used in distributed systems to improve
availability, increase throughput and eliminate single

points of failures [1]. The cost of replication is that
significant care and communication is required to maintain
consistency among replicas. In some settings, such as
distributed directory services, it is acceptable to have
transient inconsistencies, in exchange for better
performance, as long as a consistent view of the data is
eventually established. For such services to be usable, it is
important that the consistency guarantees are specified
clearly. The main objective of data replication in a
distributed database system is to provide high data
availability for transaction processing [18].

2.1.2 Commitment

The effects of a distributed transaction on the data must be
visible at all sites in all or nothing fashion. [10] The
so-called atomic commitment property can be provided by
a commit protocol that coordinates the sub transactions
such that either all of them or none of them commit. In
conventional distributed database systems, the standard
approach to ensuring the atomicity property of distributed
transactions is to use the two-phase commit (2PC) protocol
[3]. It is basically an investigation of possible methods to
make a commit protocol adaptive in the sense that under
different loading conditions the system can dynamically
change to a different commitment strategy.

2.2 Characteristics of Real-Time Systems

Real-time systems also typically work with processes,
which have predictable resource requirements, to include
data requirements.

This exacerbates the scheduling problem, and highlights
another difference between a conventional real-time
system and a real-time database system. Conventional
real-time systems attempt to ensure that no temporal
constraints are violated. In an RTDBS it is impossible to
guarantee all temporal constraints because of the
unpredictable random data accesses, so the system must
strive to minimize the number of constraints, which are
violated.

2.2.1 Scheduling in Real-Time Database Systems Concepts

Data handled by real-time systems are usually
characterized as being temporal, i.e., data value is valid
(up-to-date) only for a certain length of time. To quantify
the notion of temporal data, each data item can be
associated with a valid interval [10]. The actual state of the

 2

environment can only be presented during the valid
interval of data. Temporal consistency can be achieved
only if data items are accessed within their valid intervals.
The temporal consistency requirement of data together
with the fast response time requirements of the supported
application establishes timing constraints for the
transactions processed in the system. The primary
scheduling goal in real-time systems is to satisfy the timing
constraints of transactions.

The system must provide schedules that guarantee
deadlines. Nuclear power plants, air traffic control systems,
process control systems, and robotics are some examples of
applications that usually process hard deadline
transactions.

Soft deadline transactions are scheduled based on their
deadlines, and satisfaction of deadlines is still the primary
performance goal in scheduling transactions; however, in
this case, there is no guarantee that all deadlines will be
met. A soft deadline transaction is executed until
completion regardless of whether its deadline has expired
or not.
 Firm deadline transactions also do not carry strict
deadlines, i.e., missing a deadline may not result in a
catastrophe, but unlike soft deadline transactions, they are
aborted by the system once their deadlines expire.
Typically, no value will be imparted to the system if a firm
deadline transaction misses its deadline.

2.2.2 Evaluation Issue for Distributed Real-Time Control
Software Systems

In general, there are some difficulties in certifying software
quality in the distributed environment. There are special
requirements of testing communication applications. It is
necessary to test the client's user interface, the client's
interface with the server, the server's functionality, and the
network. The most important point in testing process is the
test case generation [2]. In section 2.3, we induce two
current survey approaches, and section 3 illustrates the
statistical usage testing. Finally, comparing their
advantages and disadvantages.

2.3 Current survey

Testing is an activity which consists of extracting
knowledge from an Implementation Under Test (IUT). One
would like to check that a given IUT meets some
properties. In the case of conformance testing, such
properties are defined from the protocol specification. A
main difficulty of protocol testing is that the IUT is a black
box, i.e. a system whose internal structure and behavior are
unknown to the tester. This implies that testing consists of
stimulating the implementation (by its interfaces) in order
to observe its behavior.

There are two black-box testing approaches:

2.3.1 On the Fly Approach Test Selection Algorithm

There are some steps in on the fly approach [3]:

Modeling communicating entities: the behavior of a

communicating entity can be described by means of
transition systems such as Input Output Automata and
Input Output State Machines(IOSM).

Modeling test purpose: a Test Purpose (TP) is a property
that one would like to observe/check on implementation
behaviors. The conformance of implementation can be
defined by means of requirements or test purpose sets. A
test purpose defines a temporal sequencing of observable
actions. So we model it with a finite automaton. The test
experiment must be controllable and the TP automaton
must take this feature into account.

Observation and test purpose: a test case is an execution
pattern that meets a given TP running a test case can be
considered as a kind of synchronous execution of
implementations and test purpose. Test execution is
successful when an accepting state of TP is reached.
Selection of such test cases consists of traversing the graph
obtained from the synchronization between the
implementation model and the TP model.

Test selection algorithm: we need to compute an execution
path that meets both specifications S1, S2 and test purpose
TP. In our approach, this computation is performed on the
fly, i.e. during exploration of the behavior graph. The on
the fly paradigm means that we do not calculate the graph
before searching for test pattern. For this purpose, we use a
Depth First Search (DFS) algorithm aimed at exploring the
behavior graph from the product of S1, S2, TP. The
algorithm examines the friability of transitions, and exits as
soon as an accepting state of TP is reached.

2.3.2 Finite State Machine Approach Test Case Generation

All the procedures in the other approach are showed in
fig.1, and steps are discussed following [5]:

System Modeling: a concurrent system consists of a
number of sequential systems. Each sequential system is
modeled as a Finite State Machine (FSM). The
environment (e.g., operators, testers, and/or subsystems
which are not under test) of a concurrent system is also
modeled as FSMs. It is assumed that there is no global
physical clock, that is, the system model is asynchronous.
The FSMs communicate with each other by messages and
are assumed to contain no message loops.

Generation of Concurrent Paths: a path is a sequence of
events performed by an FSM starting and ending in the
same initial state and is denoted as e1->e2->…->em. We
consider, for simplicity, the second visit to the initial state
of an FSM as termination. This is not a limitation since
subsequent behavior (if any) can be viewed as another
path.

Generation of Minimal causality Path: enumerate all
possible event sequences by inter-leaving while satisfying
the conditions.

Generation of Combined Minimal Causality Path: the
Combined Minimal Causality Path (CMCP) is a connected
directed graph from which test sequences for a concurrent
system are generated. The vertices and edges of the graph
correspond, respectively, to the global states of the

 3

concurrent system and the global events in an Minimal
Causality Path (MCP).

Test Case Generation: we have derived CMCP, which is
equivalent to the control flow graph in [4]. According to
[4], test sequences can be obtained from the control flow
graph using the same methods for test case derivation of a
single Deterministic FSM (DFSM), namely transition
tour [6], UIO, W, Wp method and others. Although each
method applied to CMCP may give rise to a different test
sequence with different coverage.

Fig. 1 Overall procedure of

3. STATISTICAL USAGE TESTING

Statistical usage testing (SUT) is always separated into two
major parts: usage model and test cases generation. We
will discuss below[8]:

3.1 Building Usage Model Base on Markov Chain

The initial structure of a usage model follows directly from
the software specification[14]. In particular [11, 12, 13],
the canonical sequences identified during specification
define the initial state space for the usage model.

A usage model may be represented as a graph in which the
nodes represent usage states and the arcs represent stimuli
that cause transitions between usage states. Note that it is
states of use that are referred to here, and not internal stales
of the software. Developers and potential users, who often
participate in usage model review, easily understand
graphical usage models. Graphical representation aids in
system understanding but is generally only used for small
systems or for high-level representation of large systems.
Usage models for large systems are often defined
abstractly at first, with automated support for model
expansion through sub-models and transformation of
abstract stimuli to associated atomic stimuli.

3.2 Generating Test Cases Statistically

After the usage model has been developed, test cases can
be generated automatically by traversing the usage states of
the model[11, 12, 15], guided by the transition probabilities
associated with the exit arcs from each state. Because each
arc is associated with a particular stimulus to the system,
the traversal results in an accumulation of successive
stimuli that represents a particular test case. The test cases

constitute a script for use in testing. They may be annotated
during test planning to include instructions for conducting
and evaluating tests, and they may be annotated during
testing to record results and observations. Test cases may
be applied by human testers or used as input to an
automated test tool.

3.3 Benefits of Statistical Testing Based on a Usage
Model

Statistical usage testing of a software system produces
measures of product and process quality for management
decision making throughout the life cycle. Because a usage
model is based on specifications rather than code, the
insights that result from model building can be used to
make informed management decisions in the early stages
of a project when the opportunity to prevent problems is
greatest. The following are key benefits of usage modeling
and statistical testing [8].

3.3.1 Validation of Requirements

A usage model is an external view of the system
specification that is readily understandable by system
engineers, developers, customers, and end users. Interfaces
and requirements are often simplified or clarified when the
usage model (including possible inputs, possible
sequencing of inputs, and expected outputs) is reviewed
systematically in the context of operational use.

3.3.2 Resource and Schedule Estimation

Standard calculations on a usage model provide data for
effort, schedule, and cost projections, such as the minimum
number of tests required to cover all states and transitions
in the model. "What-if" analyses can be conducted to bind
the best and worst case out comes of testing based on
failure data.

3.3.3 Grafted, Nonrandom Test Cases

Special test cases, perhaps required by contract or
regulation, can be determined by examining the model to
be sure that certain sequences are tested. Existing test cases
can be mapped to the model to assess omissions or
redundancy. The usage model becomes a reference model
for all testing required or desired. Automated Test Case
Generation. A minimal coverage test script (the minimal
number of test events for complete coverage of the usage
model) and random test cases (based on the usage
probability distribution) can be generated automatically
from a usage model. Model coverage testing ensures a
minimal level of function before random testing begins,
and random testing provides a basis for estimating
operational reliability.

3.3.4 Effective, Efficient Testing

Faults are not equally likely to cause failures. Faults that
are on frequently traversed paths have a higher probability
of causing failures than faults that are on infrequently
traversed paths. This simple fact is the primary motivation
for random testing: Faults are discovered in roughly the

 4

order in which they would cause failures in the field. The
test budget is spent in a way that maximizes the increase in
operational reliability resulting from testing.

3.3.5 Focused Testing (Biased Sampling)

Usage models support biased sampling of sequences of
special interest, such as infrequently used but critical
functions. Separate models can be developed for these
functions, or the original model may be transformed,
sampled, and the results corrected to remove the bias.

3.3.6 Quantitative Test Management

Statistical testing based on a usage model provides
quantitative criteria for management decisions about
completion of testing and system release. The sufficiency
of testing can be measured as the statistical difference
between expected usage (as represented in the usage model)
and tested usage (as recorded in testing).

3.3.7 Estimate of Reliability

Using a statistical testing protocol, a valid estimate of
expected operational performance can be derived from the
performance of the software during testing. The actual test
results (i.e., correct and incorrect performance on each
input) are recorded as weights on the usage model, and
calculations on the model provide estimates of reliability in
operational use.

4. DEMONSTRATION EXAMPLE

A sequence-based specification will be created for the
communication project using the stepwise process
described in the preceding subsection.

4.1 System Description in a Communication Project

This example system is combined by three parts of
sub-system, including CC, communicator, and site stations,
as show in Fig.1and Fig.2 illustrates use case diagram. In
the case, we consider only site1 station. In CC, there are
five components: CC receives data process, CC process,
CC 60-seconds counter, CC sends TM, and CC send
process. It is similar to the site1 station, where CC receive
data process is responsible for receiving the message that
sent by the site1 station send TM.

Fig. 2 the system architecture of the communication project

Fig. 3 UML use case diagram of communication system

Fig. 4 UML class diagram of CC station

Fig. 5 UML class diagram of site1 station

 5

Fig. 6 system architecture of communicator

4.2 Tagged Requirements

Tagging of requirements is the first step in creating a
traceable specification, as shown in Table 1. Subsequent
elements of the specification will be traced to their origin
in the requirements through these tags.

As each step in the specification is traced lo the relevant
requirement, ambiguities and omissions in the
requirements will be discovered. When there is no
requirement to cite in a trace, a "derived" requirement will
be stated and tagged as D1, D2, and so on.

4.3 System Boundary Definition and All Stimulus

We should first define the system boundary, there is one
possible source of stimuli to the system: the detector of CC
receive component.

After analysis the specification of system, defining all
stimuli inside the boundary. The following table lists all
stimuli.

In addition to responses that are explicitly defined in the
requirements, two other values are often used in
sequence-based specification: the null response and illegal.
The null response occurs when there is no external system
response, such as when a system is ignoring or perhaps
accumulating stimuli. Illegal is used when a sequence is
impossible, such as when stimuli are presented before
invocation.

Stim
ulus Description

Requireme
nt

Trace No.
S Invoke system 0

AS CC send message 5
AP CC process 2
AR CC receive message 1
SS Site1 station send message 11
SP Site1 station process 8
SR Site1 station receive message 7

Table. 1 lists all stimuli (partially)

4.4 Sequence Enumeration

Sequence enumeration involves consideration of all

possible scenarios of use: sequences of length zero (the
empty sequence), length one (single stimulus), length two
(single-stimulus extensions of the sequences of length one),
and so on. Enumeration ends when all sequences of a given
length are either illegal or equivalent to a previous
sequence. Again, an illegal sequence is one that is
"impossible," such as S-SS-AS. Also, one sequence is
equivalent to another if the two sequences have identical
future behavior.

4.5 Define State

State data encapsulates and retains the components of
stimulus history that must be preserved for the system to
produce correct responses. Examining the canonical
sequences in the enumeration identifies the essential
components of stimulus history. Each canonical sequence
is examined to identify the unique conditions in the
sequence, and state variables are invented to represent the
conditions.

4.6 Construct the Usage Model

The canonical sequences identified during security alarm
specification define the state space for the usage model.
Each canonical sequence is named to represent the usage
state.

The usage model may be drawn using the canonical
sequences as states. The ordering of stales can be
determined by referring to the canonical sequences, and the
full set of possible stimuli given in the sequence
enumeration can be used to define all possible transitions
(arcs) among states. Fig.5 is a graphical depiction of the
usage model for the system. Stimuli that have no effect on
the usage state are represented in a self-loop in each state.

Fig. 7 usage model of system

4.7 Analysis System Usage Model

The built usage model for communication project includes
13 states in all. With the aid of ToolCertify certification
tool [16] the analyzed report may be summarized as the
Table 2.

 6

Number Of Nondeleted States 13
Number Of Active Arcs 16
Expected Script Length 7.333333
Least Likely State Coverage Expected At 14.999999
Least Likely Transition Coverage
Expected At 16.000000

Source Entropy 0.272727

Table. 2 Analysis report for the system usage model

4.8 Using toolSET_Certify to Generate Test Cases

After the usage model and the analysis have been reviewed
and determined to be a viable basis for testing, test cases
are generated. The first test suite generated is usually the
minimal arc coverage suite, which traverses the model in
the fewest possible steps required to achieve model
coverage. Model coverage testing accomplishes several
goals. The model is further confirmed to be accurate, the
ability to evaluate all responses is confirmed, and the
readiness of the software for random testing is established.
Random testing enables measurement of the reliability of
the software. If the quality of the software is so poor that it
cannot survive arc coverage testing in a reasonable period
of time, then the software is not ready for random testing.

4.9 Generate Test Cases by on the Fly Technique

In on the fly approach, according to the previous
description, behavior of communication system is
illustrated in fig.8.

Fig. 8 Behavior of communication system

By combining two distributed subsystem: communication
center and site1 station. The global behavior graph of
communication system is showed in fig.9 and one of the
test cases in fig.10.

Fig. 9Behavior Graph of communication system

Fig. 10 Test case in Global Behavior Graph

4.10 Generate Test Cases by FSM Approach

In FSM approach, according to the previous description,
behavior of communication system is illustrated in fig.11.
Among this diagram, a, b, c, d, e, f means that CC sending
the message, CC 20 sec. Error, SS sending and processing
the message, SS 20 sec. Error, SS 60 sec. Error, and CC 60
sec. Error, respective.

Fig. 11 Behavior of communication system and

 7

Fig. 12 Part of test cases in the CC

4.11 Comparison of the Three Test Cases

The advantages of SUT test cases are listed following:

4.11.1 Test with Circle Stimulus

In on the fly and FSM approach, there is no circular system
behavior, that is, the two approach cannot search for
circular usage failure. However, SUT uses usage model
that includes circular usage transaction.

4.11.2 Full Usage Model

SUT illustrates all the usage specification of users, but on
the fly and FSM approach builds its system global behavior
in testing, it may stop testing before all situations are taken
into consider.

4.11.3 Without Complex Test Algorithm

SUT execute each test case step by step according to the
description, but on the fly and FSM approaches run test
case according to algorithm that tester may need high
technology about the approach.

4.11.4 Test Statistically

On the fly uses DFS to select test case, sometimes it may
finish testing before searching all the usage. In SUT, after
building and valid the complete usage, we start choose the
test case statistically.

5. CONCLUSION

Essentially, the rationale of statistical usage testing is to
generate a set of complete test cases systematically, which
is rather than the general ad hoc approaches. It may
provide complete testing coverage and quantitative
analysis as well. This project is to investigate the feasibility
of employing the statistical usage testing to software
testing in distributed real-time software systems.

In this research, a test case generation is proposed to
perform distributed testing by the philosophy of statistical
usage testing. In addition, this research has demonstrated

that, by the compare result, the suggested mechanism is not
only feasible but also efficient in locating and recovering
potential defects existed in the distributed real-time
software systems.

6. REFERENCES

[1] Alan Fekete, David Gupta, Victor Luchangco, and
Nancy Lynch, “Eventually-serializable data
services.” Theoretical Computer Science 220, pp.
113-156, 1999.

[2] Avi Silberschatz, Peter Galvin, and Greg Gagne,
“Applied Operating System Concepts.” John Wiley
& Sons, Inc., pp. 501-563, 2000

[3] Kone´ O. and Castanet R., “Test generation for
interworking systems.” Computer Communications
23 (2000), pp. 642–652, 2000

[4] Kajiwara M., H. Ichikawa, M. Itoh, and Y. Yoshida,
“Specification and verification os switching software,
IEEE Trans. Communi., pp. 193-198, 1985.

[5] Myungchul Kim, Jaehwi Shin, Samuel T. Chanson,
and Sungwon Kang, “An Approach for Testing
Asynchronous Communication System.”IEICE
Transition Communication., Vol.E82-B, No.1, 1999.

[6] Naito S. and M. Tsunoyama, “Fault detection for
sequential machines by transition-tours.” Proc.
FTCS(Fault Tolerance Cimputer System, pp. 238-243,
1981.

[7] Q-Labs: “Tool_Certify User Guide.” Version 4.0,
1999.

[8] Stacy J. Prowell, Carmen J. Trammell, Richard C.
Liger and Jesse H. Poore, “Cleanroom Software
Engineering Technology and Process.” pp. 46-109,
1999.

[9] Trammell C. and J. Poore, “Process Control in
Statistical Reliability Certification.” Proceedings of
the Seventh Annual Software Software Technology
Conference, 1995.

[10] Ulusoy Özgür, “Research Issues in Real-Time
Database Systems.” Information Sciences, Vol.87,
Issue: 1-3, pp. 123-151, 1995.

[11] J. A. Whittaker and M. G. Thomason, “A Markov
Chain Model for Statistical Software Testing.” IEEE
Transactions on Software Engineering, Vol. 20 (10),
pp. 812-824, 1994.

[12] G. H.Walton, J. H. Poore and C. J. Trammell,
“Statistical Testing of Software Based on a Usage
Model.” Software Practice and Experience, Vol.
25(1), pp. 97-108, 1995.

[13] G.H. Walton, “Optimizing Software Usage Models.
Ph.D. Dissertation, Department of Computer
Science.” University of Tennessee, 1995.

[14] J. A. Whittaker and J.H. Poore, “Markov Analysis of
Software Specifications.” ACM Transactions on
Software Engineering and Methodology, Vol. 2(1),
pp. 93-106, 1993.

[15] Whittaker, James A. and J.H. Poore, “Statistical
Testing for Cleanroom Software Engineering.”
Proceedings of HICSS-25, IEEE, 1992.

[16] Whittaker and James A, “Markov Chain Techniques
For Software Testing and Reliability Analysis.” Ph.D.

 8

Dissertation, Department of Computer Science,
University of Tennessee, Knoxville, TN, 1992.

[17] Xuemin Lin, “A fully distributed quorum consensus
method with high fault-tolerance and low
communication overhead.” Theoretical Computer
Science, Volume: 185, Issue: 2, pp. 259-275, 1997

