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ABSTRACT 

Testing is an experimental method aimed at checking the 
correctness of a system implementation. Industrial 
companies are paying enormously for test development, as 
the presence of faults in distributed systems is not always 
tolerable. The interest for distributed real-time software 
systems testing is growing as these systems are more and 
more involved in the design of new communication 
standards. However, test cases of the kind of systems 
testing are the key points of test efficiency. We will apply 
statistical usage model into distributed real-time systems, 
by generating test case statistically with coverage of whole 
system, and implementation under testing (IUT) approach, 
testing process is more acceptable and efficient.  

1. INTRODUCTION  

The recent technological advances in the field of computer 
and communication lead to distributed real-time control 
software systems, available approach in test cases 
generation of such systems are not sufficiently adequate. 
It’s expensive both in the model definition and in the 
model analysis because of the structural complexity and 
the large system dimension.  

As previously discussed, the test case is the heart of test 
approach, especially in distributed real-time control 
software systems. In the paper, we will discuss quality 
performance of distributed real-time systems in section 2 
first. Then, detailed statistical usage testing approach is 
provided in section 3. Section 4 shows a demonstration 
example to compare the three test cases, and common on 
advantage of the test cases of statistical usage testing. 

2. QUALITY PERFORMANCE 

In the section, we discuss some quality performance of 
distributed real-time systems. 

2.1 Property of Distributed Software Systems 

There are properties of distributed software systems: 

2.1.1 Replication 

Data replication is used in distributed systems to improve 
availability, increase throughput and eliminate single 

points of failures [1]. The cost of replication is that 
significant care and communication is required to maintain 
consistency among replicas. In some settings, such as 
distributed directory services, it is acceptable to have 
transient inconsistencies, in exchange for better 
performance, as long as a consistent view of the data is 
eventually established. For such services to be usable, it is 
important that the consistency guarantees are specified 
clearly. The main objective of data replication in a 
distributed database system is to provide high data 
availability for transaction processing [18]. 

2.1.2 Commitment 

The effects of a distributed transaction on the data must be 
visible at all sites in all or nothing fashion. [10] The 
so-called atomic commitment property can be provided by 
a commit protocol that coordinates the sub transactions 
such that either all of them or none of them commit. In 
conventional distributed database systems, the standard 
approach to ensuring the atomicity property of distributed 
transactions is to use the two-phase commit (2PC) protocol 
[3]. It is basically an investigation of possible methods to 
make a commit protocol adaptive in the sense that under 
different loading conditions the system can dynamically 
change to a different commitment strategy.  

2.2 Characteristics of Real-Time Systems 

Real-time systems also typically work with processes, 
which have predictable resource requirements, to include 
data requirements. 

This exacerbates the scheduling problem, and highlights 
another difference between a conventional real-time 
system and a real-time database system. Conventional 
real-time systems attempt to ensure that no temporal 
constraints are violated. In an RTDBS it is impossible to 
guarantee all temporal constraints because of the 
unpredictable random data accesses, so the system must 
strive to minimize the number of constraints, which are 
violated. 

2.2.1 Scheduling in Real-Time Database Systems Concepts 

Data handled by real-time systems are usually 
characterized as being temporal, i.e., data value is valid 
(up-to-date) only for a certain length of time. To quantify 
the notion of temporal data, each data item can be 
associated with a valid interval [10]. The actual state of the 
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environment can only be presented during the valid 
interval of data. Temporal consistency can be achieved 
only if data items are accessed within their valid intervals. 
The temporal consistency requirement of data together 
with the fast response time requirements of the supported 
application establishes timing constraints for the 
transactions processed in the system. The primary 
scheduling goal in real-time systems is to satisfy the timing 
constraints of transactions. 

The system must provide schedules that guarantee 
deadlines. Nuclear power plants, air traffic control systems, 
process control systems, and robotics are some examples of 
applications that usually process hard deadline 
transactions. 

Soft deadline transactions are scheduled based on their 
deadlines, and satisfaction of deadlines is still the primary 
performance goal in scheduling transactions; however, in 
this case, there is no guarantee that all deadlines will be 
met. A soft deadline transaction is executed until 
completion regardless of whether its deadline has expired 
or not. 
   Firm deadline transactions also do not carry strict 
deadlines, i.e., missing a deadline may not result in a 
catastrophe, but unlike soft deadline transactions, they are 
aborted by the system once their deadlines expire. 
Typically, no value will be imparted to the system if a firm 
deadline transaction misses its deadline. 

2.2.2 Evaluation Issue for Distributed Real-Time Control 
Software Systems 

In general, there are some difficulties in certifying software 
quality in the distributed environment. There are special 
requirements of testing communication applications. It is 
necessary to test the client's user interface, the client's 
interface with the server, the server's functionality, and the 
network. The most important point in testing process is the 
test case generation [2]. In section 2.3, we induce two 
current survey approaches, and section 3 illustrates the 
statistical usage testing. Finally, comparing their 
advantages and disadvantages. 

2.3 Current survey 

Testing is an activity which consists of extracting 
knowledge from an Implementation Under Test (IUT). One 
would like to check that a given IUT meets some 
properties. In the case of conformance testing, such 
properties are defined from the protocol specification. A 
main difficulty of protocol testing is that the IUT is a black 
box, i.e. a system whose internal structure and behavior are 
unknown to the tester. This implies that testing consists of 
stimulating the implementation (by its interfaces) in order 
to observe its behavior. 

There are two black-box testing approaches: 

2.3.1 On the Fly Approach Test Selection Algorithm 

There are some steps in on the fly approach [3]: 

Modeling communicating entities: the behavior of a 

communicating entity can be described by means of 
transition systems such as Input Output Automata and 
Input Output State Machines(IOSM). 

Modeling test purpose: a Test Purpose (TP) is a property 
that one would like to observe/check on implementation 
behaviors. The conformance of implementation can be 
defined by means of requirements or test purpose sets. A 
test purpose defines a temporal sequencing of observable 
actions. So we model it with a finite automaton. The test 
experiment must be controllable and the TP automaton 
must take this feature into account. 

Observation and test purpose: a test case is an execution 
pattern that meets a given TP running a test case can be 
considered as a kind of synchronous execution of 
implementations and test purpose. Test execution is 
successful when an accepting state of TP is reached. 
Selection of such test cases consists of traversing the graph 
obtained from the synchronization between the 
implementation model and the TP model. 

Test selection algorithm: we need to compute an execution 
path that meets both specifications S1, S2 and test purpose 
TP. In our approach, this computation is performed on the 
fly, i.e. during exploration of the behavior graph. The on 
the fly paradigm means that we do not calculate the graph 
before searching for test pattern. For this purpose, we use a 
Depth First Search (DFS) algorithm aimed at exploring the 
behavior graph from the product of S1, S2, TP. The 
algorithm examines the friability of transitions, and exits as 
soon as an accepting state of TP is reached. 

2.3.2 Finite State Machine Approach Test Case Generation 

All the procedures in the other approach are showed in 
fig.1, and steps are discussed following [5]: 

System Modeling: a concurrent system consists of a 
number of sequential systems. Each sequential system is 
modeled as a Finite State Machine (FSM). The 
environment (e.g., operators, testers, and/or subsystems 
which are not under test) of a concurrent system is also 
modeled as FSMs. It is assumed that there is no global 
physical clock, that is, the system model is asynchronous. 
The FSMs communicate with each other by messages and 
are assumed to contain no message loops. 

Generation of Concurrent Paths: a path is a sequence of 
events performed by an FSM starting and ending in the 
same initial state and is denoted as e1->e2->…->em. We 
consider, for simplicity, the second visit to the initial state 
of an FSM as termination. This is not a limitation since 
subsequent behavior (if any) can be viewed as another 
path. 

Generation of Minimal causality Path: enumerate all 
possible event sequences by inter-leaving while satisfying 
the conditions. 

Generation of Combined Minimal Causality Path: the 
Combined Minimal Causality Path (CMCP) is a connected 
directed graph from which test sequences for a concurrent 
system are generated. The vertices and edges of the graph 
correspond, respectively, to the global states of the 
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concurrent system and the global events in an Minimal 
Causality Path (MCP).  

Test Case Generation: we have derived CMCP, which is 
equivalent to the control flow graph in [4]. According to 
[4], test sequences can be obtained from the control flow 
graph using the same methods for test case derivation of a 
single Deterministic FSM (DFSM), namely transition 
tour [6], UIO, W, Wp method and others. Although each 
method applied to CMCP may give rise to a different test 
sequence with different coverage. 

 

Fig. 1 Overall procedure of  

3. STATISTICAL USAGE TESTING 

Statistical usage testing (SUT) is always separated into two 
major parts: usage model and test cases generation. We 
will discuss below[8]: 

3.1 Building Usage Model Base on Markov Chain 

The initial structure of a usage model follows directly from 
the software specification[14]. In particular [11, 12, 13], 
the canonical sequences identified during specification 
define the initial state space for the usage model. 

A usage model may be represented as a graph in which the 
nodes represent usage states and the arcs represent stimuli 
that cause transitions between usage states. Note that it is 
states of use that are referred to here, and not internal stales 
of the software. Developers and potential users, who often 
participate in usage model review, easily understand 
graphical usage models. Graphical representation aids in 
system understanding but is generally only used for small 
systems or for high-level representation of large systems. 
Usage models for large systems are often defined 
abstractly at first, with automated support for model 
expansion through sub-models and transformation of 
abstract stimuli to associated atomic stimuli.  

3.2 Generating Test Cases Statistically 

After the usage model has been developed, test cases can 
be generated automatically by traversing the usage states of 
the model[11, 12, 15], guided by the transition probabilities 
associated with the exit arcs from each state. Because each 
arc is associated with a particular stimulus to the system, 
the traversal results in an accumulation of successive 
stimuli that represents a particular test case. The test cases 

constitute a script for use in testing. They may be annotated 
during test planning to include instructions for conducting 
and evaluating tests, and they may be annotated during 
testing to record results and observations. Test cases may 
be applied by human testers or used as input to an 
automated test tool. 

3.3 Benefits of Statistical Testing Based on a Usage 
Model 

Statistical usage testing of a software system produces 
measures of product and process quality for management 
decision making throughout the life cycle. Because a usage 
model is based on specifications rather than code, the 
insights that result from model building can be used to 
make informed management decisions in the early stages 
of a project when the opportunity to prevent problems is 
greatest. The following are key benefits of usage modeling 
and statistical testing [8]. 

3.3.1 Validation of Requirements 

A usage model is an external view of the system 
specification that is readily understandable by system 
engineers, developers, customers, and end users. Interfaces 
and requirements are often simplified or clarified when the 
usage model (including possible inputs, possible 
sequencing of inputs, and expected outputs) is reviewed 
systematically in the context of operational use. 

3.3.2 Resource and Schedule Estimation 

Standard calculations on a usage model provide data for 
effort, schedule, and cost projections, such as the minimum 
number of tests required to cover all states and transitions 
in the model. "What-if" analyses can be conducted to bind 
the best and worst case out comes of testing based on 
failure data. 

3.3.3 Grafted, Nonrandom Test Cases 

Special test cases, perhaps required by contract or 
regulation, can be determined by examining the model to 
be sure that certain sequences are tested. Existing test cases 
can be mapped to the model to assess omissions or 
redundancy. The usage model becomes a reference model 
for all testing required or desired. Automated Test Case 
Generation. A minimal coverage test script (the minimal 
number of test events for complete coverage of the usage 
model) and random test cases (based on the usage 
probability distribution) can be generated automatically 
from a usage model. Model coverage testing ensures a 
minimal level of function before random testing begins, 
and random testing provides a basis for estimating 
operational reliability.  

3.3.4 Effective, Efficient Testing 

Faults are not equally likely to cause failures. Faults that 
are on frequently traversed paths have a higher probability 
of causing failures than faults that are on infrequently 
traversed paths. This simple fact is the primary motivation 
for random testing: Faults are discovered in roughly the 
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order in which they would cause failures in the field. The 
test budget is spent in a way that maximizes the increase in 
operational reliability resulting from testing. 

3.3.5 Focused Testing (Biased Sampling) 

Usage models support biased sampling of sequences of 
special interest, such as infrequently used but critical 
functions. Separate models can be developed for these 
functions, or the original model may be transformed, 
sampled, and the results corrected to remove the bias. 

3.3.6 Quantitative Test Management 

Statistical testing based on a usage model provides 
quantitative criteria for management decisions about 
completion of testing and system release. The sufficiency 
of testing can be measured as the statistical difference 
between expected usage (as represented in the usage model) 
and tested usage (as recorded in testing).  

3.3.7 Estimate of Reliability 

Using a statistical testing protocol, a valid estimate of 
expected operational performance can be derived from the 
performance of the software during testing. The actual test 
results (i.e., correct and incorrect performance on each 
input) are recorded as weights on the usage model, and 
calculations on the model provide estimates of reliability in 
operational use. 

4. DEMONSTRATION EXAMPLE 

A sequence-based specification will be created for the 
communication project using the stepwise process 
described in the preceding subsection. 

4.1 System Description in a Communication Project 

This example system is combined by three parts of 
sub-system, including CC, communicator, and site stations, 
as show in Fig.1and Fig.2 illustrates use case diagram. In 
the case, we consider only site1 station. In CC, there are 
five components: CC receives data process, CC process, 
CC 60-seconds counter, CC sends TM, and CC send 
process. It is similar to the site1 station, where CC receive 
data process is responsible for receiving the message that 
sent by the site1 station send TM. 

 

 

Fig. 2 the system architecture of the communication project 

 

 

Fig. 3 UML use case diagram of communication system 

 

Fig. 4 UML class diagram of CC station 

 

Fig. 5 UML class diagram of site1 station 
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Fig. 6 system architecture of communicator 

4.2 Tagged Requirements 

Tagging of requirements is the first step in creating a 
traceable specification, as shown in Table 1. Subsequent 
elements of the specification will be traced to their origin 
in the requirements through these tags. 

As each step in the specification is traced lo the relevant 
requirement, ambiguities and omissions in the 
requirements will be discovered. When there is no 
requirement to cite in a trace, a "derived" requirement will 
be stated and tagged as D1, D2, and so on. 

4.3 System Boundary Definition and All Stimulus 

We should first define the system boundary, there is one 
possible source of stimuli to the system: the detector of CC 
receive component. 

After analysis the specification of system, defining all 
stimuli inside the boundary. The following table lists all 
stimuli.  

In addition to responses that are explicitly defined in the 
requirements, two other values are often used in 
sequence-based specification: the null response and illegal. 
The null response occurs when there is no external system 
response, such as when a system is ignoring or perhaps 
accumulating stimuli. Illegal is used when a sequence is 
impossible, such as when stimuli are presented before 
invocation. 

 

Stim
ulus Description 

Requireme
nt 

Trace No.  
S Invoke system 0 

AS CC send message 5 
AP CC process 2 
AR CC receive message 1 
SS Site1 station send message 11 
SP Site1 station process 8 
SR Site1 station receive message 7 

Table. 1 lists all stimuli (partially) 

4.4 Sequence Enumeration 

Sequence enumeration involves consideration of all 

possible scenarios of use: sequences of length zero (the 
empty sequence), length one (single stimulus), length two 
(single-stimulus extensions of the sequences of length one), 
and so on. Enumeration ends when all sequences of a given 
length are either illegal or equivalent to a previous 
sequence. Again, an illegal sequence is one that is 
"impossible," such as S-SS-AS. Also, one sequence is 
equivalent to another if the two sequences have identical 
future behavior.  

4.5 Define State 

State data encapsulates and retains the components of 
stimulus history that must be preserved for the system to 
produce correct responses. Examining the canonical 
sequences in the enumeration identifies the essential 
components of stimulus history. Each canonical sequence 
is examined to identify the unique conditions in the 
sequence, and state variables are invented to represent the 
conditions. 

4.6 Construct the Usage Model 

The canonical sequences identified during security alarm 
specification define the state space for the usage model. 
Each canonical sequence is named to represent the usage 
state. 

The usage model may be drawn using the canonical 
sequences as states. The ordering of stales can be 
determined by referring to the canonical sequences, and the 
full set of possible stimuli given in the sequence 
enumeration can be used to define all possible transitions 
(arcs) among states. Fig.5 is a graphical depiction of the 
usage model for the system. Stimuli that have no effect on 
the usage state are represented in a self-loop in each state.  

 

Fig. 7 usage model of system 

4.7 Analysis System Usage Model 

The built usage model for communication project includes 
13 states in all. With the aid of ToolCertify certification 
tool [16] the analyzed report may be summarized as the 
Table 2. 
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Number Of Nondeleted States 13 
Number Of Active Arcs 16 
Expected Script Length 7.333333
Least Likely State Coverage Expected At 14.999999
Least Likely Transition Coverage 
Expected At 16.000000

Source Entropy 0.272727

Table. 2 Analysis report for the system usage model 

4.8 Using toolSET_Certify to Generate Test Cases 

After the usage model and the analysis have been reviewed 
and determined to be a viable basis for testing, test cases 
are generated. The first test suite generated is usually the 
minimal arc coverage suite, which traverses the model in 
the fewest possible steps required to achieve model 
coverage. Model coverage testing accomplishes several 
goals. The model is further confirmed to be accurate, the 
ability to evaluate all responses is confirmed, and the 
readiness of the software for random testing is established. 
Random testing enables measurement of the reliability of 
the software. If the quality of the software is so poor that it 
cannot survive arc coverage testing in a reasonable period 
of time, then the software is not ready for random testing. 

4.9 Generate Test Cases by on the Fly Technique 

In on the fly approach, according to the previous 
description, behavior of communication system is 
illustrated in fig.8. 

 

 

Fig. 8 Behavior of communication system 

By combining two distributed subsystem: communication 
center and site1 station. The global behavior graph of 
communication system is showed in fig.9 and one of the 
test cases in fig.10. 

  

Fig. 9Behavior Graph of communication system    

  

Fig. 10 Test case in Global Behavior Graph  

4.10 Generate Test Cases by FSM Approach 

In FSM approach, according to the previous description, 
behavior of communication system is illustrated in fig.11. 
Among this diagram, a, b, c, d, e, f means that CC sending 
the message, CC 20 sec. Error, SS sending and processing 
the message, SS 20 sec. Error, SS 60 sec. Error, and CC 60 
sec. Error, respective. 

   

Fig. 11 Behavior of communication system and              
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Fig. 12 Part of test cases in the CC 

4.11 Comparison of the Three Test Cases 

The advantages of SUT test cases are listed following: 

4.11.1 Test with Circle Stimulus 

In on the fly and FSM approach, there is no circular system 
behavior, that is, the two approach cannot search for 
circular usage failure. However, SUT uses usage model 
that includes circular usage transaction. 

4.11.2 Full Usage Model 

SUT illustrates all the usage specification of users, but on 
the fly and FSM approach builds its system global behavior 
in testing, it may stop testing before all situations are taken 
into consider. 

4.11.3 Without Complex Test Algorithm 

SUT execute each test case step by step according to the 
description, but on the fly and FSM approaches run test 
case according to algorithm that tester may need high 
technology about the approach. 

4.11.4 Test Statistically 

On the fly uses DFS to select test case, sometimes it may 
finish testing before searching all the usage. In SUT, after 
building and valid the complete usage, we start choose the 
test case statistically. 

5. CONCLUSION 

Essentially, the rationale of statistical usage testing is to 
generate a set of complete test cases systematically, which 
is rather than the general ad hoc approaches. It may 
provide complete testing coverage and quantitative 
analysis as well. This project is to investigate the feasibility 
of employing the statistical usage testing to software 
testing in distributed real-time software systems. 

In this research, a test case generation is proposed to 
perform distributed testing by the philosophy of statistical 
usage testing. In addition, this research has demonstrated 

that, by the compare result, the suggested mechanism is not 
only feasible but also efficient in locating and recovering 
potential defects existed in the distributed real-time 
software systems. 
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