PERE\+AEREH e S

EABATERARBAGEZ 2 &Y
The Design of a Fully Distributed Reusable Component Repositories System

HiE®
Yuen-Chang Sun

= & us
Bisd

=405
Ming-Lin Kao

KEEHA

B
Chin-Laung Lei

Department of Electrical Engineering
National Taiwan University
{sun | kml | lei}@fractal.ee.ntu.edu.tw

WE

HBEF LG ERELE TR FLFEZ05ES o f2dysb
FEFES B2 RIFRIRTEHAFIF o HATEL T — 1985 K 58
BT R » LE L Blo TR IR L F7F » 5
Bk TiELERTA o
WisEF | EAME > @M SN E%) HBEHA

oo Abstract
Software reuse is the most promising technology for
improving software productivity and quality. Unfortunately,
due to various reasons it has not been widely adopted. As a
partial solution, a fully distributed software component
repositories system is developed ~ Also proposed are
techniques such as degradation functions and component
migration history.
Keywords: component repositories, faceted classification,
distributed systems, software reuse

1 Introduction

While software productivity has been rising steadily over the
past decades, the gap between the demands placed on the
software industry and what the industry can deliver is not
closed. After several decades of intensive research in
artificial intelligence and sofiware engineering, few
alternatives remain, and software reuse is one of the few
approaches that promise to offer the productivity and quality
gains the software industry needs.

Simply speaking, software reuse is constructing new
software systems using existing software artifacts. These
artifacts can be anything ranging from code fragments to
environmental knowledge, and both the products of previous
software projects and the processes deployed to produce them
can be reused, hence a wide spectrum of reuse approaches [1,
2]. Customarily, these approaches are divided into two
categories: generative and compositional [3). This paper is
focused on the compositional approach.

The compositional methods involve reusable software
components that are intsgrated into the target system. There
are three typical steps in this process: (1) A description about
the desired component is specified. (2) A search against a
component repository is performed, based on the description
given. (3) The retrieved components, if any, are integrated
into the target system, either as is (black-box reuse) or adapted
(white-box reuse).

Software reuse is like a savings account: the morg you
put in, the more interest you can collect [4]. In order to make
software reuse cost-effective, a large collection of reusable
components is a necessity. Until recently, most research
efforts in the sofiware reuse field have been put upon the
development of a large general-purpose mega-library that is
owned by and used within an organization and does not

? ‘

communicate with other mega-libraries. This type of
software repositories is conceptually simple and easy to
implement. Managing and populating such a mega-library
with reusable components, however, has its difficulties. First,
the cost of designing, populating and maintaining a large
general-purpose repository is usually higher than what an
organization can afford. = Second, the time for finding and
adapting reusable components is ofien more than what a
programmer can spend. In other words, it could take more
to reuse software than to construct it from scratch, both for
organizations and for programmers. Besides, this approach
can not exploit the full potential of software reuse: while a
component would (hopefully) not be invented twice within an
organization, different components with the same
functionality could be constructed in all organizations.

One solution to the above problems is to introduce a
decentralized architecture, in which software repositories are
interconnected with a network (more specifically, the Internet
and can thus share software resources [5, 6, 7, 8]. This
approach has the following advantages. First, because a
much larger number of components than what one repository
can offer are available to developers, it is more likely an
adequate component can be found to fulfill a requirement.
Second, it has been pointed out [4] that the more often a
component is used, the more hidden defects in it can be found
and fixed. By allowing users other than the owner to access
a component, its quality and reliability can be enhanced by
being reused fiequently. Third, since for one requirement
there can be more than one competing choice, components of
less quality will be less reused, and will finally be either
improved or discarded. This way the evolution of software
components can be sped up.

Despite the above advantages, the decentralized
approach can solve reuse problems only to.some extent. In
this paper we go one step further by proposing a fully
distributed architecture. In this architecture components are
distributed (with possible replications) into many small
repositories (called sites in this paper). ~ Each site is kept as
small as possible and contains components from only one
application or problem domain. It can be owned and
managed by an organization, a division, a group, or even an
individual programmer, and each repository can has its own
component classification scheme, while resource sharing
among repositories is still enabled. In fact, in our design
principles individual programmers or small groups are
encouraged to have their own sites. The goals are to make
repository configuration more flexible and to make software
resource sharing more fine-grain.

At a first glance our approach is of little difference
from the decentralized one; it is just that repositories are
down-sized and further distributed. By taking a closer
looking at the differences, however, three main characteristics
in our approach cen be revealed:

D-61

hERE A REH A E S

User-orientation. In order to encourage end-users to
have their own repositories, site management must be
made as simple as possible. In our system a browse
tool with a user-friendly graphical interface is
inroduced for both navigating through and
manipulating components in a repository. ~ Browsing

“hierarchy can be dynamically and intuitively built over
the classification structure without additional effort.
Components can be classified by less-experienced users
with simple mouse actions. ~ This way the managerial
cost of repositories can be reduced and amortized over
users.

Localization. Because of the diversity among
individuals, organizations, geographical areas, and so on,
site owners should be allowed and encouraged to have
different classification schemes in their sites. For
example, a collection of components for building
Chinese applications should be classified differently
from a collection for building applications in other
languages, because in a Chinese repository there must
be additional components that can process double-byte
chiracter sets. Besides, even with the same collection
the user can still benefit from having a private
classification scheme, because component searching
can be made more efficient for the user’s familiarity
with the site structure. In order to deal with the
diversity in classification schemes, extended thesauri
and multi-facet techniques are introduced in our system.

Component circidation. Since the granularity of
software resource sharing is finer in our approach than
the decentralized one, it is much more frequent for
components to be duplicated or moved from site to site.
Site owners are allowed and encouraged to download
components from other sites to their own sites for future
reuse, and uploading is also possible. This way overall
degree of software reuse can be further increased.
Because component circulation is a routine practice, it is
important to provide the user with the ability to track a
component to its past locations. In our system a
mechanism called component migration history is
introduced for this task.

The classification method used in our system is an
extension to the multi-facet method. Although this method
has been severely criticized in, e.g,, [3, 9, 10], we still decide
to adopt it for the following reasons. First, this method is
conceptually simple and easy to implement, and it operates
efficiently during both the classification and retrieval process.
Second, a browsing hierarchy can be naturally built upon a
faceted classification structure, and one faceted structure can
be represented dynamically as different hierarchies, depending
on how the user wants to view the collection (see Section 6).
Maarek et al. [11] proposed an off-line method to construct a

hierarchy automatically from keywords, but there seems no
intuitive way to make it on-line.
proposed an on-line method, but the browsing hierarchy built
is static. Third, since our system is intended to be managed
at the end-user level, and since user-friendly tools are
developed to facilitate component indexing, the up-front cost
of populating repositories with components can be amortized
and reduced. Also note that the original multi-facet method
has been extensively enhanced in our research.

In the remaining of this paper we begin with an
overview of the Uranus system in Section 2. In Section 3
our extended multi-facet classification method is shown. The
migration history technique is introduced in Section4. Then
in Section 5 and 6 the internal mechanisms of the two main
subsystems, the query tool and the browse tool, are described,
and their implementation is briefed in Section 7. Finally we
conclude in Section 8.

Chou and Yang [12]

D-62

2 System Overview

The structure of the Uranus system is illustrated in Figure 1.
The library is a collection of components without any
classification structure. In order to distinguish componenis
from each other, they are tagged with system-generated
globally unique identifiers (GUIDs), which are guaranteed to
be unique in both spatial and temporal senses. The
classification information is stored in the viewe. Both the
library and the view are manipulated by the library server.
Querying, browsing and other housekeeping tasks can be
performed with several tools, which form the client side of the
system. When doing a query the thesaurus server and its
associated thesauri are used to deal with synonyms.

(] [
. U ¢
FLibrary Serveﬂ) (Thesaurus Server]

Browse Tool
Query Tool
Misc. Tools

Figure 1: System structure overview.

Clients and servers can be arranged and secured in
various configurations. For example, in the case of a
personal site the client and the two servers usually all run on
the same machine. In an organization, on the other hand, a
central site can be established and shared by employees.
This site can be secured so that outsiders can not access it. In
addition to this ceniral site, each employee can still has a
private site. Finally, public sites can be established and
shared by developers all over the community. Thesaurus
servers can be arranged in a different configuration. For
example, it is possible that several personal sites, each having
its own library, view and library server, share the same
thesaurus server and thesauri.

A user can perform a search (querying or browsing)
against any site, as long as the user has appropriate access
privilege to that site. Once the desired components are found,
in addition to being reused, they can also be included in the
private site of the user. When adding a component to a site,
the site owner has full freedom in deciding where in the
classification structure should that component be placed,
without caring the classification structure of the site from
which the component comes.

The query tool and the browse tool are used under
different circumstances. When looking for components the
user can choose to express the requirements as a query and
issue the query with the query tool to one or more sites. On
the other hand, it has been pointed out {11, 13] that having a
browsing mechanism, which views the component collection
as a hierarchy instead of a linear structure, is important for
users to navigate through a repository lucidly. Thus, both
tools are provided in our system. Details about choosing
between them are described in Section 7.

3 Classification of Components

The component classification method used in our system is
based on the faceted method proposed in [14, 15]. The
following description, however, does not entirely follow their
terminology and notions.

A jacet is an atiribute that all the involved components
share. A term is a value assigned to a facet. A facetand its

hEEANAEREH B ES

associated term together form a factor, A list of factors form
a descriptor. For example, (task = print, target = file) is a
descripior with two factors “task = print” and “target = file,” in
which “task” and “target” are facets and “print” and “file” are
terms. The property of a component, including its functional
and environmental information, can be described by one or
more descriptors. Components described by the same
descriptor form a class. Note that since a component can be
described by more than one descriptor, the relationship
between classes and components is not one-many but many-
many.

In a view, all the components share the same facet set,
and the facets in this facet set are ordered by their importance.
For example, with the facet set (function, object, medium) the
descriptor (function = sum, objects = values, medium = array)
can be used to describe a component that sums up values in an
array. If that component can also sum up values in a linked
list, it can be described by an additional descriptor (function =
sum, objects = values, medium = linked list). The set of all
the descriptors describing a component is called the index of
that component, and the action of assigning descriptors to a
component is called indexing.

A query has the same form of a descriptor, except that
arbitrary symbols (words or phrases) can be used in place of
facets or terms, and there can be any number of factors. For
example, (task = sum, objects = numbers) is a valid query that
can be performed against a view with facet set (function,
objects, medium), and it is likely that the descriptor (function
= sum, objects = values, medium = array) can match this
query.

Since queries and descriptors can have different
vocabularies, thesauri are used to measure the correlation
between symbols in them. A thesaurus © is a function that
maps a pair of symbols to the interval [0,1]. The correlation
between two symbols w; and w,, denoted by |jw,, Wy,
indicates how closely the two symbols are related: the larger
the value, the higher the correlation. For simplicity we make
thesaurus a symmetric function, that is, [[w;, Wil = |Ws Wllo
for any w, and w,. Furthermore, we define |jw, wllp = 1 for
any w. A special symbol “+” is introduced as a wildcard
symbol, that is, [|*, wile = [|w, *||o = 1 for any w.

A missing factor in a query is treated as if the missing
factor has a wildcard term, so the query (f; = ¢,) can be treated
as (f; = £, /= *) and can match exactly to the descriptor (f, = ¢,
2 =1t). With the thesaurus function defined, correlation
between a query and a descriptor can also be defined, and the
relevance of a class can then be defined as the correlation
between its associated descriptor and the query. Finally the
relevance of a component is defined as the largest relevance of
its associated classes. During a query session the relevance
values of all the components in the view are computed, and
highly relevant components are listed by their order of
relevance to form the query results. Details about the
computation of correlation between queries and descriptors
are in Section 5.

4 Migration History

Since component circulation is encouraged, it is helpful if the
user has the ability to know the past locations of a component.
As mentioned above, even in the same site a component can
reside in several classes, so we define the component
migration history H_ of component oin class ¢ as an ordered
list of classes (c,, ¢y, ..., ¢,), where ¢, through ¢, denote
distinct classes. Such a migration history indicates that
before arriving at class ¢ the component o has been residing in
Cys Cpy» oo G and ¢, in that order. They are called the
source classes of g, and ¢, , in which ois first introduced, is

called the origin class of oo These classes may be on

H?

different sites. In order to distinguish classes from each other,
they are tagged with GUIDs, as in the case of components.
When a component is circulated around classes and
sites, its migration history is updated accordingly to reflect the
change in its location. If a component ois copied or moved
from a class ¢ to another class ¢, the migration history H®
associated to the newly added entry in ¢’ is defined as
c®H, =(c,¢y.o0s Ciyy Cioysreny €,)ifc= ¢, forsome
or(c ¢, ..., ¢,)otherwise. That is, ¢ is appended to the

head of the old migration history to form the new migration
history, and the duplicated class is removed if there is one.

In case ois copied to ¢, H remains the same. Incase o

ismovedto ¢', Hisreplaced with ¢'@® H_. Either ois
moved to another class or it is deleted from ¢, its migration
history in ¢ is retained.

Since a given component and components in one of its
source classes have once been indexed the same way, it is
likely that they are closely related to each other. This is
especially true when the source class is the very origin class,
because the owner of the site where the origin class resides in
may be devoted to producing components of the same kind as
the given one.

Migration history can be manually traced during
retrieval by issuing appropriate commands. In this case, the
system lists all the source classes, and the user can then open

.

“their corresponding sites with the browse tool to find more

D-63

related components. Migration history tracing can also be
done by the query tool automatically. ~ Automatic tracing is
explained in Section 5. In both cases, the classes found
through migration history tracing are called the related classes
of the component corresponding to the traced migration
history (or the class containing that component). The
components in a related class are called the related
components.

The migration history mechanism can be used as “see
also” links attached to components and classes. This way, it
gives our system part of the functionality a hypertext system
can offer.

5 Quefying

In this section the query algorithm used by the query tool is
discussed in detail. The discussion starts with the trivial case
that the query and the view share a facet set. Then the
degradation function technique is introduced to deal with
more complex cases. Finally the general case and automatic
migration history tracing are discussed.

5.1 The Trivial Case

If a query g and a descriptor d have the same facet set, that is,
g={i=t,..., f,=t)andd=(=1,..., f, =t) the
correlation between them, denoted by |lg, 4, is defined as
H(’:‘)(f; ,t/). Note that the order of facets is assumed to be
irrelevant in this case: if the query is given as, say, (5 =6,/ =
Yy oo S, = t,), its factors will be reordered by the system

before comparing it to the descriptors. Also note that a factor
can be missing from the query, as mentioned in Section 3.

5.2 Degradation Functions

In certain cases the order of factors in a query is irrelevant, and
the system can freely reorder the factors in a query 1o
accommodate the descriptors; as in the trivial case above. In
general, however, one query factor may take precedence over
another. For example, while (action = sort, object = array)
and (object = array, action = sort) are equivalent most of the
time, the order of factors in the query (action = sort, object =

s

TERENA+AFEERAERGR

array, algorithm = quick sort) might be relevant because
usually users care more about functionality than mechanism.
If no component can match the query exactly, a second best
choice that matches, say, (algorithm = bubble sort) might be
satisfactory. In the Prieto-Diaz system [14] the system can
expand the query by dropping factors one at a time from the
tail with explicit user requests. In the case given, a first-time
expansion vields the query (action = sort, object = array), and
a bubble sort component can be found accordingly. In the
Uranus system another mechanism called degradation
Junctions is introduced to improve query expansion. When

the query (f =¢, =6, ..., f, = t,) is matched to a
descriptor (f, = /.= t1,..., f, = t,), in which the
factors might have been reordered to accommodate the query,
the function HG, (l¢;, ¢!y is used to measure the
correlation between them. The function G; is the ith
degradation function, defined as G,(x) =1~ D"'(1-x)
where the constant 0 < D < 1 is the degradation coefficient.
The degradation function is a linear mapping from [0, 1] to [1

D' 1]. as illustrated in Figure 2. When i = L, it is
equivalent to the identity function. As / is increased, the
slope of the function is decreased, reducing the importance of
the corresponding query factor. This agrees with the

intuition that a factor typed earlier is more important than one
typed later.

G (x)

0 R
Figure 2: Degradation Functions

Broadening the query this way has two advantages.
First, the expansion of queries is done automatically; the user
does not have to explicitly issue an expansion command.
Second, the components retrieved after the expansion can still
be ordered by their relevance. In the above case, the system
will put the descriptor (action = sort, object = array, algorithm
= merge sort) above (action = sort, object = array, algorithm =
bubble sort) because the performance characteristics of quick
sort is closer to merge sort than bubble sort. The Prieto-Diaz
method [14] does not have this property because the relevance
information is stripped away with dropped factors.

5.3 The General Case

In most cases the facet set of the query differs from the facet
set of the view, and thesauri must be used to translate between
them. We first define the correlation between two factors u
=%=7"and ' =“f"= ¢'"as
W, 'li=11F, £ N el

Then the correlation between the query g = (u;, 1,
and the descriptor d = (v, v, .
factors, is defined as

l:d =116, masia 1)
- =t~ . .
Note ttllat this is not a symmetric function; |ig, d| # ||d, ¢|| in
general.

The above functions are not well-defined because the
thesaurus used for measuring the correlation between symbols
is not specified. In fact, because of the client/server nature of
our system, at most three thesauri are necessary for this
purpose. First, a local thesawrus ©, is used by the client to

e U,
-s V,), Where u; and v, are

find synonyms at the client side. Then, a foreign thesaurus
O, is used, also by the client, to wranslate symbols to remote

vocabulary. Finally, a remote thesaurus © ,, is used by the
library server to deal with synonyms in the site being queried
against. The correlation between two symbols w, and w,,
with respect to these three thesauri, is thus defined as

|anWz|l=T%X(HWHVIHOL HanzHo,. ||V27W2“@”),

1472
where v, and v, are arbitrary symbols.

Usually the local thesaurus and the remote thesaurus
are essential for making a query. On the other hand, the
foreign thesaurus is optional. For example, the foreign
thesaurus is usually unnecessary when the client and the
server are using the same language, say Chinese. Only when
the server is using a foreign language, or when the remote
vocabulary is very different from the local one, is the foreign
thesaurus necessary. The user can assign each site a foreign
thesaurus, and whenever a query is made against that site the
assigned foreign thesaurus is used. If no foreign thesaurus is
assigned, the correlation function degenerates to

[y, wall= max(iv, Mo, - 117, s llg,) -
5.4

At this point we must be aware again that a descriptor is
associated to a class, not to a component. Without other clue
components in a class are regarded as of equal relevance and

Automatic Migration History Tracing

-will be (or not be) retrieved as a whole during a query session.

D-64

When a class is found during retrieval, the migration history
lists of its components are used to find related classes. The
relevance of a related class is a function of the number of the
occurrences of the class in the migration history lists.

Suppose the history lists are #, =(cy, ¢3,..., ¢,), 1<isn,
the relevance value of a related class ¢ is

i u,(c)
=1 N |
where

o ¢
4,(c) = 1 1tce14.:|,...
0 otherwise,

and 0 < o< 1 is aconstant. This value is then multiplied to
the relevance values of the components and classes retrieved
from the related class. Since a class can appear in a
migration history at most once, this value is always less than
one.

) clln; }’

For example, suppose in class ¢ half of the components
have been in another class ¢’ before arriving in ¢, then ¢’
will be found, provided ¢ has been found, with relevance

av1/2 =0.707a times the relevance of ¢. If components
in ¢ are retrieved, it is thus quite likely that components in ¢’
will also be retrieved. For another example, consider the
case when components in a class ¢ are evenly moved to two
other classes ¢, and ¢, by the site owner. This effectively
removes the class ¢, but since when a component is moved out
of a class its migration history is retained, during retrieval ¢,
and ¢, can still be found with relevance about 0.707¢ times
the relevance of ¢. Thus, the results of a query against a site
will vary only moderately even if the classification structure of
that site has been altered wildly.

6 Browsing

Internally the faceted classification structure is represented as a
relational database table, with the facets as the columns and
the component classes as the rows. The browse tool works
by representing this faceted structure as a tree. A free node
in this representation stands for a subtable that is constructed

hERENTAEREE EHEE

by performing appropriate selection and projection operations
against its parent table. The root node stands for the whole
table. For example, suppose there are four facets, with the
following table for the faceted structure:

task [target |pricing |source
edit database file free yes
edit text file shareware yes
browse database file free yes
browse web free no

an expansion on the facet “task” yields two subnodes “edit”
and “browse” of the root, as illusirated in Figure 3 (a). A
second expansion against the “edit” node yields another two
nodes “database file” and “text file,” as in Figure 3 (b). By
default, the facets are expanded in their original order, but the
user can also specify the expanding facet for any node. For
example, the user can choose to expand the root node with
“source” instead of “task,” and then the “yes” node can be
expanded further to explore all and only those components
delivered with source code, as shown in Figure 3 (c). The
faceted structure can thus be expanded in various ways,
making it more flexible than a fixed hierarchy. The
expanding facets can be optionally displayed to the right of the
node name (term) in parentheses. Nodes at the same level
ga(lzi ;:e assigned different expanding facets, as shown in Figure
2 5

Raot (task)
- edit ftarget)
- biowse {target]

Root {task)
E edit {target)
: [database file {pricing)
- text file (pricing)
B} browse {target)

(2) (b)

Root (source) Root (source)
- pes [task) B yes (target)
: B-edt (target) [8- database file (task)
¢ [browse (target) | [-textfile (task)
Fl-no (task) B no (task)

(c) (d)

Figure 3: Browsing hierarchies built over the faceted
classification structure.

Nodes in an expansion tree correspond to classes in the
faceted classification structure. For example, in Figure 3 (a)
the node “edit” corresponds to the class with the descriptor
(task = edit), or more formally, the descriptor (task = edit,
target ='*, pricing = *, ...). Note that a component with
descriptor (task = edit, target = text file) does not belong to this
class, although it as a query can match the descriptor (task =
edit). That descriptor, however, belongs to the class
corresponding to the node “text file” in Figure 3 (b). The
root s a special node, which corresponds o an unindexed
class, that 15, a class associated to no descriptor. It can be
used as a temporary storage for new components.

The browse tool is used for both finding components
and managing a site, provided the user has appropriate
privilege. Most of the modification operations to the faceted
classification structure can be performed directly with mouse
actions in the browse tool window. For example, a
component can be moved or copied from one class to another
by drag-and-dropping the component to the node
corresponding to the destination class, This effectively
changes or adds a descriptor associated to the component.
Certain operations involving the facets, on the other hand,
must be performed with mepu commands. Examples are
addition, deletion and reordering of facets. ,

Move and copy operations can also be performed
against nodes, but care must be taken in this case. Some
node operations are forbidden in order to reserve the faceted

stucture. For example, moving the “show™ node to under
the “edit” node in Figure 4 (a) 1s invalid because this will
cause a conflict in expanding facets, as illustrated in Figure 4
(b). In order to examine the validity of a node operation, we
first define the path facets F{g) of anode ¢ in the tree as the set
of expanding facets of the nodes from the parent of ¢ up to the
root node. For example, the path facets of the “text file”
node in Figure 3 () is {task, target}. Then a child of node ¢
can be successfully copied or moved to become a child of
node ¢’ if(I)gand ¢’ have the same expanding facet, and

Q) F(q")= Hag).

Root (task) Roat [task)
=~ show [target) - edit (777)
- edit (target) ¢ teshow {target)
Lo test (target) = test {target)
(a) (b)

Figure4: An invalid node operation. Moving the “show”
node to under the “edit” node is invalid.

7 Implementation

7.1 The Query Tool

The appearance of the query tool is shown in Figure 3.
Several queries can be issued at the same time by the user, as
long as they are separated by the “/” character. In Figure 5
two queries, namely (function = edit, target = text) and
(function = delete, target = file), are issued. The results of
those two queries are merged together, again ordered by
relevance, and listed in the “Results” area. To control the
number of components retrieved, two parameters maxinum
components (denoted by N) and minimum relevance (denoted
by L) can be set, and only the first N components with
relevance values no lower than L are listed. The user also
has to specify the target sites. For simplicity only one site
can be queried against at a time in the current implementation.
Whenever a component is found during retrieval, its related
classes can be checked automatically to find more
components. The user can specify to search for these related
classes in all other sites, in part of them, or in the local site
only. If the user choose to trace only a number of sites, these
sites can be specified below the target site. In Figure 5 the
target site is “Jocalhost” (the local site) and the additional sites
are “gaia.ee.ntu.edu.tw” and “ibmsrv.cc.nthu.edu.tw.”

qsia ee ntu.edu.tw
ibmstv.ce.nthu.edu.tw
 Min Flelew. (7
: =4
|, B S
Quary Statemsnt: . o750 D BEEERY ‘Edw_,_l
Jlunclion = edi, taiget = text { function = delete, larget = file :v] .
e TR TR S AT T U S O Ay ST S T
Rewdie, S b Hordar | B‘ww..]
Hame - | Sie] Date: i al]
{ enhitt.zp 106078 1936/10/5 P 04 53 100
fhedit.zip 174288 1996/2/3 PM 11:20 100 -,
Hitxt.2ip 2385 1997/2/4 PM07.16 92 -
ditree zip 17367 1997/5/28 AM 08 49 85
fimt.zip 8203 1936/12117 P 05:32 88 .
4 flemar.zip 35769 1997/4/10 AM 0302 78
My, LT L

Figure 5 . The query tdol‘
7.2 The Browse Tool

The appearance of the browse tool is shown in Figure 6. The
window is divided into three panes. To the left is the tree
pane, in which the classification structure is shown as a tree.

D-65

FERFENTAFEZEFEREGR

The upper-right one is the node pane; below it is the
component pane. They show the sub-nodes and components,
respectively, belonging to the selected node in the tree pane.
The user can expand, collapse or select a tree node in the tree
pane, and the contents of the other two panes will be updated
accordingly.

hosti

Pt Help {0

Rk = complegs, ket mted oo
Root ftask) P
+ access [lwoet) . 1] database 2 Q
= compress (barget) 4] tle 3 0
= lewt |medium) =} { memory 2 0
+ database [pricng)
= e (prcing)
demo X
fiee "3 Subnodefs), 5 Comporents] T
shaiewate Mams [swe| et T {2
memory {pocing) COMAess. 2 3298 1997/5/14 AM 1053
¥ mage (medumi . |ehap N7 1997/5/27 AM03:39 |
£ convert (target} stizp.zip 1350 1996/6/12 AM 07:04 _J
¥ displap (target) -,:j ta 2p 1M778 1997/611 PM10:12 -
S s Raement

teleomn 70 164 1998771 PM NaN7

Resdy.”

Figure 6: The browse tool.

7.3 General Usage

These two tools are used side-by-side to facilitate searching in
component repositories. If the user has a clear idea about the
functionality of the desired component, the query tool can be
used. If a component matching the requirement is found on
the remote site, and if the user has the manager privilege on
the local site, the found component can be added to the local
site by opening the local site in read/write mode with the
browse tool, and then drag-and-dropping the component from
the query window to a node in the browse window. The
retrieved component is then indexed with descriptor
corresponding to the destination node.

In case the user is not familiar with the vocabulary of
the accessed site, or when the requirement is not clear, the
browse tool can be of greater help in searching components
than the query tool. The site to be searched can be opened
with the browse tool in read-only mode. When a component
is found, the local site can be opened read/write in another

browse tool window, and the found componeith cadeiezipioew

retrieved.
8

In this paper, our approach towards a global development
environment for component-oriented software reuse is
presented. In this approach software assets are fully
distributed into small repositories that can be easily managed
by end-users. The classic multi-facet classification method is
adopted and enhanced with techniques such as degradation
functions. Browsing hierarchy can be dynamically built and
manipulated over the faceted structure so that the user can
navigate and manage a repository intuitively and lucidly.
Components of similar functionality can be found efficiently
with the migration history technique, even if they reside in
different repositories or if the classification structure has been
wildly changed in the source sites. Finally, a set of tools with
user-friendly graphical interface have been built to facilitate
access to repositories.

In the current implementation only one view is
allowed in a site. This may cause inconvenience and
inefficiency if the user is willing to include a wider range of
componenis in a site. A hybrid architecture, which allows
multiple views to coexist in a site by combining enumerated
[16] and faceted approaches, has been examined and will be
implemented into future versions of the Uranus system.
Another possible improvement is to replace GUIDs with
content-derived names (CDNs) described in {17]. Perhaps

Conclusion and Future Directions

D-66

the most important step in our future research is to put the
system inio real-world use. Conducting such a field test is
quite difficult, but user feedback will be of great importance to
future development.

Our system is intended to work as a fundamental
utility for creating an open software market in which
circulation and reuse of software parts are stongly
encouraged. We do not expect our system, or any system of
this kind, to solve all software reuse problems, but we believe
that if used properly the distributed repositories approach can
greatly improve the overall productivity of the software
ndustry.

REFERENCES

[1] H. Mili, F. Mili and A. Mili, “Reusing Software: Issues
and Research Directions,” I[EEE Trans. Software
Engineering, vol. 21, no. 6, pp. 528-562, -1993.

C. W. Krueger, “Sofiware Reuse,” ACM Computing

Surveys, vol. 24, no. 2, pp. 131-183. 1992.

S. Henninger, “Information Access Tools for Software

Reuse,” Journal of Systems Software, vol. 30. pp. 231-

247, 1995.

W. Tracz, “Software Reuse Maxims,” ACM Software

Engineering Notes, vol. 14, no. 4, pp. 28—31, 1988,

G. Arango, “Software Reusability and the Internet,” 4CM

Symposium on Software Reusability, pp. 22-23, Seattle,

WA, USA, April 1995.

S. Browne, J. Dongarra, S. Green and K. Moore,

“Location-Independent Naming for Virtual Distributed

Software Repositories,” ACM Symposium on Software

Reusability, pp. 179-183, Seattle, WA, USA, April 1995.

S. V. Browne and J. W. Moore, “Reuse Library

Interoperability and the World Wide Web,” ACM

Symposium on Software Reusability. pp. 182-189, MA,

USA, April 1997.

J. S. Poulin and K. J. Werkman, “Melding Structured

Abstracts and the World Wide Web for Retrieval of

Reusable Components,” ACM Symposium on Software

Reusability, pp. 160—168, Seattle, WA, USA, April 1993.

M. Davis, “On Practicality of Domain-Specific

Languages and Analysis and Multifaceted Reuse

Libraries,” ACM Symposium on Software Reusability, pp.

104-109, MA, USA, April 1997.

H. Mili, E. Ah-Ki, R. Godin and H. Mcheick, “Another

Nail to the Coffin of Faceted Controlled-Vocabulary

Component Classification and Retrieval,” ACM

Symposium on Software Reusability, pp. 89-98, MA,

USA, April 1997.

Y. S. Maarek, D. M. Berry and G. E. Kaiser, “An

Information Retrieval Approach for Automatically

Constructing Software Libraries,” IEEE Trans. Software

Engineering, vol. 17, no. 8, pp. 800-813, 1991.

L.-Y. Chou and C.-C. Yang, “Automatic Construction

and Maintenance of Software Hierarchies for Improving

lll&;lgability,” Proc. National Computer Symposium, ROC,

H. Mili et al, “Practitioner and SoftClass: A

Comparative Study of Two Software Reuse Research

Projects,” Journal of Systems Software, vol. 25, pp. 147-

170, 1994,

{14] R. Prieto-Diaz and P. Freeman, “Classifying Sofiware for
lllgusability,” IEEE Software, vol. 4, no. 1, pp. 6-16,

87.

[15] R. Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse,” Communication of the ACM, vol. 4, no,
5, pp. 88-97, 1991.

[16] W. B. Frakes and T. P. Pole, “An Empirical Study of
Representation Methods for Reusable Software
Components,” IEEE Trans. Software Engineering, vol.
20, no. 8, pp. 617-630, 1994,

[17] J. K. Hollingsworth and E. L. Miller, “Using Content-
Derived Names for Configuration Management,” ACM
Symposium on Software Reusability, pp. 104-109, MA,
USA, April 1997.

(81

]

[10]

(11}

(12]

[13]

