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ABSTRACT 

Data replication is an important technique in distributed 
system. Most replication techniques are quorum-based 
approaches. These approaches employ logical structures or 
mathematical methods to solve the consistent problem of 
data replication. They have some improvements in getting 
smaller quorum size, higher availability, and better loading 
balance. However, most of them have some of the following 
disadvantages: (1) The load distribution is unbalance. (2) 
These methods do not applied to any arbitrary number of 
sites.  This paper presents a new approach called cyclic 
spring protocol, an approach based on a circular numbering 
system. This protocol is symmetric that every site in the 
system bears the same responsibility. In addition, it is 
applicable to any arbitrary number of sites.  

1. INTRODUCTION 

A distributed system is a system that consists of a number 
of interconnected computers. These computers share their 
resources with one another so that they can work together to 
accomplish users’ requirements. To cooperate more 
efficiently, data in a distributed system are often spread over 
different computers (sites). This approach is; however, less 
reliable because a successful data access must rely on a 
good network. To improve the reliability, data are replicated 
and scattered around so that they are available at various 
sites. Even if some copies of the needed data are temporary 
out of reach, alternative copies are still available at other 
sites. 

The major problem in data replication is how to guarantee 
that people can always get the most up-to-date information 
in such a distributed system. A simple approach is to 
replicate all data at all the sites. This allows its users to 
access the same data at any available site. However, it is 
very expensive in maintaining the data since every update 
request must be performed at all the sites. Alternative 
approaches reduce the number of data copies that need to be 
updated while increasing the number of accessed data 
copies to ensure a most recent copy.  

The replica control to maintain the consistency is that any 
two write operations or any pair of read and write 

operations must access at least one common data copy in 
executing time. Thus it can guarantee that a read operation 
can always retrieve the most current data and a write 
operation can be admitted unless it conflicts with others. 
The goal of replication is to provide good efficiency, high 
availability, load balance, and fault tolerance in distributed 
systems. 

Most replication techniques are quorum-based approaches. 
The quorum-based replica control defines a set of quorums, 
where each quorum consists of a set of nodes. The term 
node is used to refer to a physical copy of replicated data in 
a distributed system. In this system, each copy of the node 
is tagged with a version number. This protocol defines the 
read quorums and write quorums for read and write 
operations respectively. If the operation is read, the copy 
with highest version number in the quorum is the most 
up-to-date one. If the operation is write, all the copies in the 
quorum are updated. In order to ensure the data consistency, 
every write quorum must intersect any read quorum or any 
write quorum. 

Some quorum-based protocols impose logical structures on 
their systems such as tree protocol [1, 2], grid protocol [3, 
4], triangular lattice protocol [5], and triangular grid 
protocol [6], etc. Some quorum-based protocols don’t 
employ the logical structure on their system. They may use 
mathematical method to solve the problem such as the 
read-write difference pair protocol [7]. All these methods 
attempt to reduce the quorum size, to improve the 
availability, or to balance the load among the sites. However, 
it is very hard to be successful at all aspects because every 
approach has its priority. 

In this paper, we propose an efficient approach to get the 
access quorums (uniform read and write quorums). This 
approach is based on a circular numbering system. A 
distributed system with N nodes is organized as a logical 
circle, denoted by N-ring. Every node in the system is 
assigned a distinct number between 1 to N and is arranged 
by its number sequentially. Some sequences of particular 
patterns are employed as read and write quorums. This 
approach is not only highly available but also symmetric. 
However, to achieve the high availability, we need to 



 

 
 

slightly increase the quorum size. 

This paper is organized as follows. In Section 2, we 
describe some quorum-based replica control protocols that 
have been proposed. In Section 3, we propose cyclic spring 
protocol. We present its definitions, algorithms and 
properties. In Section 4, we analyze our protocol. In Section 
5, we conclude the result. 

2. RELATED WORKS 

Consider a distributed system consisting of N distinct nodes 
(sites) that are linked by a communication network. Every 
node has its own computing capability. These nodes 
communicate with one another in the network by 
exchanging messages.  

This section briefly introduces some replica control 
approaches: read-one-write-all protocol, weighted voting 
protocol [8, 9], grid protocol, triangular grid protocol, circle 
grid protocol [10], and read-write difference pair protocol. 

2.1 Read-one-write-all Protocol 

The simplest protocol for managing replicated data is 
read-one-write-all protocol (ROWA). In this protocol, read 
operations can be executed on any copy of the replicated 
data, but write operations is required to write all the copies 
of the replicated data. It provides the best reading technique 
but the worst writing circumstances for its users. Sites that 
carry copies of the replicated data may fail at any time for 
some reasons. These failed sites will prohibit database users 
from updating data since write operations are required to 
perform over all the copies of the replicated data.  

2.2 Weighted Voting Protocol 

In weighted voting protocol, each copy of a replicated data 
object is assigned a certain number of votes. A read 
operation has to collect a read quorum of r votes to read a 
data item and a write operation has to collect a write 
quorum of w votes to write a data item. There are two 
restrictions in this protocol: 

 (1) 2w > total number of votes. 

 (2) r + w > total number of votes. 

The major achievement of this protocol is that it is fault 
tolerant. The system can keep working even if there are 
some failure sites. A copy that was failed will not be 
accessed in the successive transaction and will not have the 
largest version number. Hence, after it has recovered, it will 
not be read until it has been written at least once.  

2.3 Grid Protocol 

Grid protocol arranges all the nodes of an N-node system 
into an m×n(=N) grid structure. In this protocol, a read 
operation has to collect a read quorum formed by a 
column-cover (at least a node from each column) or a 
complete column of the grid. A write quorum is composed 
of a read quorum and a complete column of the grid. 

For example, a 3×4 grid with 12 nodes is shown in Figure 
2.1. In this example, {1, 2, 3, 4}, {5, 10, 3, 8}, {9, 10, 7, 4} 
are read quorums, and {1, 2, 3, 4, 5, 9}, {3, 4, 5, 8, 10, 12}, 
{3, 4, 7, 9, 10, 11} are write quorums.  

 Figure 2.1.  a 3×4 grid structure with 12 nodes 

2.4 Triangular Grid Protocol 

The geometric topology shown in Figure 2.2 is denoted as a 
triangular grid. This protocol arranges the N-node system 
into a triangular grid of height h where h = 


2

118 −+N . The term height refers to the total layers 

of a triangular grid. A boundary-cover-tree (BCT) of a 
triangular grid is a tree which inside the triangular grid and 
contains at least one node from each boundary line of the 
triangular grid. A minimal BCT is a BCT, which contains 
just h nodes. In this protocol, all read quorums are also 
write quorums, and they are therefore called access 
quorums. The quorum size of this protocol is h, the same as 
the height of triangular grid structure. 

For example, a triangular grid with 15 nodes is shown in 
Figure 2.2. The set {1, 2, 4, 7, 11}, {2, 3, 5, 8, 12}, {7, 8, 9, 
10, 15} are some access quorums in this protocol.  

 

     Figure2.2.  a 15-node triangular grid 
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The advantages of triangular grid protocol are that it 
provides high availability, low quorum size, and uniform 
access quorums. 

2.5 Circle Grid Protocol 

In circle grid protocol, nodes are numbered from 0 to N-1. 
Let m be  N . It organizes the N nodes into a logical grid 
in the way that a node with number x is placed at the row 
numbered x/m and the column numbered (x mod m). Let r 
be the number of rows in the logical structure, 
    m-1, if (m-1)2+1≦N≦m(m-1) 
r = { 
    m,  if m(m-1)+1≦N≦m2  

Read quorum R1, i , R2, i , and write quorum Wi,a are defined 
as follows:  

R1,i = {x|x=(i+j)modN, 0≦j<m }, for 0≦i <N. 

R2,i = {x|x=(i+jm)modN, 0≦j<r }, for 0≦i<m. 

Wi,a = {x|x=(i+j)modN, 0≦j<m } ∪  {x|x=(i+jm+a)mod N, 
j>0, (jm+a)<N }, for 0≦i<N, 0≦a<m. 

 

      Figure 2.3.  a 14-node circle grid  

Figure 2.3 shows an example of 14 nodes. Some read 
quorums of this example areR1,0 = {0, 1, 2, 3}, R1,3 = {3, 4, 
5, 6}, R1,12 = {12, 13, 0, 1}, R2,1 = {1, 5, 9, 13}, R2,2 = {2, 6, 
10, 0}, R2,3 = {3, 7, 11, 1}, etc. Some write quorums of this 
example areW0,0 = {0, 1, 2, 3, 4, 8, 12}, W0,1 = {0, 1, 2, 3, 5, 
9, 13}, W6,3 = {6, 7, 8, 9, 13, 3}, W9,0 = {9, 10, 11, 12, 13, 3, 
7}, W11,1 = {11, 12, 13, 0, 2, 6, 10}, W13,2 = {13, 0, 1, 2, 5, 
9}, 

2.6 Read-write Difference Pair Protocol 

The read-write difference pair protocol is based on the idea 
of cyclic block design and cyclic difference set in 
combinatorial theory. Let N be the number of nodes in the 
system. Some definitions and a theorem are given below. 

[Definition 2.1] A cyclic group set G(A) under U, is 

cyclically generated from A, is a subset of U, as follow: 
G(A) = {Qi | Qi = { q | q = ( a + i ) mod N, ∀  a ∈  A }, i ∈  
U}.  

[Definition 2.2] The ordered pair (R, W) is called a 
read-write coterie under U if and only if the following two 
properties hold: (1) (R, W) is a bicoterie under U; (2) W is a 
coterie under U.  

[Definition 2.3] A pair (C, D), where C = {c0, c1,…, cn-1} 
and D = {d0, d1,…, dp-1}, is said to be a relaxed (N, n, 
p)-difference pair if for every d ∈  U, there exists at least 
one ordered pairs (ci, dj), where ci ∈  C and dj ∈  D, such that 
ci - dj ≡ d ( mod N ).  

[Definition 2.4] The ordered pair (R, W) is called a 
read-write difference pair (rw-difference pair) under U if 
and only if both of the following properties hold: (1) (R, W) 
is a relaxed difference pair under U; (2) W is a relaxed 
difference set under U.  

 [Theorem 2.1] The ordered pair (G(C0), G(D0)) is a 
read-write coterie under U if and only if the ordered pair 
(C0, D0) is a read-write difference pair. 

Let N = 15, C0 = {0, 4, 8, 12}, and D0 = {0, 1, 2, 3, 7}, then 
G(C0) = {{0, 4, 8, 12}, {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 
11, 0}, {4, 8, 12, 1}, {5, 9, 13, 2}, {6, 10, 14, 3}, {7, 11, 0, 
4}, {8, 12, 1, 5}, {9, 13, 2, 6}, {10, 14, 3, 7}, {11, 0, 4, 8}, 
{12, 1, 5, 9}, {13, 2, 6, 10}, {14, 3, 7,11}} 

G(D0) = {{0, 1, 2, 3, 7}, {1, 2, 3, 4, 8}, {2, 3, 4, 5, 9}, {3, 4, 
5, 6, 10}, {4, 5, 6, 7, 11}, {5, 6, 7, 8, 12}, {6, 7, 8, 9, 13}, 
{7, 8, 9, 10, 14}, {8, 9,10, 11, 0}, {9, 10, 11, 12, 1}, {10, 11, 
12, 13, 2},  {11, 12, 13, 14, 3}, {12, 13, 14, 0, 4}, {13, 14, 
0, 1, 5}, {14, 0, 1, 2, 6}} 

The elements of G(C0) are read quorums and the elements 
of the G(D0) are write quorums. This protocol is symmetric 
and it is applicable to arbitrary number of nodes.  

3. CYCLIC SPRING PROTOCOL 

In this section, we propose a new protocol to get read and 
write quorum. This approach is originated from the circle 
grid protocol. In our protocol, the leading sub-sequence of 
an m-comet sequence is variable. It means that m, the 
number of consecutive nodes, is a variable. Therefore, the 
size of access quorum is not necessary the same. It is 
flexibility, like a spring.  

In this section, we give the definitions, present an algorithm 
to get access quorums, and prove its correctness. 

3.1 Definitions 

This approach is based on a circular numbering system. A 

1 2 30

5 6 74

1312 10

8 9 10 11



 

 
 

distributed system with N nodes is organized as a logical 
circle, denoted by N-ring. Every node in the system is 
assigned a distinct number from 1 to N and is arranged by 
its number sequentially. The term node is used to refer to 
the physical copy of replicated data in a distributed system. 
Some sequences of particular patterns are employed as read 

and/or write quorums. The N-ring system with 12 nodes is 
shown in Figure 3.1. 

Figure 3.1.  a 12-ring system. 

[Definition 3.1] The distance of an ordered pair of nodes vi, 
vj in an N -ring is denoted by dis(vi, vj), where 

   vj – vi , if vi≦vj  

 dis(vi, vj) = { 

   vj + N – vi , if vI>vj 

 

In Figure 3.1, the distance of an ordered pair of nodes 1, 6 
is denoted by dis(1, 6) = 5. The distance of another ordered 
pair of nodes 9, 4 is denoted by dis(9, 4) = 7. 

[Definition 3.2] An ordered set of nodes S = {v1, v2,…, vn} 
in an N-ring is said to be a circularly ascending sequence if 
for any two adjacent nodes of S, either vi < vi+1 or vi and vi+1 
are the largest and the smallest ones in S, respectively. 

The sequence {8, 12, 1, 4} in Figure 3.1 is a circularly 
ascending sequence, but the sequence {1, 4, 8, 11, 2} is not. 

[Definition 3.3] A circularly ascending sequence S = {v1, 
v2,…, vn} in an N-ring is said to be an m-jump sequence (m
≧1) if for any pair of adjacent nodes vi, vi+1 of S, dis(vi, 
vi+1 )≦m. 

The sequence {1, 4, 6, 7} in Figure 3.1 is a 3-jump 
sequence. 

[Definition 3.4] An m-jump sequence S = {v1,v2,…,vn} is 
said to be an m-jump circle if dis(vn, v1 )≦m . 

The sequence {1, 4, 7, 10} in Figure 3.1 is a 3-jump circle. 

[Definition 3.5] A circularly ascending sequence C = {v1, 
v2,…, vm, vm+1,…, vn} in an N-ring is said to be an m-train 
sequence if {v1,v2,…, vm} is a 1-jump sequence and {vm, 
vm+1,…, vn}is an m-jump sequence. {v1,v2,…,vm } is called 
the leading sub-sequence, and {vm, vm+1,…, vn} is called the 
trailing sub-sequence of C. 

The sequence {1, 2, 3, 4, 8} in Figure 3.1 is a 4-train 
sequence. 

[Definition 3.6] The size of a m-train (any arbitrary m) 
sequence C = {v1,v2,…,vn} is denoted by size(C), where 
size(C)= 1+dis(v1, vn ) 

The size of 4-train sequence C = {1, 2, 3, 4, 8} in Figure 3.1 
is size(C) = 1 + dis(1, 8) = 8. 

[Definition 3.7] An interval [vi, vj] in an N-ring is a set of 
nodes defined as the following: 

         {u | vi≦u≦ vj}, for vi≦vj 

 [vi, vj] = { 

         {u | u≦vj or u≧vi }, for vi>vj 

In Figure 3.1, interval [1, 5] = {1, 2, 3, 4, 5}, and interval 
[10, 4] = {10, 11, 12, 1, 2, 3, 4}. 

[Definition 3.8] A pair of m-train sequences C1 = {u1, u2,…, 
un}, C2 = {v1, v2,…, vp} are said to be scope overlapping if 
at least one node of C1 is in the interval [v1, vp]. 

In Figure 3.1, the pair of 4-train sequence C1 = {1, 2, 3, 4, 6, 
8} and C2 = {7, 8, 9, 10, 2} are scope overlapping . 

[Definition 3.9] A write quorum W is the union of an 
arbitrary number of m-train sequences C1, C2 ,…, and Cn 
and satisfies that )( i

i
Csize∑ 




 +≥
2

1N . A read quorum R 

is an m-jump circle or a write quorum. 

[Definition 3.10] An m-comet sequence C = {v1, v2, …, vn} 
is said to be an m-comet circle if dis(vn, v1 )≦m. 

     Figure 3.2.  a 12-ring system. 
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For example, in Figure 3.2, the sequence {1, 2, 3, 4, 8, 11} 
is a 4-comet circle. 

[Definition 3.11] An access quorum is defined as an 
m-comet circle and it is employed as read or write quorum. 

3.2 Algorithms 

In this section, we present an algorithm to get access 
quorums that are employed as read or write quorums. This 
protocol is shown in algorithm 3.1. Get_access_quorum (N): 
find an m-comet circle to be access quorum where m is not 
a pre-defined number.  

[Algorithm 3.1] Find an access quorum. 
Get_access_quorum (N){ 
In an N-rig, find the longest 1-jump sequence with p 
consecutive nodes where p≦(N+1)/2; 

Find the pair of adjacent nodes vi, vj with the largest 
distance dis(vi, vj) and let max_dis = dis(vi, vj) ; 
If (p≧max_dis) { 

If (max_dis> N  ) { 

Let m = max_dis and find an m-comet circle C; 
    Return(C);  /* C is the access quorum */ 
  } 

else if (p≧ N  ) { 

Let m =  N  and find an m-comet circle C; 

Return(C);  /* C is the access quorum */ 
  } 

else { 
Let m = p and find an m-comet circle C; 
Return(C);  /* C is the access quorum */ 

  } 
} 
else there is no proper access quorum;  
} 

[Example 3.1] Consider the 24-ring system shown in 
Figure 3.3. Let m = 5. The failure nodes {9, 10, 11, 18, 21, 
23, 24} are marked black. We know that the max_dis = 4 
and p = 8. That is, the maximal number of consecutive 
failure nodes is 3 and the maximal number of consecutive 

active nodes is 8. Since p≧max_dis and p ≧ N  = 5. 
Therefore, let m = 5, we can obtain the access quorum C = 
{1, 2, 3, 4, 5, 8, 13, 17, 22}. 

 

 

Figure 3.3.  a24-ring system with failure nodes  

{9, 10, 11, 18, 21, 23, 24}. 

[Example 3.2] In Figure 3.4, the failure nodes {10, 11, 12, 
13, 14, 15, 24} are marked black. We know that the 
max_dis = 7 and p = 9. That is, the maximal number of 
consecutive failure nodes is 6 and the maximal number of 
consecutive active nodes is 9. Since p≧max_dis and p> 

 N  = 5. Therefore, let m = 5, we can obtain the access 
quorum C = {1, 2, 3, 4, 5, 8, 13, 17, 22}. 

Figure 3.4.  a 24-ring system with failure nodes  

{10, 11, 12, 13, 14, 15, 24}. 
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3.3 Proof of Correctness 

In the following, we prove the intersection between two 
access quorums. It is used to prove the data consistency. 

[Theorem 3.1] 

In circular spring protocol, any two access quorums 
intersect. 

Proof: Let C1={u1, u2,…, up}, C2={v1, v2,…, vq} be any two 
access quorums.The C1 is an m-comet circle and C2 is an 
n-comet circle.  

(1) If m≧n 

Since dis(vi, vj)≦n, where vi, vj be any two adjacent 
nodes in C2. Therefore, vi is at most n-1 nodes apart 
from vj in C2.We know that u1, u2,…, um in C1 are m 
consecutive nodes. We can conclude that vj= uk, 1≦k
≦m or vi= uk, 1≦k≦m. i.e. C1 intersects C2. 

(2) If m<n 

     This can be easily proved the other way around. 

∴In circular spring protocol, any pair of access quorums 
intersect. 

4. PERFORMANCE ANALYSIS 

In this section, we first show that the proposed protocol is 
symmetric. We then analyze the access quorum sizes and 
the availability of this protocol. We also compare this 
protocol with some well-known quorum-based protocols. 

4.1 Symmetric Property  

A replica control protocol is said to be symmetric or fully 
distributed if every node in the system bears the same 
responsibility. Quorum-based protocols impose various 
logical structures in order to reduce their sizes of quorums. 
However, most of the protocols have unbalanced load 
sharing. 

The proposed approach is based on the N-ring system. We 
arrange nodes into a logical circle and number them from 1 
to N sequentially, where N is the number of nodes of the 
given system. Since circle is a symmetric structure, all 
nodes in a circle are identical except their identifiers, the 
assigned numbers. In other words, numbers assigned to 
these nodes are for identifying purpose only. Therefore, 
every node in an N-ring is included in the same number of 
quorums, and this approach is symmetric.  

Our protocol is applied to arbitrary number of nodes. The 
nodes are arranged into an N-ring system, no matter what 
number the N is. 

4.2 Quorum Size 

In this section, we analyze the size of the access quorums. 
The size of quorums in these protocols is depended on the 
value of m. The m is the number of leading sub-sequence in 
an m-comet sequence or in an m-comet circle on the N-ring 
system. In Section 3, the m is variable and it is depended on 
the longest distance between two adjacent nodes. 

In circular spring protocol, in the best case, the minimal 
access quorum size is equal to 

m
N 1+  + m – 1 for a given 

m. However, the m is variable, depended on the longest 
distance between two adjacent nodes. In the worst case, the 
maximal size of access quorum is equal to 

2
1+N . That is, 

the lower bound for the size of the access quorum generated 
with a given m is equal to 

m
N 1+  + m – 1. The upper 

bound for the size of the access quorum is equal to 
2

1+N . 

In the worst case, the maximal sizes of read quorum or 
write quorum may be larger than most quorum-based 
techniques. However, in that situation, most protocols may 
not find out any one quorum. That is, the system does not 
work properly.  

4.3 Availability  

In this section, we analyze the availability of our presented 
protocol in Section 3. Assume that each node is available 
with identical probability p and the state of each node is 
independent and will not change when an operation is in 
progress. The availability of a replica control protocol is 
defined to be the probability that at least one quorum can be 
constructed. 

In Section 3, we proposed circular spring protocol. Here, 
we analyze its availability and compare with circle grid 
protocol. In an N nodes system, Circle grid protocol defined 
two type of read quorum. In the circle structure, the read 
quorum is that each node is less than m nodes apart from 
another one. The write quorum is that consists of m 
consecutive nodes and followed nodes such that each node 
is less than m nodes apart from another one. The m is equal 
to  N  and is fixed. 

The write and read quorum in circular spring protocol is 
defined as access quorum. The access quorum is an m-jump 
circle and m is variable. The read quorum and write quorum 
in circle grid is included in m-comet circle. Therefore, the 
availability of our protocol is better than circle grid 
protocol. 

Finally, we analyze the availability of circular spring 



 

 
 

protocol. We calculate the availability by simulating the 
conditions where all nodes are with the same probability of 
their existence. Let the probability that a node is available 
for service be p. Assume that the possibility is uniform 
among the nodes of this system. The availabilities of 
circular spring protocol calculated from this simulation are 
shown in Table 4.1 for the cases that the probabilities of 
each node to be available are p = 0.95 and p = 0.9. 
According to the result, this approach shows satisfactory 
performance. Moreover, a system in this protocol becomes 
more reliable as we add more nodes into it.  

 

Table 4.1. The availability of a system 
the probability of a available node is 

Number of nodes p = 0.95 p = 0.9 
4 0.99046 0.96398 
5 0.99182 0.97072 
6 0.99828 0.96990 
7 0.99834 0.99004 
8 0.99944 0.99394 
9 0.99978 0.99610 

10 0.99984 0.99732 
11 0.99990 0.99814 
12 0.99994 0.99878 
13 0.99998 0.99916 
14 1.00000 0.99930 
15 1.00000 0.99958 
16 0.99998 0.99960 
17 0.99996 0.99974 
18 1.00000 0.99968 
19 1.00000 0.99976 
20 1.00000 0.99988 
21 1.00000 0.99996 
22 1.00000 0.99990 
23 1.00000 0.99994 
24 1.00000 0.99996 
25 1.00000 0.99998 
26 1.00000 0.99998 
27 1.00000 0.99998 
28 1.00000 1.00000 

5. CONCLUSIONS 

In this paper, we proposed a new quorum-based approach, 
cyclic spring protocol, for replica control. In cyclic spring 
protocol, multiple copies of replicated data are organized 
into a logical circle structure, N-ring. This protocol has 
some advantages: (1) It is applicable to systems with any 
arbitrary numbers of nodes. (2) Every node in the system 

bears the same responsibility to read and write operations. 
In other words, it is symmetric and load balanced. (3) The 
availability of cyclic spring protocol is better than that of 
most quorum-based protocols. 
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