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Abstract

We propose an asymmetric high-radiz signed-
digit (AHSD) number system for fast binary ad-
dition and array multiplication. Practical imple-
mentation of a carry-propagation-free adder and
an array multipler is discussed and a radiz-4 ez-
ample is designed. AHSD has the advantage of
simple conversion such that a practical carry-
propagation-free adder and fast. multiplier can be
achieved. Besides, multiple-valued current-mode
circuits are especially suited to our designs which
result in very high-performance practical arith-
metic circuits.

1 Introduction

Addition is the most important and frequently
used operation in computer arithmetic. Gen-
erally, two methods can be used to boost this
operation. Ome is explicitly shortening the
carry-propagation chain by circuit design tech-
niques or detecting the completion of the carry-
propagation chain as soon as possible, so that
no time is wasted [1]. Another is by converting
the binary number into a redundant number sys-
tem, e.g., the signed-digit number system and the
residue number system, to operate the addition
in a carry-propagation-free (CPF) manner. This
implicitly eliminates the carry-propagation chain
so that a fast addition can be done. Though these
number systems are carry free, they have the dif-
ficulty in conversion from/to the binary number
system. Recently, the CPF adder is investigated
based on redundant positive-digit numbers [2]

and symmetrical radix-4 signed-digit numbers [3]
for high-speed area-effective multipliers.

In this paper, an asymmetric high-radix
signed-digit (AHSD) number system is proposed.
By the AHSD representation, an inherent CPF
addition is developed, which is the basis for
our high-performance sequential addition and ar-
ray multiplication circuits. The detailed adder.
and multiplier designs on AHSD(4), the radix-
4 AHSD which are suitable for VLSI implemen-
tation by using multiple-valued 'current-mode
(MVCM) logic circuits, are presented. Our ap-
proach is shown to be practical due to simple
conversion interface and fast MVCM. circuits.

2 The AHSD Number System

An n-bit unsigned binary number X is repre-
sented in our AHSD number system as

g—1
X = ZX]'T‘J, (1)
20

where —1 < X; < r and r = 2™ for some integer
m such that n is divisible by m. The number X
is denoted as

X = (Xq—l1Xq—27"'1X0)1" (2)

In the context, if not otherwise specified,
(Tp—1,°-,T1, o) is used as the binary represen-
tation of X. Also, a radix-r AHSD is denoted as

AHSD(r). Arithmetic operations based on our

AHSD number system can be performed if the
operands are all available in the AHSD represen-
tation.

199



Proceedings of International Conference
on Computer Architecture

Proposition 1 (AHSD Representation)
An unsigned number X = (xp-1,---,T1,%0) has
an AHSD(r) representation as follows:

-1 m-1

q—l . .

X = ZXjr] = Z(Z $k+m]-2k)'r3, (3)
j=0 §=0 k=0

where X; € {-1,0,1,---,r — 1}, r = 2™, and

g=n/m.

The digit —1 is introduced into the system for
flexibly applying our AHSD number system to
some arithmetic operation. The arithmetic based
on AHSD is developed next.

Table 1: Conversion of Z; in AHSD(r).

L 2 [ Zi |Gl w |
-1 X 0 -1
0 X 0 0
1 X 0 1
r—2 X 0 |r—2
r—1 <r—1| 0 {r—-1
>r—1]| 1 -1
r X 1 0
r+1 b'd 1 1
2(r - 1) X 1 |r—2

2.1 Carry-Propagation-Free Addition

By the AHSD representation, fast CPF addi-
tion can be done. Let X = (X _y, -+, X1, Xo),
and Y = (Yy_1,---,Y1,Yp), be two nonnegative
AHSD(r) numbers. For consistency, X; > 0 for
each j. The addition of S = X + Y can be real-
ized as follows:

1. Internal Individual Summation (IIS): Sim-
ply sum up the individual digits of the two
operands X and ¥ such that

Z;=X;+Y;,0<5<¢q¢~-1, 4)

where Z;’s are the digit sums. Apparently,
Z; € {-1,0,---,2(r — 1)} if X; > 0, which
may not fall in the field of our AHSD, so
conversion is required.

2. Internal Consistency Conversion (ICC): For
consistency in our AHSD operation, conver-
sion must be made to Zj.

(a) Self-Adjustment (SA): For each Z;, an
intermediate carry digit C'; and an in-
termediate sum digit 4; is chosen such’

that
Zj =1 xCj+ p; (5)
subject to
(0, Z;), if (Z; <r-1)v
() = (2= (r=1)A

(Zj—1 <r-1)))
(1,Z; —r), otherwise.
(6)
Table 1 lists the details of our conver-
sion rule. It is seen that the conversion
results in two digits in AHSD for each
Zj. In the table, “x” stands for any
value in {-1,0,---,2(r — 1)}.
(b) Adjacent Modification (AM): The final
sum digit S; is then modified by

Si=uj+Cj1, 05 j<q. (7)

where C_; = 0. By doing so,
each digit of the final result § =
(Cg—1,5¢-1,--+,5) falls in our AHSD
representation.

consistency of our addition as described by
Table 1. With the negative digit —1 intro-
duced, the conversion table is simpler than
those of other redundant number systems.
Besides, an AHSD number can be easily
converted to/from a binary number. This
makes our AHSD a realistic candidate for
fast arithmetic computation.

The requirement that X; > 0 preserves the

This procedure can be illustrated by Fig. 1. In
the first step, each intermediate summation digit
is obtained concurrently. In the second step, only
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Figure 1: The addition procedure.
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Figure 2: Structure of our AHSD CPF adder.
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Figure 3: Construction of the sequential adder.

adjacent information are required for the con-
sistency conversion. Apparentlj, the carries are
localized to their adjacent digits, and every u;
and C; are generated concurrently.. Therefore,
the proposed AHSD addition can be performed
in a constant time independent of the length of
the operands (g), i.e., our AHSD adder is carry-
propagation-free. The adder structure is shown
in Fig. 2.

Generally, a binary result is preferred for most
applications. This final conversion can be done
by Prop. 1.

2.2 Sequenﬁal Addition

The CPF adder can be used effectively in se-
quential addition and array multiplication. A se-
quential adder is used to evaluate sequentially the
sum of ¢ numbers, X;, 0 < i < g -1, which can
be expressed as

g-—-1
S=5"Xi=(((Xo+X1)+X2)+ )+ Xgm1.
=0
(8)

This sequential adder can be realized by using a
CPF adder and a latch L as shown in Fig. 3.

The time required for a n-operand sequential



Proceedings of International Conference
on Computer Architecture

Table 2: Conversion rule for AHSD(4).

L Zi | Zi-1 | Ci | 1]

-1 b'd 0| -1
0 X 0 0
1 X 0 [.1
2 X 0 2
3 <3 |0 3

231111

X 1 0
5 X 1 1
6 X 1 2

addition is

Todd = tpa+(n—2)[maz(tpa, t[,)]+(n—l)tcpp(-+t,43,
9)
where i1, tpa, tcpr, and t 4 g denote the process-
ing time for latching, binary-to-AHSD(4) con-
version, CPF addition, and AHSD(4)-to-binary
conversion, respectively. Speedup results from
adding a large number of operands concurrently.
The conversion time is small and can be ne-
glected. The processing time is therefore approx-
imately

Toda = n[maz(tpa,tr) +tcprl,  (10)

regardless of the operand length.

3 AHSD(4)

The radix r = 2™ is often used in practical ap-
plications. We use AHSD(4) to illustrate design
examples in this section.

3.1 Implementation of the AHSD(4)
CPF Adder

Consider the two binary numbers X =
(11111111) and ¥ = (00000001) to be added.
Apparently the longest carry propagation chain
occurs in this case if ordinary ripple-carry adder
is used. By using the proposed addition algo-
rithm, we can generate the sum without any
carry propagation as shown in Fig. 4.

11 11 11 11 X Binary
+ 00 00 00 01 Y

3 3 3 3 X Binary to AHSD(4)
0 0 0 1 Y
3 3 3 4 Z 118
11 1 1 C SA
4 -1 -1 0 p
1 0 0 0 0 S AM
1 00 00 00 00 S AHSD(4) to hinary

Figure 4: The proposed addition algorithm.
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Figure 5: Binary to AHSD(4) converter.

BD(

Figure 6: Bidirectional current mode symbolic
representation of the CPF adder.

0,ifz>k
1, otherwise

A=

Figure 7: The threshold detector.
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Figure 8: The voltage controlled current source.

Using the MVCM circuit, the AHSD(4) CPF
adder can be implemented according to the fol-
lowing procedure.

1.

[N]

Binary to AHSD(4) Conversion:

A binary number can be partitioned, from
the LSB to the MSB, into 2-bit blocks, which
can then be converted directly into their
corresponding AHSD(4) digits. A current-
mode CMOS binary-to-quaternary encoder
proposed by Current [4] can be used as the
binary to AHSD(4) converter as shown in
Fig. 5, which is simply a current adder con-
structed with two voltage controlled current
source circuits and linear summation opera-
tiom.

. CPF Adder Based On AHSD(4):
The CPF adder is also suitable for VLSE

implementation using MVCM circuits. The
most important advantage in using MVCM
is that both IIS and AM steps in AHSD(4)
addition can be performed by bidirectional
wired summation as introduced by Kawahito
et al. [3]. Fig. 6 shows the bidirectional
current mode symbolic representation of the
AHSD(4) CPF adder. In the figure, sym-
bols A;, A;_i, and Bj; represent the cor-
responding conditions Z; < 3, Z;_1 < 3,
and Z; > 3. The polarity of Z; can be de-
tected by a bidirectional current input cir-
cuit (BDCI) [3); hence, Z;" and Z; repre-
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Figure 9: AHSD(4) to binary converter.

sent positive and negative Z; values, respec-
tively. The threshold detector is defined in
Fig. 7. The function of voltage controlled
current source is shown in Fig. 8. Details on
the MVCM circuit elements in our design
can be found in [3,5].

. AHSD(4) to Binary Conversion:

To convert the sum digit S; to the equiva-
lent final binary bits, we may first convert
S; € {~1,0,1,2,3} to S} €{0,1,2,3} by a
radix-4 carry-lookahead adder. This step is
the most time-consuming in the procedure,
and its computation time is proportional to
log, 5. We can then convert SJTF to the equiv-
alent binary bits (s;41, $2;)2 by the current
mode CMOS quaternary-to-binary decoder
[4]. The structure of the AHSD(4) to binary
converter is shown in Fig. 9.

3.2 Array Multiplication on AHSD(4)

High performance array multiplier can he de-

signed by using the CPF adders. Assume the two
inputs are 8-bit numbers X = (z7,zq, -, z0)

and YV = (y7a$67"‘7y0)'
P

203

The 16-bit product

= (p15,P14, -, Po) is then obtained as follows:

1. Generate partial products p;:

Dij =T X Y;, pij €{0,1}; 0<4,5 < 7.
(11)
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Figure 10: The array multiplier based on AHSD.

Thus, partial ~ products  F; =
(p7j:pejr--2Poj), 0 < j < 7, can be
generated.

2. Convert each P; into AHSD(4) according to

0= 2pari0) + P60y k= é,
X! = 2pasrj) + P k= 1, (12)
0<i<7,1<j<T.

3. Add up the partial products ¥}? and X7 from
j = 1to 7. All additions are perfcrmed
in parallel at each level in the array multi-
plier. Finally, the sum S = (57,5, -, 50)4
is generated. If the binary result is preferred,
it can be generated by an AHSD-to-binary
conversion circuit.

The array multiplier is shown in Fig. 10. The
computation time for n X n-bit array multiplica-
tion is

Tuur = tanp+tee+(n—1)tcpra+ics, (13)

where t4yp denotes the processing time for an
AND operation. T}le total number of CPF

adders used is N = 1‘2—

4 Conclusion

In this paper, a novel redundant number sys-
tem referred to as AHSD is proposed, which is
effective for CPF addition, sequential addition,
and array multiplication. Its conversion inter-
face with the binary number system is shown to
be simple. AHSD(4) is used as an example and
shown to be suitable for VLSI MVCM circuit im-
plementation.
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