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Abstract

In this paper, we propose two new fast RSA-
type schemes based on Pell equations over the
ring Z N*- The decryption speed of the proposed
schemes is about two times as fast as that of the
RSA scheme for a 2 logN-bit long message. The
encryption speed of our schemes is about 1.5 times
slower than that of the RSA scheme. So, our
schemes can be used in communications between a
smart card and a larger computer. In addition, we
also prove that the proposed schemes are as
secure as the RSA scheme against the ciphertext
attack.
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1. Introduction

An analogue of the RSA scheme based on the
use of elliptic curves was first proposed by
Koyama et al. in 1991. The scheme, called the
KMOV scheme, seems to be more secure than the
RSA scheme from the viewpoint of the Hastad
attack [3]. However, the decryption speed of the
KMOYV scheme is about 5.8 times as slow as that
of the RSA scheme. Later, Demytko presented
another RSA-type scheme based on elliptic curves
{2] such that most of the limitations of the KMOV
scheme are overcome. When the decryption speed

is considered, however, Demytko’s scheme is
slower than the KMOV scheme. In 1995, Koyama
presented fast RSA-type schemes based on
singular cubic curves [5]. The decryption speed of
the schemes is about two times as fast as that of the

RSA scheme.

Koyama’s scheme 1 in [5] is roughly (5 + d)/2
times slower than that of the RSA scheme, where d
means the ratio of the computation amount of
division to that of multiplication. In fact , these
RSA-type schemes based on elliptic curves are less
efficient in encryption. Obviously, it is attractive
to develop a more efficient RSA-type scheme.

In this paper, we describe a cyclic group Gp
over the Pell equation

X - Dy2 =1 (mod P),
where P is an odd prime. Some properties of the
group Gp are then deduced. These properties are

also found in the group Gy over the Pell equation

But the encryption speed of

X - Dy2 = 1 (mod N), where N is a product of two
primes. This group Gy is then developed to be a

public key cryptoscheme based on Pell equations
*
over the ring Zy; . From the group Gy, we find a
*
group isomorphism mapping f: Gy — Z such

that a solution (X, y) of the Pell equation X2 -

Dy2

%
unique element u € Zy . This implies that the

]

1 (mod N) can easily be transformed to a

plaintexts/ciphertexts in the group Gy can easily

be  transformed to. the  corresponding
plaintexts/ciphertexts in the RSA scheme. So, we
present new RSA-type schemes such that the
ciphertexts can be deciphered by the isomorphic
mapping and the RSA scheme. These new
schemes decrypt the ciphertexts about two times
faster than the RSA scheme for a 2 logN-bit
message. Furthermore, the encryption speed of the
proposed schemes is only 1.5 times as slow as that
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of the RSA scheme. Comparing to Koyama’s
scheme 1, our schemes are more efficient.
In Section 2, we introduce Pell equations over
&

the ring Z; . Section 3 presents our schemes. In

Section 4, performance analysis is given.

Securities of our schemes are analyzed in Section 5.

The last section concludes this paper.

*
2. Pell equations over the ring Zy,

Let P be an odd prime and D be a non-zero
quadratic residue element in Fp. Gp denotes the

set of solutions (x, y) € Fp x Fp to the Pell
equation

2 - Dy? = 1 (mod P). Q.1
We then define an addition operation "®" on Gp as
follows. If two pairs (xy, y), (X5, ¥) € Gp, then
the third pair (x5, y3) can be computed by

(%3, ¥3) = (X1, Y1) © (X9, ¥5)

= (X)Xy + Dy1¥,, X1¥, + Xpy1) (mod P). (2.2)
If we define the identity element by (1, 0) and the
inverse of the element (x, y) by (X, -y), then it is

easy to verify that the addition operation is closed,
associative and communicative. That is to say, Gp

together with the operation "®" is an abelian group.

We further give the following theorem according
to [7].

Theorem 2.1: Gp together with the operation "®"

is a cyclic group of order P - 1.

Now we want to prove that the group Gp is

* *
isomorphic to Fp, where Fp denotes a
multiplicative group of Fp.

*
Theorem 2.2: Two groups Gp and Fp are
isomorphic.
Proof. (sketch)
E3
Let f: Gp — Fp be a mapping from Gp to

FI;k such that

f((1,0))=1 (mod P),

f((x,y)) =x - ay (mod P),
where (x, y) € Gp and a’=D (mod P).

If A= (x;, ¥1), B= (X, ¥,) € Gp, then we
have

f(A®B)=f((x, ¥1) ® (X, ¥p)) =T ((x%, +

Dy ¥, X1¥5 + X5¥1))

= XX, + Dyy, - a(xy, + X,y) (mod P)

= X)X - AXY; - @XpY T azylyz (mod P)

= (X;- ay)(X,- ay,) (mod P)

=f (A (B).

This implies that f is a homomorphism of Gp
into Fp*.

Next we will claim that f is a one-to-one

%
homomorphism of Gp onto Fp .

Foreachu e FP*, we assume that there exists )
an element (x, y) € Gp such that

u= x-ay (mod P). (2.3)
Because (x, y) € Gp, we have

X2 - azy2 =1 (mod P),

(x-ay)x+ay)=1(modP),

u(x + ay) = 1 (mod P), and

x+ay=ul (modP), (2.4)

where u”! means the inverse of u modulo P. From
Equations (2.3) and (2.4), we have

x= (u+u")2 (mod P) and

y = (u'- u)2a (mod P). (2.5)
So, f is an onto mapping. From Equation (2.5) for
eachu e Fp*, there exists a unique element (x, y)
satisfying f ((x, y)) = u. Therefore, f is a one-to-

*
one homomorphism of Gp onto Fp .

*
This concludes that Gy, is isomorphic to Fp .8

Now we define another operation "®" as
follows:

i®xy) = &y S y)® - &(xy) over Gp.
iti&es
If (xj, yp =1 ® (%, y), we expand the above

expression and have

q

X, = I (L)D\_z ik, k
0<k<i

kis even

(L)Dl-g-lxi'kyk

XY,

Vi = X
O<ks<i
k is odd

According to the definition of the mapping f,
we have

(% y)) =x; -ay;

(2.6)



. -“J L DLkJ
> (i( )D|-2 N (i( ) 2Jyiokyk
~ 0gksi 0<k<i

kis even kis odd

. ._ k ° . ,- k

N e RN
0<k<i 0<k<i
k is even k is odd

= (x - ay). 2.7

Because Gp is a cyclic group of order P -1, we
have that ifk = 1 (mod P - 1), then
(%, ¥)=k® (x,y), for all (x,y) € Gp. (2.8)
Let N be a product of two large primes p and
q. ZN* denotes a multiplicative group of Zy.

From Theorem 2.2, it is easy to develop the
following theorem.

.
Theorem 2.3: The mapping f : Gy — Zy

satisfying
f((1,0)) =1 (mod N),
f((x, y)) =x - ay (mod N),

where (x, y) € Gy and a?=D (mod N), is a group

isomorphism. Its inverse mapping f : : ZN* —> Gy
is defined by

£ (1)=(1, 0) (mod N),

£ @ = (@ + u')2, @' wy2a) (mod N),
where u € ZN*.

Considering Equations (2.7) and (2.8), we

*
have the following results over the ring 7y .

Theorem 2.4: If (x;, y;) = 1 ® (x, y) over Gy, we
have x; - ayj = (x - ay)i (mod N).

Theorem 2.5: Ifk =1 mod (Lem.(p -1, q -1)), we
have (x,y) =k ® (x,y), forall (x,y) € Gy.

3. New-type RSA schemes based on Pell
equations

In this section, two RSA-type schemes based
on Pell equations are presented. . The main
difference between these two schemes is the way
of encryption. One uses Formula (2.2), while the
other uses exponentiation. These two schemes
have the same key generation procedure as follows.

Assume that the recipient R selects two large
primes p and q. He then chooses an integer e such
that ged(e, Lem(p-1, gq-1))=1. Using the
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Euclidean theorem he determines the secret key d
satisfying ed = 1 (mod Le.m. (p -1, q -1)). Finally,
the recipient R publishes (e, N=pq) as his public
key and keeps the keys p, q, d secret. To simplify
notation, we often omit, in the rest of this paper,
the mod N.

3.1 Scheme 1

Assume that the sender S wants to send the
messages m; and m, to the recipient R.

Encryption:

The sender S first changes the messages my
and my into values z; = m; + m, and z, = m,; - m,.
He solves the equations

X - az, = z;, and 3.1
Xx+az, = zl'1 R
and gets X =(z; + z]'l)/2 anda= (zl'I - X)/zy. Let
y=zyand D= a’. Then, (x, y) is a solution of the
Pell equation X - Dy2 = 1. Next, he iteratively
uses Formula (2.2) to compute

e® (%, y)= Xy Yo (3.2)
where ¢ is the public key of the recipient. Then,
the sender S sends the ciphertext (x_, y,, @) to the

recipient R.
Decryption:

After receiving the ciphertext (x,, y,, a), the

recipient R checks that

X2 -ty =1. ’ (3.3)
If yes, he continues to compute

C=1((xgy.) =X, -ay,. (3.4)
Then, he uses the secret key d to compute

M=c? (3.5

The solution (x, y) can be obtained by evaluating x
=M+MY2andy= M -x)/a. This implies z,
=Mand z, =y. Therefore, the recipient R can get
the original messages m; = (z; + z,)/2 and
m, =(z; - ,)/2.

3.2 Scheme 2

Assume that the sender S wants to send the
messages m; and m, to the recipient R.

Encryption:
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The sender S first changes the messages m,;
and m, into values z; = m; + m, and z, = m; - m,.
He solves the equations

X - az, = 7, and

X+az, = zl'],
and gets x =(z; + zl"l)/z anda= (zl'l -X)/z,. Let
y=zyand D = a>. Then, (%, y) is a solution of the

Pell equation X - Dy2 = 1. Then he uses Theorem
2.3 to compute

M=f((x,y))=x-ay=2z,.
Then, he uses the public key e to compute

Cc=M" (3.6)
The ciphertext (C, a) is sent to the recipient R.

Decryption:

After receiving the ciphertext (C, a), the
recipient R uses his secret key d to compute

M=l (3.7)
Using Theorem 2.3, he can obtain (x, y) by x = (M
+ M'l)/2 and y = (M'l - M)/2a. This implies
z; =M and z, = y. So, the original messages
m; = (z; + )2 and my = (z; - 7,)/2 are
discovered.

4. Performance analyses

4.1 Comparison of our schemes and the RSA
scheme

Here, we focus on the decryption procedure to
evaluate the average number of modular

multiplications. In general, M = cd requires
1.5/ogd multiplications modulo N on average. Our
proposed schemes, i.e., Scheme 1 and Scheme 2,
involve Equations (3.5) and (3.6). So, the
decryption of each scheme requires at least 1.5/ogd
multiplications modulo N on average. Besides, the
cost of isomorphic mapping requires two modular
inverses and one modular multiplication.
According to [1, 4], one modular inverse requires
six modular multiplications. So, the decryption of
each scheme requires 1.5/ogd + 13 modular
multiplications on average. If we neglect the cost
of isomorphic mapping, our proposed schemes
almost have the same decryption time as the RSA
scheme. Because the block size for each one of
our proposed schemes is two times as large as that
for the RSA scheme, the decryption speed of the

former is about two times faster than that of the
latter.

4.2 Comparison of Scheme 1 and Koyama’s
Scheme 1

In [5], Koyama evaluated the average number
of modular multiplications for decryption
excluding the cost of isomorphic mapping. Here
we focus on the cost of isomorphic mapping of

Koyama’s scheme 1. It requires seven modular
multiplications and three modular inverses.
However, Scheme 1 in this paper only requires one

.modular multiplication and two modular inverses,

to perform isomorphic mapping. Obviously, the
decryption speed of Scheme 1 is somewhat faster

than that of Koyama’s scheme 1 if the cost of
isomorphic mapping is considered.

4.3 Comparison of Scheme 1 and Scheme 2

From Subsection 4.1, we know that Scheme 1
and Scheme 2 have the same decryption speed.
Here we focus on the encryption procedures
without considering the cost of the isomorphic

_mapping. Scheme 1, involving Equation (3.2),

requires 4.5/oge multiplications modulo N on
average by using the right-to-left binary method.
This result is deduced by 0.5%(2) + 0.5*(2+5) =
4.5 loge modular multiplications because the
equation
2@ (%, y) = (X + Dy?, 2xy) = (2x% - 1, 2xy)

and Equation (2.2) require 2 and 5 modular
multiplications, respectively. Scheme 2, however,
only requires 1.5/oge multiplications modulo N on
average. Considering the block size, we find that
the encryption speed of Scheme 2 is about two
times faster than that of the RSA scheme.
Similarly, the encryption speed of Scheme 1 is
about 1.5 times slower than that of the RSA
scheme. According to [5], the encryption speed of

Koyama’s scheme 1 is roughly (5 + d)/2 times
slower than that of the RSA scheme. Therefore,
the speed of Scheme 1 is faster than that of

Koyama’s scheme 1.

In addition, the length of ciphertext in Scheme
1 is 1.5 times as large as that in Scheme 2.
Although Scheme 1 requires additional space, it
can check the ciphertext against accidental
corruption.



5. Security

Under the ciphertext attack, we claim that our
proposed schemes are as secure as the RSA
scheme.

Theorem 5.1: The ciphertext attack in the RSA
scheme is polynomially reduced to that in Scheme
1.

Proof (sketch):

Let (X, ¥ @) be the ciphertext of Scheme 1.
Assume that there exists an algorithm A which can
* output the solution (x, y) given the input (X , Y a).
Now given the ciphertext C in the RSA scheme,
one can discover the corresponding message by
using Algorithm A as follows.

Firstly let us randomly select a pair (X, Yeo)-
Then compute a = (x, - C)/y,. Now input (Xe» Yoo
a) to Algorithm A. According to the assumption of
Algorithm A, the solution  (x, y) will be output.
By Theorem 2.3, the message M = x - ay is
discovered.

This concludes the proof. B

Similarly, we can easily show that the
ciphertext attack in Scheme 1 is polynomially
reduced to that in the RSA scheme. So, our
proposed schemes are as secure as the RSA
scheme under the ciphertext attack.

Now, we consider the known-plaintext attacks.
Assume the attacker knows one of the messages
m; and m,, say mq, and the corresponding

ciphertext (x, ., ). According to Equation (3.1),
he can get the following equation

X -a(m; - my) = my +m,.
But he cannot solve the above equation to get X
and another message m,.

6. Conclusions

We have proposed Vfast RSA-type schemes

*
based on Pell equations over the ring Zy; . The

decryption speed of the proposed schemes is about
two times faster than that of the RSA scheme for a
2 logN-bit long message.  Furthermore, the
decryption speed of the proposed schemes is

somewhat faster than that of Koyama’s schemes if
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the cost of the isomorphic mapping is considered.
In addition to the decryption speed, we have shown
that the encryption speed of our proposed schemes

are even more efficient than that of Koyama’s
scheme 1. We also prove that the proposed
schemes are as secure as the RSA scheme against
the ciphertext attack.
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