Joint Conference of 1996 Internlational Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A New Approach to Synthesizing Pipelined Control Paths
for Performance Optimization

Jer Min Jou and Shainn Rong Kuang

Department of Electrical Engineering
National Cheng Kung University
Tainan, Taiwan, R.O.C.

Abstract

This paper proposes a new and efficient approach to
synthesizing the pipelined control paths, by which the
performance of control path can be significantly improved
at the expense of latency. The proposed approach first
transforms the original control specification into a
pipelinable intermediate conirol specification. And then,
traditional control path synthesis is used to synthesize a
pipelinable control path. Finally, the combinational logic
in the pipelinable control path is pipelined io obtain a
pipelined control path. In theory, the, shortest clock cycle
time of control path achieved by this approach is the time

- of one gate delay in the control path if available hardware
resources are unlimited. Experimental results demonstrate
thar the proposed approach can effectively improve the
performance of the conirol path.

I. Imtroduction

High performance is always the goal of ASIC design.
To improve performance, more and more COMpPONents are
integrated into the VLSI circuit and the complexity of the
circuit is rising so quickly that its synthesis needs
automatic and siaris from a high level. For simplicity,
where synthesized from the behavior, a digital circuit is
usually divided into two parts, data path and control path.
In the previous years, many performance-driven efforts
have been put on the pipelined data path synthesis.
However, the situation is changing. Now a lot of circuits
have the ability to execute multi-functions and are
executed in parallel. Thus enlarges and complicates the
conirol path. The complexity of conirol path may also be
increased with choice of high clock frequency in the
synthesis of a high performance system. Higher clock
frequency may decrease the dead-time in a control state,
but may irnicrease the number of staies required to realize
the schedule. Thus the comirol path becomes more
complex when the clock frequency becomes higher.
Sometimes the control path will become the critical part
and the clock cycle time becomes shorter than the control
path execution time. To achieve high performance, the
control path must be pipelined with itself and with the
data path to meet the clock cycle consiraint, So, not only
the data path but also the control path must be pipelined.

205

Work about pipelined control path synthesis is few in
the literatures. Conventional control path synthesis
systems (e.g. [1, 2]1) do not comsider to synthesize
pipelined conirol paths. They synthesize only seri
conirol paths which are executed in serial in the same
clock cycle with the data paths. In [3], Prabhu and Pangrle
proposed a superpipelined control and data paths synthesis
system which uses a modifiable clock cycle time and a
pipelined control siyle to improve the throughput of the
circuit, However, how to synthesize pipelined control
paths is not clearly mentioned in it.

In this paper, we propose a new approach o pipelining
the execution of control path. In it, two types of pipelined
conirol path synthesis are supported:

(1) Stage-Fixed Pipelining: Given the fixed pipelined
stage number £, find the k-stage pipelined control path
with the smallest clock cycle time.

(2) Time-Constrained Pipelining: Given the maximal
allowable clock cycle time, find the cheapest pipelined
control path.

The time-constrained pipelining synthesis of control path
finds its application in real time digital signal processing
where the sample rate dictates how fast a data must be
processed. The stage-fixed pipelining synthesis, on the
other hand, is applicable to high performance applications
with resource or latency constraints. The approach first
transforms the original control specification, which is
derived from the results of data path synthesis and is
modeled as a cyclic behavioral state tramsition graph
BSTG, into a pipelinable intermediate conirol
specification. And then, the combinational logic
synthesized from the pipelinable conirol specification is
pipelined to obiain a pipelined conwrol path. In theory, the
shoriest clock cycle time of conirol path achieved by the
approach is the time of one gate delay in the control path
if available hardware resonrces are unlimited. Experimental
results demonsirate that the approach can effeciively
improve the performance of control path,

The rest of this paper is organized as follows. Basic
concepis and definitions for pipelined conirol path
synihesis are presented in Section I1. Section I states the
problems of pipelined control path synthesis and their

Proceedings of International Conference
on Computer Architecture

solutions. Section IV describes the synthesis algorithm of
the pipelined comirol path. Experimental resulis are
presented in Section V. Finally, conclusions are drawn in
Section VI

11, Preliminaries

The conirol path synthesis usually is carried out from a
control specification afier the data path synthesis. In this
section, we iniroduce the BSTG which is used to model
the control specification. In addition, the traditional serial
conirol path synthesis and the basic idea of pipelining the
control path are also explained.

Note that storage elements in the synthesized control
path in this paper are classified inio four categories: state
registers SR, status registers UR, control registers CR,
and pipelined registers PR. The state registers are used o
keep track of the conirol state. The purpose of introducing
status registers into the control path is to siore the control
conditions from the data path for a design with conditional
branches. Control regisiers and pipelined regisiers only
exist in pipelined control paths. They are designed to hold
the control signals and the intermediate signals between
stages of the pipelined control path, respectively.

2.1 Control Specification

The control specification derived from the result of data
path synthesis is represented by a behavioral state
transition graph BSTG. Fig. 1 illusirates the general
concept of BSTG. Fig. 1(a) and Fig. 1(b) show a
scheduled control data flow graph SCDFG and its
corresponding BSTG, which uses vertices for states §;
and edges for state transitions. The vertex labels in each
state are the condition-operation pairs [c: £] which denote
that the set of operations £ will be executed if control
condition ¢ is true. Note that the condition may be null.
The edge labels in BSTG are the conirol conditions. The
control conditions c1, ¢2, and c¢3 in Fig. 1(b) are produced
by operations >1, >2, and >3, respectively. If there is an
edge S;—S; in BSTG, then state S; is called the child
state of §;, and §; with more than one child state is a
branch state. Each time only one of the child states will
be reached. The decision of which child staie is chosen to
reach is taken according to the conirol condition attached
to the corresponding edge. Following the basic notations
above, we have some definitions.

Definition 1: If there is a path from siate S;i0 staie §;
in the BSTG, then §; is an ancesior siaie of 5;and §;is a
descendant state of §; for the path.

Definition 2: If §;is an ancesior siaie of §; in the
BSTG, then the distance beiween §; and §;, denoted as Dy,
is the number of states between §; and §;.

206

Definition 3: If control condition ¢ is praduced by the
data path at staie S;, then we say S; produces c. If state §;
needs ¢ to determine its next state or operations 0 be
execunied, then we say §; consumes ¢. If ¢ is produced and
consumed at S; and §;, respectively, then state- pair <5,
S is a produce-consume pair associated with .

2.2 Serial Control Path Synthesis

Traditional serial control path synthesis from a BSTG
is classified into two phases: register-transfer (RT) level
synthesis and logic level synthesis, RT level synthesis is
to generate a state table from the BSTG as the input of
logic level synthesis. To generate a siate table, the inpuis
and outpuis of control path at each state must first be
determined. The inputs i(f) of control path at state s(f) are
determined based on the resulis of status register
allocation. The output control signals o(f) activated by
control path at state 5(f) can be obtained by combining the
binding information of data path and the respective RT
level network. After the state table is generated, logic
level synthesis performs state minimization, state
assignment, and logic optimization to get the final control
path. Fig. 2 shows the structure of a serial control path.
The state registers SR holds the present state, and a
combinational logic CL decides the next state and output
control signals, The state transition function & and
output function p satisfy

s@+1) = & [i), ()] &)
o =pli@®, s®)] @

2.3 Basic Idea of Pipelining Control Path

The CL of a control path can be partitioned inio two
parts: state transition logic SL and output logic OL as
shown in Fig. 3(a). SL solely implements Eq.(1) whereas
OL generates control signals according to Eq.(2).
Obviously, the key problem of pipelining control path is
how to pipeline the circuit cycles passing through SL and
SR. Let ¢, denote the critical path delay of a circuit 7.
The way is explained as follows.

First, SL and SR of the control path are doubled as
shown in Fig. 3(b). The new SL’ consisted of two SLs
and one SR is a two-stage pipelined circuit. If both copies
of SR are initialized to the same state values, the structure
of Fig. 3(b) implemenis the same behavior as the

‘structure of Fig. 3(a). Although the state ransition logic

of Fig. 3(b) has been pipelined, the clock cycle time of
conirol path is not reduced. To reduce the cycle time, we
move SR in the SL’ out as SR’. For preserving the
coftect state sequence, the input i(¥) of the second SL is
changed into i(#+1). The resuli is shown in Fig. 3(c). The
primary inputs of the formed combinational logic SL” are

i@, i(t+1), and 5(f), and its primary outpuis are & [i(1+1),
8 [i(®), s(1)]]. Then we fuse two SLs in SL” together into
a new circuit 4 whose delay is usuvaily less than
2*¢g (see Fig. 3(d)), partition it into 2 paris, and move
SR’ back into the partitioned A to form A (see Fig.
3(e)). Finally, we directly pipeline OL into two stages by
inserting PR and CR into it. A two-stage pipelined
control path is formed (see Fig. 3(f)), whose delay is less
than ¢ .

The above example elucidates the basic idea of how to
pipeline a cyclic control path to reduce iis delay. Given a
structural control path, the basic sieps of synthesizing a
two-stage pipelined control path described above can be
summarized and exiended to synthesize a k-stage pipelined
control path,-denoted as k-PCP, as follows:

1. derive the state table of a combinational logic with
primary inputs i), i(s+1), i(1+2), ..., i(#+k-1), and
state inputs s(r), and state outputs & [i(t+k-1), & [i(+k-
2)yeeey -0 [i(1+1),6 [i(2),5(H])...]1] and conirol outputs
p li(®), s()], then synthesize it; this synthesized circuit
is called a k-factor combinational logic I, .

2. pipeline the T, into a k-stage pipelined circuit £2,, and
then link £2, with control and state registers to form a
k-PCP.

Fig. 4 shows the basic structure of a k-PCP
synthesized by the above process. It consisis of £2,, SR,
and CR. And Q, consists of k combinational logics
(CL;, CLy, ..., CL;) with stage j communicating with
stage j+1 through pipelined registers PR;. Let §; and p i
represent the state transition and output funciions of
combinational logic' CL; in it, and In;**™" denote the set
of inputs i(¥), i(t+1), i(#+2), ..., and i(¢+k-1). The state
transition function and output function of the k-PCP
satisfy

5@+k) = 6,16, ,[..6,08,lIn" " s1..]1 ()

o@+k) = plp,, L...p, Lo, Li@®)s])..1] @

Since the £2, of k-PCP is obtained by pipelining T,
into k stages, thus the §,[6,_,[...5,[8,[In;"*", s()1)...]1]
and p, [p,_,[...p,[p,[i(®),s()]]...]] will be identical with
the & [i(t+k-1), 6 [i(G+k-2), ..., & [i(+1), & [i(D),s()])..]]
and P [i(9), s(®)] of I, respectively. That is, the state
transition function and output funciion of the k-PCP
satisfy

SQ+E) = & [i0+k-1),6 [i(t+k-2), ..., 3)
8 [i¢+1), & [i).sO1)..1)
o(t+k) = p [i(2), 5()] ©)

Eq.(5) and Eq.(6) state that the siate sequence and
output sequence of the k-PCP are identical with those of
the serial comtrol path. The difference beiween the

207

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

behaviors of k-PCP and serial control path is the time of
sending the control signals to data path. In the serial
control path, the control signals p [i(r), ()] are aciivated
and sent to data path at staie 5(). In the k-PCP, however,
the control signals p [i(¥), s(?)] are activaied at state 5()
but sent o data path at state s(r+k), this sitnation is called
ouipui-delay k steps. Moreover, the serial control path at
state s(¢) needs input i(¥), but the }-PCP at state s(7) needs
inputs In;**™', this is called input-borrow k steps.

III. Problem Statement and Amalysis

Section 2.3 has introduced the process of synthesizing
ak-PCP from a structural serial control path. However,
sometimes the control dependency is not satisfied by the
k-PCP due 1o the features of input-borrow and outpui-
delay k steps. Control dependency is the timning relation
between states caused by the production and consumption
of control conditions. Consider the BSTG shown in Fig.
1(b). Let CS(¢) denote the required control signals for
executing data path operations ¢ . The 2-PCP synihesized
from the BSTG of Fig. 1(b) will activate the conirol
signals CS(>2, -2) at state S5, but send CS(>2, -2) to data
path at state 54 or §; due to outpui-delay 2 steps. That is,
state 5, or §7 produces ¢2=>2. On the other hand, ¢2 is
consumed by the 2-PCP at state §; due (o input-borrow 2
steps, and state §; (the consuming state) is reached before
state Sy or state S, (the producing siate). Thesefore, the
control dependency is violated.

Foriumately, we can modify the original BSTG by
inserting no operation states, NOOPs, into it to ensure
that the synthesized k-PCP satisfies control dependencies.
Although control path is idle when it is at NOOP,
inserting NOOPs into the BSTG doesn’t destroy its
original behavior. A k-PCP is well-behaved if it satisfies
all conirol dependencies.

Definition 4: A BSTG is k-well if a well-behaved k-
PCP can be derived from it. Otherwise, it is &-ill.

Definition 5: The k-step descendant set of state S; in the
BSTG, denoted as 8, ., is the set of descendant states of
state §; whose distance with respect 0 S; is equal io £-1.

The following Theorem staies the conditions that a k-
well BSTG must satisfy,

Theorem 1: A BSTG is k-well if the distance Dj;of
states in each produce-consume state pair <S;, Sp>.
satisfies one of the fellowing conditions:

Condition 1: if §; is not a branch state, then Dy > k.

Condition 2: if §; is a branch state, then Dy; > 2k - 1.

proof: The Theorem is briefly proved as follows. In the
BSTG, the control condition ¢ is produced at S; and
consumed at §; for <$;, §;>;. However, in the k-PCP, ¢ is

F;roceedings of International Conference
on Computer Architecture

produced at the state S,€ 8, ; due to ouiput-delay k steps.
Moreover, let ¢ denote the set of ancestor states of
state S;in the BSTG whose distance with respect to §; is
equal to k-1. If §; is a branch state in BSTG, then in k-
PCP cis consumed at the earliest at the state §,€ 0y
due io input-borrow k sieps. Otherwise, ¢ is consumed at
the earliest at state S;. In order to keep the state S, which
produces ¢ is reached before the state S,, or Sj which
consumes ¢ in k-PCP, D;; must be larger than or equal to
2k-1 (k) if Sjis (not) a branch state. As a result, if
Condition 1 or Condition 2 is satisfied, the BSTG must
be k-well. QE.D.

By Theorem 1, a k-ill BSTG can be made k-well by
inserting some NOOPSs between produce-consume state
pair to increase the distance between the producing state
and the consuming state. Consider the BSTG in Fig. 1(b),
the BSTG is 2-ill. We can insert four NOOPs Ny, N,, N3,
and N, into it to make it 2-well as shown in Fig. 5.

By the above explanation, the process of synthesizing
ak-PCP can be revised as follows.

1. make the original BSTG k-well by inserting NOOPs
into it according to Theorem 1, and then derive the
behavioral specification, called a k-factor BSTG, of k-
factor combinational logic I', from the k-well BSTG,
and synthesize it;

2. pipeline the I', into the k-stage pipelined circuit £2,,
and then link £2, with control and state registers.

The two steps will be explained in detail in next section.

Algorithm PCP_Synthesis(BSTG, &, T)

if (k=0) {
Synthesize the serial control path and get its delay;
k=[9a/T]:)

while(true) {
if (BSTG is k-ill) Make BSTG k-well;
Construct k-factor BSTG for the k-well BSTG;
Perform state assignment and logic optimization
from the k-factor BSTG to obtain 2 T, ;
if (T=0) /* stage-fixed pipelining */
{ Pipeline I', into {2, and minimize ¢, ; break; }
else { /* T>0, time-constrained pipelining */
Estimate the ¢p of I}
1 (Pr/k <D {
Pipeline the I, into a £2, under constraint T,
if (§g, >T) k=k +1; else break;

elsek =k + 1;
}

}
Link the £, with SR and CR to complete the k-PCP;

retorn the k-PCP;.
end Algorithm;

Fig. 6. Algorithm of synthesizing pipelined conirol paths.

208

IV. Synthesis of Pipelined Comtrol Paths

The algorithm of synthesizing the pipelined conirol
path is ouilined in Fig. 6. The inputs of the algorithm
include the original BSTG, pipelined stage number £, and
cycle time constraint 7. By setting different inputs, it can
perform stage-fixed pipelining or time-constrained
pipelining optionally. Stage-fixed pipelining is done by
seiting k>0 and T=0. When k=0 and T>0, time-
constrained pipelining is performed. The main steps of the
algorithm will be explained in detail in the following
subsections.

4.1 Making a k-well BSTG

This section explains the process of making a k-ill
BSTG k-well. By Theorem 1, if at least N;; NOOPs will
be inserted between each produce-consume pair <S;, S>c
in the k-ill BSTG, then Nj; must satisfy the following
two equalities:

N&: k-Dij,
Ng}’= 2k~D,J '1,

The larger the number of NOOPs inserted is, the more
registers and area of the k-PCP are. The number of
NOOPs inserted must be minimized as much as possible.
For each produce-consume pair <S;, 5> there are at least
N;; NOOPs to be inseried aoc%gding to Eq.(7) or Eq.(8),
and an weighted dotied edge S;--- S; is graphed on BSTG
to represent the constraint. Fig. 7 shows an example of
BSTG with all its constraint edges, which is transformed
from BSTG of Fig. 1(b) for k=2.

Each constraint edge S;-» §; in the k-ill BSTG
corresponds o a path §;— ---— §; of the k-ill BSTG. Two
constraint edges have intersection if their corresponding
paths have common edges. The intersection of two
constraint edges is the set of the common edges in BSTG.
For two constraint edges having an interseciion, the
intersection is the best position for inserting NOOPs. The
minimal number of NOOPs inserted for the two
intersected constraint edges is equal to the maximal value
of N;s between the two edges. An integer linear
programming (ILP) formulation is proposed to get the
optimal solution for the minimal NOOP insertion
problem. First, a relation graph G(V,E) for all consiraint
in BSTG is construcied; each ve};t_(:x v with weight o, =Ny
of G represents a constraint: S;---3 S; in BSTG, and each
edge between vertex i and j represents that there is a
intersection between the two vertices. A cligue of a graph
is a complete subgraph that is not contained in any other
complete subgraph of it. Variable ®; represents the
number of NOOPs to be inserted at the intersection
among the constrainis in the clique i. Let AZ be the set of

if S is a branch state; @)
otherwise,)

all cliques in G(V,E), and Z, be the set of cliques whose
veriex set including vertex v. Then, the ILP formulation
for the minimal NOOP insertion problem is lisied as
folows:

Minimize 3 w;
leAZ

Subject to: » @; 2«a,, VveVinibeG. .
ieZ,

The AZ is found by using the approach proposed by Bron
and Kerbosch [4]. After the weight @; of each clique
I€AZ is determined, the BSTG will be made k-well by
inserting @; NOOPs into the respective imtersection
positions.

Although the algorithm applying the ILP formulation
has an exponential time complexity for the worst case, the
minimal NOOP insertion problem can be quickly solved
by it for most cases. This is because First, the number of
control conditions in the BSTG are not so many and
therefore the number of produce-consume state pairs are
also not many. Thus, the number of constraint edges in
the BSTG and the vertices in G are typically few. Second,
the control conditions usually are consumed very soon
after they are produced, thus their lifetimes are short. If the
lifetime of a conirol condition is long, the distance
between the corresponding produce-consume state pair
may be large enough so that no NOOP is necessarily
inserted. As a result, few weighied dotted edges intersect
and the cliques in G are few. Therefore, the algorithm
based on the ILP formulation can obtain the globally
optimal solution in reasonable time.

" 4.2 Constructing k-factor BSTG
and Synthesizing I

After the BSTG has been made k-well, we then
construct the k-factor BSTG, which specifies the
behavioral specification of I',. The vertices of k-factor
BSTG are identical with the vertices of k-well BSTG.
Each edge of k-factor BSTG represents a state transition
from §; to §;€6; ;. The 9;; of ; is found by the depth-
first search method. After all edges in the k-factor BSTG
are generated, the conirol conditions for each edge will be
found. Since the edge S§;— S, in the k-factor BSTG
corresponds to a path §;—---= S, denoted as P;,, in the
k-well BSTG, let C,,, be the conirol conditions on the
edge S, S, of the original k-well BSTG, then the
control condition, C;,, attached to edge §;7 8, of the k-
factor BSTG can be calculated by the following equation:

C,',, = A C 9
§,-8ep, ™ ©
where A denotes logical AND, Eq.(9) represenis the
feature of input-borrow k steps of the k-factor BSTG. Fig.

209

_Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

8 shows a 2-factor BSTG example derived from the 2-well
BSTG of Fig. 5.

Afier the k-facior BSTG is consirucied, we can derive
the state table of I',. Then, I', is synthesized from the
state table by performing state assignment and logic
optimization using the tools in SIS [8]. Note that the k-
factor BSTG is an intermediate specification for
synthesizing the k-PCP. Therefore, when performing
status register allocation to determine the inputs of I,
the lifetimes of the conirol conditions im the k-factor
BSTG must be analyzed by using the state sequence of the
final k-PCP, which is identical with the state sequence of
the k-well BSTG.

4.3 Pipelining k-factor Combinational Logic

Now, the final pipelining the k-factor combinational
logic I', is performed to obtain the pipelined circuit 2,
of k-PCP. There are two types of pipeline synthesis:
stage-fixed pipelining and time-constrained pipelining.
When performing stage-fixed pipelining, the another goal
of pipelining I', is to obtain the £2, with the smallest
clock cycle time. This can be achieved by the following
two steps. First, we can convert I, into a initial
pipelined circuit by inserting k-1 registers in each primary
output of I',. Then, the retiming algorithm in [9] with
time complexity O(IV'HIE’l loglV’l) can be employed to
pipeline it to minimize the cycle time, where V’ and E’
are the collection of combinational logic elements and
interconnect wires in the circuit,

When performing time-constrained pipelining, on the
other hand, I', is pipelined inio k stages for minimizing
the number of pipelined regisiers under cycle time
consiraint 7. The retiming algorithm in [9] also can be
used to solve the problem, but it requires O(V’F logVl)
computation steps. It is not practical when [Vl is large.

We have developed a simple and efficient method with
time complexity O(k?V’I%) to solve the problem. The
method first partitions I', into k stages arbitrarily to
obtain a initial £2,, then, it iteratively minimizes the
clock cycle time of {2, or minimizes the number of
pipelined registers in £2, under cycle time consiraint 7.
The wechnique of min-cut graph partitioning proposed by
Kernighan and Lin [5] is applied. Due to space limitation,
the detailed algorithin is omitied here,

V. Experimental Results

We have implemented the pipelined conirol path
synthesis algorithm in C on a Sun/SparcZ workstation,
and applied it to synthesize the control paths for some
typical digital filiers and benchmarks in high-level
synthesis. These examples are sixth-order IR filter (6-

Proceedings of International Conference
on Computer Architecture

1IR), 16-point FIR filier (16-FIR), fifth-order elliptic wave
filter (5-EWF), differential equation solver (Diff),
conditional branches example taken from MAHA (Condl),
and conditional branches example taken from SEHWA
(Cond2). The last three benchmarks are with conditional
branches. The data paths and initial control specifications
of these examples are generated by using the high level
synthesizer MASS developed by us [6]. The module
library vsed to synthesize these examples is shown in
Table 1. The first four examples and the last two
examples are scheduled with 10ns and 20ns clock cycle
time, respectively. The initial BSTGs are then derived
from the scheduling results. Table 2 shows the data path
synthesis results. The column “OPs” and “FUs” denote
the number of operations in the CDFG and the number of
functional units for realizing the data path, respectively.
The column “conditions” and “states” represent the
number of conirol conditions and states in the BSTG,
respectively.

The experiment explains the relationship between the
pipelined stage number k and the achievable shortest
control path cycle time for the examples. During the
pipelined control path synthesis process, the state table of
each I, is represented by using the KISS [7] format, and
‘then synthesized using the state-assign (Nova) routine in
SIS [8], optimized using the standard SIS script. Each
generated T, is mapped into 2-input NAND gates using
the tech_decomp -a 2 option in SIS. The delay is
calculated using the unit-delay model. The resulis of the
stage-fixed pipelining for these examples are shown in
Table 3, where the column “pipelined stage number k"
represents the stage number of pipelined control path;
when k=0 denotes serial control. The row “@p_pcp",
“lits”, “PRs", and “states” represent the clock cycle time
of k-PCP, the literals of I',, the number of pipelined
registers in k-PCP, and the number of states in k-PCP.
All pipelined control paths are synthesized within 2
minutes. The number of states in each k-PCP without
condition branches, which is the same with its serial
conirol path, is not listed in Table 3. The curves of the
delay of I', versus pipelined stage number for example
S_EWF and Cond2 are graphed in Fig. 9. The resulis
show that each ¢ for different k is approximate to the
delay of combinational logic in the serial conirol path.
Thus, the larger the stage number k is, the shorier its
clock cycle time is. The ¢;_pc versus pipelined stage
number for 5_EWF and Cond2 examples are graphed in
Fig. 10. The shoriest clock cycle time of control path (i.e.
one gate delay) always can be achieved when the stage
number is large enough. Since the literals of I, is not
necessary increasing, the main penalty paid for reducing
the clock cycle time is the increased number of pipelined
tegisiers. Moreover, for the examples with conditional

210

branches, the number of states in the control path
increases when their siage number increases. Thus the
number of state regisiers may increase when the stage
number increases.

VI. Conclusions

We bave proposed an efficient approach o synthesizing
the pipelined control path from high level (o logic level
for performance optimization. We presenied a technique to
generaie a k-well BSTG from a k-ill BSTG by insertipg
the minimal NOOPs. Then, the combinational logic
synthesized from the k-well BSTG was pipelined inio k-
stage pipelined circuit in polynomial time. In the future,
we.would like 1o extend the approach to pipelining conirol
paths for reducing power consumption.

References

(1] J. J. Kim, F. J. Kurdahi, and N. Park, “Automatic
Synthesis of Time-Stationary Controllers for Pipelined
Data Paths,” in Proc. of the International Conference
on Computer-Aided Design, pp.30-pp.33, 1991.

[2] J. P Weng and A. C. Parker, “CGS: Conirol Path
Synthesis in the ADAM System,” 6th International
Workshop of High Level Synthesis , pp.52-64, 1992.

[3] Usha Prabhu and Barry M. Pangrle, “Superpipelined
Control and Data Path Synthesis,” in Proc. of the 29th
Design Automation Conference, pp.638-643, 1992.

{4] C. Bron and J. Kerbosch, “Finding all cliques of an
undirected graph,” Communications of the ACM, Vol.
16, No. 9, pp.575-577, 1973.

[5] B. W. Kemnighan and S. Lin, “An efficient heuristic
procedure for partitioning graphs,” The Bell System
Technical Journal, Vol. 49, No. 2, pp.291-308, 1970.

[6] J. M. Jou and S. R. Kuang, "Library-Adaptively
Integrated Data Path Synthesis for DSP Systems," in
Proc. of the International Conference on Computer
Design, pp.379-382, 1993.

[71 R. Lisanke. Logic Synthesis benchmark circuits for
the International Workshop on Logic Synthesis, May,
1989.

(8] EM. Sentovich, K. J. Singh, C. Moon, H. Savoj, R.
K. Brayton, and A. Sangiovanni-Vincentelli,
"Sequential Circuit Design using Synthesis and
Optimization,” in Proc. of the International Conference
on Computer Design, pp.328-333, Ociober 1992.

[9] C. Leiserson and J. Saxe, “Retiming Synchronous
Circuitry,” Algorithmica, 6, pp.5-35, 1991.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

clo>1
232
c3o >3

Fig.1. A simple example. (a) the SCDFG, (b) the corresponding BSTG of Fig.1(a).

i(t)

o) =plit), s

SLie), s()}

——==————=p1 combinational logic
—] CL
5 n s(+1)
u
state registers
SR

Fig.2. Structure of a serial control path.

i) =g
.

i(r+1)

s

SR’

ity ——

i(¥)

pipelined circuit €2,

cevessessancas teesessvecrssserensn cecesscsrccsssserses Y

N
3 control registers
H

state registers

Fig.4. Stucture of a k-stage pipelined control path.

i(#+1)

(@

s

ity —
e
i(r+1)
s
in =%
i(e+1)
) pipelinec:' circnit £
U
SR
®

Fig. 3. The process of pipelining a serial control path into a two-stage pipelined control path.

211

Proceedings of International Conference —
on Computer Architecture

Fig.7. The BSTG with dotted constraint edges.

Fig.5. The 2-well BSTG of Fig.1(b). Fig.8. The 2-factor BSTG of Fig.3.
Table 1. The module library used. Table 2. The results of data path synthesis.
example OPs FUs _ | conditions | states
function unit | Gotation | execution tme (1) GUR | °:13, +:12 | MUL:2 _ ADD:1 - 36
16FR | °:8 +:15 | MUL:1,__ ADD:1 . 44
addes ADD Cal SEWF | 58, +:2% | MUL 1. ADD:2 X 50
subtractor SUB 20 " Diff 8:6, 41 MUL:2, ADD:1 1 17
— MUL o <l -2 COM: 1, SUB:1
P Condl | +:8, - :8 ADD:1, __SUB: | 5 8
comparatos COM 10 Cond2 | +:8, -:7 ADD:1, __SUB:1 S 6 -
Table 3. The results of stage-fixed pipelining. 164 % JT—
14 4 i Cond?
example pipelined stage pumber k ; 12 "—/\\ -
T TT T T TE TS T T 0] —t
LR 300 L - § oo R
J 700 RN K T R R A 61
345130313700 3351.... e
- 2051 2541 971
C W X NN R 12 L3I0 10 LTI 2
|]I B | s R
- 13 e 93 176 11711183) 2081323 Fig.9. The curves of the delay of Iy, ¢y,
2121 4 B} versus its pipelined statge number k.
307,
"3’ ¢tJCP
B4l lz 42020 2, SO SN0 SURON 141 —
s a0l 20 Lioa saeT 103 a0 [aa7 | T2 4TI SEWF
e 4 1248 kL
ig 2
N .3 8l 1 1l 9
3 .9 2 Z.4.2.1.1
Condl | jits, L1584 £14 12 B AR
PRs b e - 124142 195 1 9711261 340.8 177.1 206
sares 8 1107113 116 119 T 221 251 58 [31 " ["3a 1737
[e b 8180 .89 Lo Lol o la)o L8l q.... i k
drecn). 8.1 8L 483 13 L 2L 2 2. 2. L. F...}.... [2 4 6 8 10 12
Cond2 :Eﬁé. A781220 .2%{26. l}g..%g@. %% ii.:l’g % ?g% ,%fg_ Fig.10. The curves of the cycle time of k-PCP
sates I8 18 Y0 T 2 Tha e 1813012 | a """ versus its pipelined statge number k.

212

