PRRE/\ AR EHERES

HERERTHEEALBEGEERE
Generating Customizable Guided Tours
For Networked Virtual Environments

FEZ #Ry HEF
Tsai-Yen Li, Lien-Kai Gan, and Chien-Fu Su

I ELE K

=5 3| Z
FEMHAEZ |

Computer Science Department
National Chengchi University, Taipei, Taiwan
{11,58204,58237} @cs.nccu.edu.tw

HE

HIDZ#H EHs# B 69 5 A - 7 S LT
ME A LG (25 DA 565 5 REFE F
B B L2DE A IR TS E T R
FRFTEES - HEHHEZ GG FT A2 — 0 £3E
RRHFNFEERERROGTREM — LG - A
oo BN L — A7 4 BRI IS
P BBELMAANG G FBAE - —CFHEA
Gr#a B THEAL G EHHEFES, &
54 f e I 69 RATHEME (H/40VRML2.0)
RRAHERT UGS BB EG W ERLEER

M FHAEGE B B E R BIE o EBE -

HEBZR TG RAFGRYFE2 28 - F
BRIEREURFAMIDEN L HIMET - HITFEH
LEBFF R T 7% G 38 E 18 4y b Ao B K 2ME 59 B F 5
B B E LM E 18

MeEs: aHELFE - BEgstE - @R ERTE
VRMLE# FHEHET - 2H3DE L

Abstract

Interactive 3D graphics is becoming a popular way of
publishing information on the Internet. However, most
networked VR systems today are still not very intuitive
to use, especially for a novice user equipped with a
regular PC and a 2D mouse. One way to improve such
systems is by providing users with some guidance dur-
ing the navigation of a virtual environment. In this pa-
per, we present a software system' capable of generat-
ing customizable guided tours for a networked virtual
environment. The implemented system incorporates
motion planning algorithins in Robotics into the latest
development of network-based virtual reality standards
such as VRML 2.0. A user can simply click on the loca-
tions they wish to visit and select a visiting sequence,
and the system will automatically generate a tour plan
and guide the user walk through the desired locations.
Experimental results are presented using a 3D model of
our deparrmensal building. We expect the result of this

' This work was partially supported by NSC under contract
No. N§C86-2213-E-004-006.

research to be used as new navigation assistance to
local or remote visitors of docentry systems located in
museums or national parks.

Keywords: Guided Tours, Path Planning, Networked
Virtual Reality, VRML, and Interactive 3D Graphics

1. Introduction

Computer technologies have been widely used to
provide "touring information to visitors. Most tour-
guiding systems existing today display information only
in text or in static pictures. A few systems can support
multimedia contents such as video and audio clips, but
very few can display interactive 3D graphics. This kind
of 3D-display capability used to be the privilege of ex-
pensive high-end workstations in Virtual Reality (VR)
researches. However, as personal computers become
more powerful and affordable, displaying interactive 3D
graphics on a regular PC is no longer a problem. In ad-
dition, as computer network becomes prevalent, down-
loading a virtual scene and visiting it from a distance
becomes possible or even popular. For example, with
the development of Virtual Reality Modeling Language
(VRML), one can now download and visit a virtual
scene through a regular web browser.

However, browsing experiences are usually far from
perfect for novice users equipped with regular personal

. computers. First, it is not intuitive for them to use a 2D

mouse to manipulate 3D scenes. Second, the complexity
of the models that their PC's can handle is usually quite
limited. It is true that when the VR-related industry be-
comes maturer, 3D peripheral devices might become
more accessible in the future. However, it is likely that
computing power will never catch up the increasing user
demands for high-quality visual experiences. We believe
that the key to prorhoting interactive 3D graphics on the
Internet lies on the ability to provide some kind of intel-
ligent assistance to the users of a networked VR system.
In this paper, we present a software system that can
generate customizable guided tours for users in a virtual
environment. This system incorporates motion planning
algorithms in Robotics into the latest developments in
networked VR. A 3D model of our departmental build-
ing in VRML was built to demonstrate features of our

D-189

hRREN\+AEREAERGSE

system. A user can simply click on the locations that
they wish to visit in a 2D-layout map and select a tra-
versing mode, the system will automatically generate a
tour plan and guide the user through these locations in
the virtual building. In addition, when desires, the user
can intervene the system during the tour with default
browser commands or additional functions provided by
the system.

The rest of the paper is organized as follows: In Sec-
tion 2 we describe the researches in current tour-guiding
systems, VRML, and motion planning pertaining to our
work. In Section 3 we describe the problems that we
encountered in developing a tour planning system and
some necessary simplifications for making the problems
more tractable. We then present an overview of our
system as well as its constituent modules in Section 4. In
Section 5, we give a more detail account on a few im-
plementation issues of the software system that we have
developed. In Section 6, we present sample snapshots of
our graphical user interface and some experimental re-
sults on system performance. We conclude our paper in
‘Section 7.

2. Related Work

2.1 Guided tours and VRML

Surveys on the functions of current guided-touring
systems in popular museums and parks show that most
visitors use these systems to acquire site information
such as how to visit all popular points without wasting
time wandering around. They also conclude that interac-
tive multimedia systems will be a trend in developing
the next generation of touring systems [6]. Virtual Real-
ity is a candidate technology that can add realistic visu-
alization into such systems. However, VR systems usu-
ally require vast investment on expensive peripheral

devices to achieve realistic effects. By sacrificing certain -

realistic effects and focusing on what regular PC’s can
do, it is still possible to bring exciting visualization to
general users. However, to really popularize VR tech-
nologies, a portable data format over different platforms
should also be agreed upon. This is especially important
for bringing 3D graphics onto the Internet.

VRML is an example of such platform independent
standards. After the VRML 1.0 specification was re-
leased, many Virtual Museums on the web were built in
this format [12]. However, because this version of speci-
fication only defines the geometric modeling aspect of
3D computer graphics, virtual scenes created using this
specification can only contain static objects. Several
addenda were proposed to add to it more dynamic capa-
bilities such as multimedia and animation supports.
Among these proposals, the "Moving World" proposal
is the one that becomes the basis of the VRML 2.0
specification [3]. With this new specification, the num-
ber of dynamic applications that can be accomplished by
networked VR is increasing rapidly [13].

However, not every desirable feature was included in

the final specification of this version. For example, no
agreements were reached on how to classify and de-
scribe object behaviors in a virtual environment. Ano-
ther missing feature is the ability to control a virtual
scene through external programs written in other pro-
gramming languages. The External Authoring Interface
(EAI) addendum to VRML 2.0 was proposed to fill this
need [10). Currently, several popular VRML browsers
have claimed to support this interface as part of their
standard functions [14]. With this addendum, it becomes
easier to add complex programming logic into a VRML
world.

2.2 Motion planning

It is highly desirable for a VR system to generate
guided tours automatically for its users. These tour plans
should be able to take a user through all desired loca-

tions without colliding with obstacles in the environment.

The problem of planning such a collision-free path for a
moving object is the so-called "Piano Mover's Problem"
in the Robotics literature. Researches have shown that
the general path planning problem is PSPACE-hard, and
its complexity grows exponentially in the number of
degrees of freedom (DOF) that a moving object has.
Nevertheless, several researches have reported efficient
algorithms that can solve difficult cases in reasonable
time {2][4]. The philosophy behind these researches is
pragmatism. Although the problem is theoretically diffi-
cult, it is possible to develop algorithms that run effi-
ciently most of time on most real-life examples.

The tour-planning problem we have is very similar to
the problem of generating a navigation plan for an auto-
nomous robot in a known environment [7]. However,
some differences make the design of our system chal-
lenging. For example, the length of the overall tour gen-
erated for human visitors are typically longer. No un-
certainties need to be considered like in the case of robot
navigation. In order to provide prompt responses to
interacting users, the planning time of our system needs
to be as short as possible. Furthermore, we have to inte-
grate planning results with the VRML standard in order
to take advantage of latest developments in interactive
3D graphics.

3. Problem Description and Simplifications

3.1The planning problem

Given a set of user-selected visiting points, the sys-
tem is to solve an undetermined sequence of path plan-
ning problems for traversing these locations. There are
two fundamental subproblems that we have to address:
how to find a collision-free path from one location to
another, and how to find an optimal sequence for tra-
versing these locations. The first subproblem is a typical
path planning problem in Robotics while the second
subproblem is an NP-complete Travelling Salesperson
Problem (TSP). Both subproblems are known to be in-
tractable. However, we will show that with appropriate

D-190

PERE/N\+ARERZEREEGE

simplifications and good heuristics, these problems can
be solved in reasonable time in practice.

We first define some terminology that we will use in
later sections. A configuration g of an object moving in
a 2D workspace (WS) can be modeled with three pa-
rameters: (x, v, 9), representing the position and orienta-
tion of the moving object. A Configuration Space
(Cspace) is defined over R™x[0,21) to represent all pos-
sible configurations of the moving object. The open
subset of a Cspace containing all collision-free configu-
rations is called freespace. A feasible path is defined as
a sequence of configurations in freespace connecting the
given initial and the goal configurations.

The first subproblem we have is a basic path-
planning problem for a 3-DOF object moving in a 2D
workspace. Several researches in Robotics have reported
complete algorithms that can solve a problem of this
complexity*in a few seconds [2]. However, a typical
guided tour contains several instances of this basic
problem. The time spent in planning could add up very
quickly. To ensure that the overall planning time is ac-
ceptable in an interactive environment, appropriate sim-
plifications are necessary.

The second subproblem is to find a sequence of paths
connecting the user-selected locations such that the
overall travelling distance is minimized. This is similar
to the TSP problem in graph theories and is known to be

NP-complete. For a TSP problem with Euclidean dis-

tances between locations, there are approximate algo-
rithms that can find near optimal solutions in polynomial
time [5]. However, for a workspace containing obstacles,
the real distances between these locations are unknown
prior to the search process. One straightforward way to
solve this problem is to compute the shortest path for
every pair of locations and apply an approximate algo-
rithm to the TSP problem. However, as one can predict,

this two-step approach will not yield satisfactory per-.

formance.

3.2 Simplifications

Simplifications are necessary for making our prob-
lem more tractable. First, we try to simplify the
geometric model of the moving object. In our case,
navigation happens in a structured environment (for
example, in a building), it is reasonable to assume that
the geometry of a human visitor be enclosed by a circle.
Under this assumption, the parameters of a configuration
in a path are decoupled into two parts: position (x, y)
and orientation (6). The position part can be computed
with an efficient path planning algorithm, and the orien-
tation part is added afterward to ensure the continuity of
viewer orientation in making turns. The number of
Cspace dimensions used in the planner can then be re-
duced to two, and the collision detection methods can be
made more efticient as well.

Second, we assume that the distance between two lo-
cations can be approximated by the travelling distance

Figure 1: An example of skeleton for a freespace

on the skeleton of a freespace. An example of skeletons
generated by the system is shown in Figure 1. This kind
of skeleton is a discrete form of the Voronoi Diagram
encapsulating roadmap information of a freespace. A
location must connect to this skeleton (like connecting to

" a highway via a ramp) before it can be connected to

another location in the workspace. A path found under
this assumption needs to be smoothed afterward. The
resulting smoothed path may deviate from the skeleton
but the topology remains the same. For the problem of
computing a guided tour inside a building, this is a rea-
sonable assumption since we are not likely to guide the
user through a narrow passage in a cluttered environ-
ment. Under this assumption, the size of search space for
a collision-free path can be considerably reduced.

In addition, we also assume that the size of work-
space and the locations of the obstacles inside do not
change once the data is loaded into the system. The rea-
son for making these assumptions is to simplify our
implementation such that we do not have to deal with

" time-related issues during planning. In fact, it is a more

challenging problem if the objects in the workspace can
be changed on-line.

4. System Design

Our system consists of three major modules: a 3D-
display module, a planning module, and an integration
module. The 3D-display module includes a VRML 2.0
browser and a data file. This data file contains inline
programming logic as well as 3D geometric models that
can be displayed alone in a VRML-enabled browser.
The planning module has its own graphical user inter-
face and provides path-planning services to the users. It
could also be a standalone program that simulates the
planned tour via its own interface. The integration mod-
ule is built to facilitate data communication between the
other two modules:

4.1 3D-display module

A common problem in viewing virtual scenes is that
the size of a visible scene is limited by the size of
geometry data a computer can handle. The quality of a
scene often needs to be traded off with data size in order
to display a large scene. If a display system can support
automatic and smooth transitions between adjacent
scenes, we can decompose a large scene into several
smaller ones and display them on demand. In our 3D-
display module, we make use of new animation features
in VRML 2.0 to achieve automatic scene changes. Spe-

D-181

R R\ AEEEIESES

cifically, we use proximity sensors and hyperlinks at
appropriate entrances and exits of a scene to trigger the
loading of another scene.

Scene changes can be handled in VRML built-in
nodes, but more sophisticated functionality needs to be
accomplished by an external program. Indeed, VRML
was designed to be a modeling language instead of a

programming language. An interface that allows external -

programs to request or change the data in VRML models
is crucial for our system. For example, in the 3D-display
module we allow a user to navigate a 3D scene through
default browser commands. Thus, in order to synchroni-
ze the current location of the viewpoint between the 3D-
display and planning modules, we need to be able to get
and set transformation data in a VRML model. There are
two ways to achieve this in VRML 2.0: using a script
node to connect a VRML browser to a Java program, or
using EAI functions to connect it to a Java applet. We
chose the EAI functions to control viewpoint changes in
our system since it makes the integration of the VRML
and the planning module easier as explained in later
subsections. '

4.2 Planning module

The input to the planning module include a 2D lay-
out of the workspace, the current location of the moving
object (visitor viewpoint in our case), a list of locations
to be traversed, and a user selected traversing mode.
This module outputs a smooth path going though all the
desired locations. In order to produce such a path, the
module has to prepare an appropriate search space (a
skeleton in freespace under our assumption) and then
apply a search algorithm to find a desired sequence and
its associated path.

Since the moving object is modeled as an enclosing
circle, the Cspace for a given workspace can be easily
computed by expanding the workspace obstacles with
the radius of the enclosing circle [8]. The resulting
freespace is then used to compute a skeleton. We adapt
the SKELETON procedure used in computing the "NF2"
numerical potential fields [7] to construct the skeleton.
The idea of this procedure is to incrementally expand
the boundaries of obstacles in the Cspace in a way simi-
lar to moving a wave outward to the freespace. When
the fronts of wave expansions from different origins
meet, the touched portion forms the basic skeleton. The
locations selected by a user may not be on the skeleton.

Therefore, after the basic skeleton is built, we have to-

connect each selected location to a closest point in the
skeleton. These connecting segments are treated as part
of the skeleton that is used to search for a feasible path.
There are two basic traversing modes for a user to
select: in-order and non-order. In the in-order mode, the
system traverses locations according to the order that the
user selects them. In the non-order mode, no particular
order is imposed. The user lets the system find the se-
quence yielding a path that is as short as-possible. The
firsg mode is the easier case since it can be computed as

D-192

procedure GreedySearch(q)
S < all selected locations
Qe < Gi
while Sis not empty do
Gnew — NearestConfig(ge S)
remove Qpew from S
e < Qnew
end while
end procedure

Figure 2: Greedy algorithm for path search

a concatenation of subpaths, each of which connects two
predetermined locations. The problem with the second
mode is more difficult as explained earlier.

For the second mode, we use a greedy algorithm to
find a near-optimal tour plan. The psudocode for this
greedy algorithm is shown in Figure 2. Initially every
unvisited location is included in a candidate set S. We
start from the current location g, of the moving object
and try to find the nearest location from g, using a pro-
cedure called NearestConfig. This procedure takes g.

and § as arguments and performs a breadth-first search.

from g, along all possible branches of the roadmap, uatil
an unvisited location in § is reached. This nearest loca-
tion g, is then removed from S, and its value is as-
signed to g, The same process repeats until § is ex-

* hausted, which means that we are done with visiting all

locations. The final tour plan is a path consisting of the
found subpaths concatenated in the order that they are
discovered.

The path found in the previous step consists of a se-
quence of viewpoint locations, which are only the trans-
lation components of configurations in the path. We still
need to determine the orientation of each configuration
along the path. In our system, these orientation parame-
ters are calculated based on the direction of the camera
motion. We assume that by default the camera always
faces toward the moving direction. The path found in the
previous step may have abrupt directional changes along
the path. At these points, we insert into the path some
extra intermediate configurations that change gradually
only in orientation.

The above greedy algorithm does not produce an op-
timal solution in general. First, the lengths of the paths
on the skeleton may not be the final travelling distances
after the paths are smoothed. Second, the skeleton is a
general undirected graph that may contain cycles. When
it does, the sequence found by the greedy algorithm may
not be the optimal one. Nevertheless, the results pro-
duced by our system are reasonably well. It usually gen-
erates a path keeping a safe distance from the obstacles.
This kind of paths is usually preferable to the real short-
est paths.

4.3 Integration module

The overall structure of the system is shown in Fig-
ure 3. The 3D-display module, which includes an em-

TRRENTREREHERGE

Web Browser

VRML Plug-In
AVl (i
Planning Applet l EAI Applet

Figure 3: Overall System Structure

bedded VRML browser, is connected to a Java applet
through the EAI package. This applet in turns communi-
cates through the web browser with another Java applet
implementing the planning module. When a scene is
loaded, the EAI applet first registers itself with the plan-
ning applet. When the user asks for a tour plan, the
planning applet queries the current viewpoint location
through the EAI applet and then start planning. After a
tour pat is tfound, the EAI applet starts to query new
locations: from the planning applet. The locations are
retrieved one at a time until the end of the tour.

Alternatively, the planning module can be combined
with this integration module and communication with
the VRML world directly. However, we have chosen to
separate them due to the following two reasons. First,
logically the system should have two independent proc-
essing loops: one for updating the VRML world and the
other for processing its own user interface. Second, each
module can be tested separately without affecting the
other. It would also be easier to replace any module with
a different implementation in the future.

5. Implementation

In this section we describe in more details how some
important constituent components of the above modules
are implemented.

5.1 VRML models

We use our departmental building as a demonstrative
example for our system. The geometric models in this
example were created using commercial 3D modeling
software such as 3D Studio. These models were then
exported to files in VRML 2.0 format. All models were
carefully designed such that the complexity of a scene is
reduced in order to take advantage of potential optimi-
zations used by common VRML browsers. Some ani-
mation functions are added manually into these
geometric model files via VRML2.0 built-in nodes. For
example, the transitions between different model files
are achieved by placing ProximitySensor nodes in some
predefined regions. Entering these regions will trigger an
event that loads an appropriate scene into the browser.

5.2 Path planning

The path planner 1n the planning module computes a
guided tour in three steps: a preprocessing step for a
workspace, a path searching step for a given set of loca-
tions, and a postprocessing step for smoothing a found
path.

D-193

The initial input to the planning module is a data file
containing a 2D-layout description of the 3D scene in
the display module. This layout description includes the
size of the workspace and polygons representing walls
and obstacles in the workspace. In the current imple-
mentation, this file is created manually. However,
ideally this 2D layout should be generated automatically
from its corresponding 3D scene by taking horizontal
cross sections of the VRML models. This function
should be implemented in future versions of the system.

Since the environment does not change once it is
loaded into the system, we spend some time in the pre-
computation step to compute data pertaining to the
workspace only. These data include the Cspace and the
skeleton of the freespace. By doing so, we can save time
when a user make ‘more than one request in the same
environment. In our implementation, the workspace and
Cspace are all represented by a bitmap containing a grid
in a resolution of 280 by 75. Grid cells occupied by
obstacles are filled in the workspace using a scanline
algorithm in 2D graphics. To transform this workspace
to a Cspace, we use the wave-front algorithm in [1] to
expand the boundary cells of the obstacle outward by the
radius of the enclosing circle. This Cspace can then be
used to look up collisions during the planning process.

The basic skeleton for a freespace is computed using
the algorithm described in the previous section. This
skeleton is stored as discrete points in another bitmap of
the same dimension as the Cspace. For each planning
instance, this basic skeleton is duplicated and extended
to the user-selected locations. The resulting skeleton is
then used in searching for a tour plan.

A breadth-first algorithm is used in searching for a
feasible path. We start from the node containing the

initial location and visit its neighbor nodes that are also’

part of the skeleton. These neighbors are stored in a list.
Each of them will be used to generate the list of one step
deeper/farther until the goal node is reached. Each node
keeps a reference to its parent node so that we can re-
cover the path by backtracking from the goal node to the
initial node.

The paths generated by the planner are accurate up to
certain resolution specified by the system. For example,
the translation resolution in our system is less than or
equal to 1/280 of the longest side of the workspace. The
rotational resolution is less than five degrees. The plan-
ner will not ignore any passages that are wider than a
unit cell and the generated path will not cause the mov-
ing object to jump over obstacles that are wider than a
unit cell as well. The translation resolution of a path is
ensured in both the path searching and smoothing proc-
esses while the orientation resolution is abide by in the
postprocessing step. According to the frame rate of the
display module, the system can re-parameterize the path
in order to animate it with an appropriate speed.

5.3 Integration
In our system, the VRML module is a plug-in of a

TRER/N\TAFREREREGE

Planning Applet EATI Applet
Initialization Initialization
Y v

Registration ? Register

\’ 2

Planning Request (5 Check has_path and
No

* Yes animation enable i
Retrieving Position) \LYes No
+ Get next
Path Searching Fail configuration
%Succeed #
Set VRML
Set has_pathand | | view point

animation_enable

Figure 4: Flow charts for the main loops of the
planning and EAI applets

web browser while the EAT components of the integra-
tion module and the planning module are Java applets.
The flow charts for the main loops in these two applets
are shown in Figure 4. When the web page is loaded,
the EAI applet first registers with the planning applet by
calling the object model's API functions provided by the
hosting web browser. Specifically, the getApplet-
Context function call is used by the EAI applet to get
a handle to the named planning applet. It then calls a
function provided by the planning applet to register
itself.

Two flags in the EAI applet named has_path and
animation_enable, are controlled by the planning
applet to set animation status. These two flags are set to
TRUE when a path is found. The anima-
tion_enable flag is set to FALSE when a user sus-
pends or stops the animation. The has_path flag is set
to FALSE by the planning module at the end of the tour.
The EAI applet retrieves a new configuration for the
next step of animation only if both flags are TRUE. The
EAI applet then uses this new configuration to update
the ViewPoint node in the VRML model.

6. Experimental Results’

6.1 User interface

The 3D-display and planning modules present their
graphical user interfaces in different regions of the same
web page. A snapshot of the interface showing that the
system is guiding the user through the fourth floor of our
department is shown in Figure 5. On the left of the page
is a popular VRML plug-in called WorldView(14], and
on the tight is a Java applet showing the 2D-layout map
of the floor presented by the planning module. To select
a location, the user can simply click on the map. The
planning module will automatically check if the location

2
The implemented system is available at
http://hamm.cs.nccu.edu.tw/hamm/project/ AutoTouring

"-3D;Dispvlyay Module "Planning Modulé '
Figure 5: A snapshot of the system’s user interface

is collision-free before accepting it. When the animation
of a guided tour is in progress, both interfaces reflect the
current locations of the viewer. The planning applet also
provides an interface for the user to set planning options
and to control the animation. For example, the system
allows the user to visit default or selected locations in
the scene in the order they pick or in no particular order.
The user can also suspend or stop the tour at any time
during the animation. There is a command button that
can generate a path that takes the visitor to the stair to a
different floor. The system also allows the user to
change viewing angles while keeping the same moving
direction. This option is to simulate another degree of
freedom of a human visitor: neck rotation. This rotation
angle is added to a configuration by the planning applet
before sending it to the 3D-display module.

6.2 Performance

The performance of the overall system mainly de-
pends on the performance of the 3D-display and the
planning modules. The VRML browser we used is con-
sidered to be one of the most efficient implementations
of the VRML 2.0 specification. However, for models
with complexity as in the example shown in Figure 5
(about 1.3MB in size), the system's performance is slug-
gish on a Pentium 133 PC with 64 MB of RAM. The
frame rate is about 0.5 to one frames per second. The
long delays between animation frames make it unac-
ceptable to navigate the scene interactively using a 2D
mouse. This was one of the main reasons that motivated
us to add planning capability to the system to help the
user navigate a 3D scene through automatically generat-
ed tours.

The performance of the planning module is also cru-
cial for a user to accept the system. The user may lose
his/her patience if he/she needs to wait for minutes for a
customized guided tour to be generated. We have cho-
sen Java as the programming language to implement our
planner since currently it is the only language supported
in EAIL Fortunately, our system still can generate a guid-
ed tour in a few seconds for visiting a typical number of
locations. Figures 6(a)-(c) show examples for the third
floor of our departmental building in three different
traversing modes. The times for running these examples
were measured on a Pentium-120 PC with 32MB of
RAM. The preprocessing time used to initialize the
planning module for this scene is 2.580 sec. In Figure

D-194

| PERANSEEEHARGE

STl T el R A 5 S

oo okt eyt e

3

(a)

Figure 6: Three planning examples

6(a), the planning time for visiting all défault locations
in no particular order is 0.71 sec. Figure 6(b) shows the
case where the user would like to visit five locations in
the order that he/she picked, and the planning time is
3.18 sec. Figure 6(c) shows the third case where the user
selects four locations and does not care about the tra-
versing order. The running time is 2.31 sec.

From these running times, we can get an idea about
the ‘ performance of the planning system. However,
further comparisons may not bear significant meaning.
First, the running times depend on the number of select-
ed locations, their actual locations, and the order that
they are selected. It is not easy to quantify the effects of
these factors. Second, since animation usually takes
much more time than planning, what actually matters for
the overall system is the length of the generated path.
However, the total display time depends not only on the
total length of the path but also on the frame rate at
which the computer can display. On the other hand, the
frame rate should be tunable to avoid rapid or abrupt
viewpoint changes during the animation. Consequently,
the performance of the system is more a subjective mat-
ter on the usability of the system.

7. Conclusion

Information on the Internet has become richer than
ever. A good human-machine interface is the key to
presenting information effectively. Virtual reality is one
such technology that can potentially change the way
people interact with computers. In recent years, VRML
has gradually established its position as a standard for
distributing 3D virtual scenes on the network. However,
for the results to be fruitful, we believe that it is impor-
tant to add intelligent assistance to the current VRML
browsers. In this paper, we describe an implemented
system utilizing new teatures in VRML and path plan-
ning algorithms to augment the current VRML browsers
with the function of generating customized guided tours.
We believe that such a system can serve as a good ex-
ample of incorporating machine intelligence into virtual
reality for providing convenient human-machine inter-
faces.

Bibliography

{11 1. Barraquand, B. Langlois, and J.-C. Latombe,
"Numerical Potential Field Techniques for Robot
Path Planning," [EEE Transactions on Systems,

Man, and Cybernetics, 22, pp224-241, March 1992,

{2] J. Barraquand and J.C. Latombe, "Robot Motion
Planning: A Distributed Representation Approach,”
The International Journal of Robotics Research,
10(6), pp628-649, December 1991.

[3] Rikk Carey, Chris Marrin, and Gavin Bell, editors,
"The Virtual Reality Modeling Language (VRML)
Version 2.0 Specification,” International Standards
Organization/International Electrotechnical Com-
mission (ISO/IEC) draft standard 14772, August 4
1996.

[4] H. Chang and T.-Y. Li, "Assembly Maintainability
Study with Motion Planning," In Proceedings of
1995 IEEE International Conference on Robotics
and Automation, Nagoya, Japan, ppl012-1019,
May 1995. '

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
"Introduction to Algorithms", The MIT press,
pp969-974, 1994.

[6] S.-D. Jang, "The Use and Audience Research of
Interactive Multimedia Tours Guide Systems in Mu-
seums,” Masters Thesis, Institute of Communication
Technology, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C., July 1994,

[71 J.C. Latombe, "Robot Motion Planning," Kluwer
Publishing, pp318-334, 1990.

{8] J.P. Laumond, "Obstacle Growing in a Non-
Polygonal World," Information Processing Letters,
25(1), pp41-50, 1987.

[9) T. Lozano-Perez, "Spatial Planning: A Configura-
tion Space Approach," IEFE Transaction on Com-
puters, 32(3), pp108-120, 1983.

[10] Chris Marrin, "Proposal for a VRML 2.0 Informa-
tive Annex: External Authoring Interface Refer-
ence,” URL: http://vrml.sgi.com/moving-worlds/
spec/Externallnterface.html, January 21, 1997.

[11]J.H. Reif, "Complexity of the Mover's Prob)em and
Generalizations," Proceedings of the 20" IEEE
Symposium on Foundations of Computer Science,
pp421-427. ’

[12]Virtual Museum and 3D Website Design, URL:
http://www.indians.org/vrml/index.html.

[13] Aquarelle Project the 3D Virtual Museum, URL:
http://miles.cnuce.cnr.it/cg/aquarelleold/museum.fra
me.html.

[14)WorldView browser, hitp://www.intervista.com.

D-195

