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Abstract- This paper presents a pattern run-length 
compression method. Compression is conducted by encoding 2|n| 
runs of compatible or inversely compatible patterns into 
codewords in both views either inside a single segment or across 
multiple segments. With the provision of high compression 
flexibility, this method can achieve significant compression. 
Experimental results for the large ISCAS’89 benchmark 
circuits have demonstrated that the proposed approach can 
achieve up to 67.64% of average compression ratio. 
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I. INTRODUCTION 
AS the increased complexity of System-on-a-Chip (SOC), 

more functions and hence more transistors have been 
crammed into a single chip. Although producing robust 
designs, much more faults are created accordingly. To detect 
them, a large amount of test data with longer testing time is 
essentially required, which has majorly increased the cost of 
manufacturing testing for integrated circuits [1]-[4]. An 
actively researched area is to use the compression techniques 
to reduce the large test data volume so as to extend the life of 
the aged testers that have limited memory.   

Test data compression can reduce the large test data 
volume transmitted to the circuit under test (CUT) where, 
typically, only a small portion of test data is care bits. During 
compression, the large portion of don’t cares can be flexibly 
specified to promote compression effect without impacting 
the fault coverage. In addition to saving in ATE memory, it 
saves a significant amount of testing time. During test, the 
compressed data is first sent to CUT, decompressed losslessly 
by the on-chip decoder and then serially scanned into the scan 
chain for later test. Techniques of test data compression can 
broadly be classified into three types: Code-based schemes, 
Linear-decompression-based schemes, and 
Broadcast-scan-based schemes [5]. Code-based scheme 
transfers test data into a number of codewords by recognizing 
specific properties embedded in corresponding bit-strings of 
the test data. The Huffman code [6] provides the shortest 
average codeword length among all uniquely decodable 
variable length codes. Although optimal in statistical code, it 

suffers from its exponentially grown decoder size. The 
extending works such as Huffman coding-based SHC [7], 
OSHC [8] and VIHC [9] are also proposed. Selective 
Huffman Coding [7] is an efficient test data compression 
method with low hardware overhead, which merely encodes 
the most frequently occurring symbols. Variable-Length 
Input Huffman Coding [9] analyzes the compression 
environment and fully exploits the type and length of pattern 
during compression. A 9C technique [10] uses exactly nine 
codewords to compress the pre-computed data of intellectual 
property cores in SOC. It is flexible in utilizing both fixed- 
and variable-length blocks. Besides, run-length-based   
compression method is also an effective code-based 
compression scheme, which encodes runs of repeated values. 
Examples include GOLOMB [11], FDR [12], ALT-FDR 
[13], PRL [14], and EFDR [15]. ALT-FDR [13] is a 
variable-to- variable length compression method adopting the 
same encoding manner as FDR [12]. PRL [14] is also 
efficient in compressing consecutive patterns. BM [16], a 
block merging technique in which good compression effect 
was achieved by encoding runs of fixed-length blocks, only 
the merged block and number of block merged are recorded. 
The RL-HC [17] combines the above two methods: 
run-length-based and Huffman coding for scan testing to 
reduce test data volume, test application time, and scan in 
power. MD-PRC [18], a multi- dimensional pattern 
run-length compression method was recently proposed where 
multiple pattern information is considered for compressing 
runs of variable-length patterns. 

In this paper, we present the 2n Pattern Run-Length 
(2n-PRL) compression method. The basic idea is to iteratively 
encode 2|n| runs of (inversely) compatible patterns either 
inside a single segment or across multiple segments into 
codewords. Being flexible, this method can achieve 
significant compression. The decompression logic is also 
simple and easy to implement. Experimental results have 
demonstrated its efficiency in compression. The rest of this 
paper is organized as follows: Section II presents the 
proposed method and the decompression architecture. To 
evaluate the effectiveness of the proposed method, in Section 
III, experiments for six large ISCAS’89 benchmark circuits 
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are performed. Finally, we conclude this work in Section IV. 

II. PROPOSED METHOD 

A. Test Data Compression 
Two patterns are recognized as compatible if every bit 

pair at the same position has the same value or any of them is 
a don’t-care. In the proposed approach, test set is first 
partitioned into several fixed-length (L-bit) segments in 
which L is a power of 2. Compression is then conducted on 
2|n| compatible patterns where n is a signed integer. 
Depending on the encoded pattern, the proposed method can 
be classified into two types: the internal 2n-PRL (n < 0) and 
the external 2n-PRL (n ≥ 0), characterized by the sign of the 
exponent n. The internal 2n-PRL is conducted inside a single 
segment for compressing 2|n| runs of compatible 
sub-segments. For example, consider the segment 
“100011011011” with length of 12 bits. If it is divided into 4 
sub-segments with length 12 × 2-2 = 3 bits for each, data in the 
last 3 sub-segments will be found inversely compatible with 
the first sub-segment. In this case, the segment can be 
encoded by -2-2-PRL, where the negative sign in front of the 
radix represents an inverse compatibility of the rest 
sub-segments with the first sub-segment, and the exponent 
value -2 represents that this segment is divided into 1/2-2 = 4 
segments. To represent the encoding of -2-2-PRL, we show 
the internal 2n-PRL codeword format with 3 components in 
Fig. 1(a), where sign (S) is the sign in front of the radix (“1” 
for negative and “0” for positive), exponent (E) is the value in 
the exponent field (including the sign of the exponent), and 
pattern (P) is the first sub-segment data with its don’t-cares 
properly filled-in to match the compatibility with all other 
sub-segments. As a result, this segment can be encoded into 
the codeword 1 110 100 as shown in Fig.1 (b). Note that, a 
3-bit exponent field is assumed in this case and we use a 2’s 
complement-like format to represent the value in the 
exponent field which will be explained later. 

Alternatively, the external 2n-PRL is conducted on 2n 
consecutive compatible segments. For example, if two 
consecutive segments, Si = “001xx0000xx0” and Si+1 =  

sign

1 bit

exponent pattern

L/2n bitsK bits

 
(a) 

100 011 011 011

Single segment
-2-2-PRL

1 110 100

ES P

 
(b) 

Figure 1. (a) Codeword format for internal 2n-PRL (b) an 
encoding example. 

sign

1 bit

exponent

K bits

 

 (a) 

001000000000

001xx0000xx0

00xx00000000

+21-PRL
0 001

ES
Sbase

Si

Si+1  
(b) 

Figure 2. (a) Codeword format for external 2n-PRL (b) an 
encoding example. 

“00xx00000000”, to be encoded are compatible with the base 
segment, Sbase = “001000000000”, which is the previous 
segment remained in the buffer in the decompressor. These 
two segments can be encoded by +21-PRL, where the plus 
sign in front of the radix represents that the base segment are 
compatible (not inversely compatible) with the successive 
segments and the exponent value 1 represents that there are 21 
= 2 consecutive segments compatible (or inverse compatible) 
with the base segment. To represent the encoding of +21-PRL, 
the external 2n-PRL codeword format with 2 components is 
shown in Fig. 2(a). The meanings of the two components in 
the codeword for the external 2n-PRL are the same with those 
in the internal 2n-PRL. As a result, the above segments can 
then be encoded as 0 001 as shown in Fig. 2(b). Typically, the 
external type of encodings is used when there is a valid base 
segment in the buffer (i.e., there exists at least one succeeding 
segment compatible with the base segment). While the 
internal type of encodings is used to either fill-in the buffer in 
the beginning or to renew the buffer when the base segment is 
invalid. 

In the following, as shown in Fig. 3, a simple example with 
a simplified test set is introduced to illustrate the proposed  

 

11X11XX111XXXXX1X1XXXXX10XXXXX0X
X0XXXXXXX01XXXXXX10XXXX10XXXXXXX
XXXXXXXXX1XXXXX1X0X010XX1XXX1XXX
100XXXX1101XXXX0

 
Figure 3. A simplified test set. 

TABLE I 
AN ENCODING TABLE FOR 3 EXPONENT BITS 

Type S E Type S E

External 

+24 0 100 -24 1 100
+23 0 011 -23 1 011
+22 0 010 -22 1 010
+21 0 001 -21 1 001
+20 0 000 -20 1 000

Internal 
+2-1 0 111 -2-1 1 111
+2-2 0 110 -2-2 1 110
+2-3 0 101 -2-3 1 101

compression method. In this example, test data is divided into 
ten 8-bit segments and the exponent length is assumed 3 bits. 
Table I shows the encoding table where a 3-bit exponent are 
used for 16 encodings ranged from ±24-PRL to ±2-3-PRL. As 

563



 

can be seen, the encoding for the exponent field is very 
similar to the 2’s complement representations except that the 
most negative binary number 100 is moved to represent the 
biggest positive number +4 rather than -4. For an n-bit binary, 
the 2’s complement representations can offer an encoding 
ranged from -2n-1 to +2n-1 – 1, while in the proposed 
representation,  
 the encoding is ranged from - (2n-1 – 1) to +2n-1. Table II 
shows the compression results, where the column “Buffer” 
shows the base segment in the buffer after the decompression 
of codeword. Initially, the buffer is empty and hence the 
internal 2n-PRL is used to fill in S1 to be the base segment. 
Since a larger absolute value of exponent can achieve a better 
 

TABLE II 

 A SIMPLE ENCODING EXAMPLE FOR L = 8 
Segments Buffer Codewords Types

S1 11X11XX1 11111111 01011 +2-3-PRL
S2 11XXXXX1 11111111 0001 +21-PRL S3 X1XXXXX1
S4 0XXXXX0X 00000000 1001 -21- PRL S5 X0XXXXXX
S6 X01XXXXX 10101010 011010 +2-2 -PRL
S7 X10XXXX1

01010101 1010 -22-PRL S8 0XXXXXXX
S9 XXXXXXX
S10 X1XXXXX1

 
compression, during the fill-in of S1, the encoding types of 
±2-3-PRL are firstly considered. By partitioning S1 into 23 
sub-segments with 1 bit for each, the first sub-segment is

Start

Set exponent field
length = K

Set i = 2K-1

& j = 2K-1 – 1

i ≥ 0?

Encode segments
by +2i-PRL

i ≥ 0?

Yes

Segments
encodable by

+2i-PRL?

Yes

Segments
encodable by

-2i-PRL?

Encode segments
by -2i-PRL

Yes

No

Any segments left?

Yes

i = i – 1

No

Segment
encodable by

+2-j-PRL?

Yes

Encode segment
by +2-j-PRL

Yes

Segment
encodable by

-2-j-PRL?

Encode segment
by -2-j-PRL

Yes

No
j ≥ 1?

Yes

No

j = j – 1

No

No
End

No
Exception and input

original segment

 
 

Figure 4. The Complete Encoding Flow. 
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Input
Inverse

D0D1D2D3D4D5D6D7

Decoder
SelectHold

MUX MUX MUX MUX

Buffer To scan 
chain

Codeword from ATE

Input
Inverse

 
Figure 5. The decompression architecture with L = 8 and K = 2. 

 
 

found compatible with all the rest sub-segments. 
Consequently, S1 is encoded by +2-3-PRL with the 

codeword 0 101 1. After decompression, the base segment 
(Sbase) in the buffer becomes “11111111”. Next, segments S2 
and S3 are found compatible with Sbase, they can be 
compressed by +21-PRL. Similarly, the segments S4 and S5 
are inversely compatible with Sbase, they are compressed by 
-21-PRL. S6 is not compatible or inversely compatible with 
Sbase (i.e., Sbase is invalid and has to be renewed). As can be 
seen, S6 can be compressed through the encoding of +2-2-PRL 
by partitioning it into 4 sub-segments with “10” as the 
encoded pattern and, after decompression, Sbase is updated as 
10101010. 

Now, the segments from S7 to S10 can be compressed by 
-22-PRL and Sbase is inverted to 01010101. Consequently, 
total test data volume is reduced from the original 80 bits to 
23 bits with the compression ratio of 71.25%. Inevitably, if 
some segments are found not fit any of the 2n-PRL encoding 
types, to cover these uncompressible segments, the least 
frequently-used type will be removed and the associated 
control code (sign + exponent) will be designated as 
“exceptions”. The exception type will be compressed by the 
codeword format constituted by a control code followed by 
the entire segment data. Fig. 4 shows the complete encoding 
flow for the proposed method. 

 

MUX
Original
2-1
-2-1

Output

Selection

 
Figure 6. The multiplexer for 2-bit exponent. 

 

B. The Decompression Architecture 
 

In this section, we introduce the decompression 
architecture. As shown in Fig. 5, the decompression 
architecture is designed for the compression of test data with 
segment length equal to 8 (L = 8) and the exponent length 
equal to 2 (K = 2). The encoding range is from ±22-PRL to 
±2-1-PRL. The main components include a decoder, a  
multiplexer array, and an 8-bit buffer. Decompression starts 
by receiving and identifying the control bits from the ATE. 
The corresponding signals are then launched by the decoder. 
For the internal 2n-PRL decompression, the buffer will be 
filled-in through a proper broadcast of the encoded pattern 
depending on the compression type. For the decompression of 
external 2n-PRL, the base segment in the buffer can be 
inverted, updated or remains unchanged according to the 
associated signals. We will explain the function for each 
component as follows. 

Decoder: It is a Finite State Machine (FSM), which 
receives codewords from ATE, decides the next state and 
launches the associated signals to the multiplexer array and 
buffer. Three signals, “Inverse”, “Input” and “Hold” decide 
the buffer content to be “inverted”, “updated” or “unchanged” 
respectively.
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Figure 7. The impact of different K’s on compression effect for 

circuit s5378 
Multiplexer array: It is composed of multiplexers and 
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inverters. As shown in Fig. 6, the multiplexers are placed in 
between the decoder and the buffer, each of which determines 
the output data according to the selection signal from the 
decoder. Fig. 6 shows the multiplexer. If the selection signal 
is “00” (i.e., -2-1-PRL), the attached 4-bit encoded pattern and 
its inversion pattern are output. If the selection signal is “01” 
(i.e., +2-1-PRL), a direct broadcast of the attached 4-bit 
encoded pattern is output. If the selection signal is “10”, the 
original 8-bit segment data is directly output. 

Buffer: It receives the decompressed test data and sends 
them to the scan chain for later test. The data in buffer is also 
treated as the base segment for the follow-up encoding.  

III. EXPERIMENTAL RESULTS 
We have implemented experiments on six large ISCAS89 

benchmark circuits adopting test data generated by Mintest 
[19] ATPG with dynamic compaction. The compression 
effect is evaluated by the compression ratio, which is defined 
as CR% = [(|TD| - |TE|) / |TD|] × 100%, where |TD| is the size of 
test set and |TE| is the size of the compressed test set. 

At first, we explore the impact of varying K’s (length of 
exponent) on the compression effect on the circuit s5378. As 
shown in Fig. 7, the compression ratio increases with the 
increase in K. It reaches the peak at K = 3 and then decreases 
as K continues to grow. For the compression adopting a 
smaller K, due to fewer matches in compression types, only 
low compression is obtained. While for those adopting larger 
K’s, compression effect is negatively affected by the long 
exponent in each codeword. Exploration on the optimal 
segment length (L) under a certain K is also conducted on the 
circuit s5378. The resulting compression ratios are presented 
in Fig. 8, where continue the above experiment, K is assumed 
3 and L varies from 8 to 128. As shown, the best compression 
ratio occurs at L = 16. In Table III, we explore the impact of L 
on compression effect for the six circuits with the best ones 
bolded and reports the best results in the last column. As 
shown, four out of the six reach the best compression ratios at 
L = 8 while the other two at L = 16. 

In the following, we analyze the hardware overhead of the 
decompressor architecture. The benchmark circuits and the 
decompressor were synthesized using Synopsys Design 
Compiler with a single scan chain. The decompressor area 
overhead is computed as follows:  

Area overhead = 100%
circuitbenchmark of area

ordecompress of area ×  

Table IV shows the comparison results for the proposed 
method with other methods for six large ISCAS89 benchmark 
circuits. As shown, the decompressor area overhead for the 
proposed method is reasonably small. 
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Figure 8. The impact of different L’s on the compression effect for 

circuit s5378. 

TABLE III  
 THE COMPRESSION EFFECT UNDER DIFFERENT L’S FOR SIX CIRCUITS 

Circuits Segment length Best 
CR% 8 16 32 64 128 

s5378 54.2 54.9 53.8 48.7 34.4 54.9 
s9234 57.7 55.7 49.1 35.0 23.4 57.7 

s13207 87.6 88.1 86.7 84.2 78.9 88.1 
s15850 74.3 72.1 67.8 61.5 55.8 74.3 
s38417 58.3 57.3 52.0 44.6 22.6 58.3 
s38584 72.4 71.5 68.3 62.0 53.0 72.4 
Average 67.4 66.6 63.0 56.0 44.7 67.6 
 

TABLE IV  
COMPARISONS WITH PREVIOUS WORKS IN DECOMPRESSOR AREA 

OVERHEAD(%) 

Circuits GOLOMB 
[11] 

FDR 
[12] 

EFDR 
[15] 

SHC 
[7] 

VIHC 
[9] 

9C 
[10] 

BM 
[16] 2n-PRL

s5378 4.0 7.8 8.3 16.0 5.8 8.2 12.8 4.6
s9234 3.2 5.9 6.3 13.0 4.6 6.2 9.7 3.6

s13207 4.1 3.5 3.7 5.7 2.2 3.7 5.8 1.7
s15850 2.0 3.6 3.8 6.5 2.3 3.8 5.9 1.8
s38417 0.5 1.4 1.5 2.0 0.7 1.5 2.3 0.6
s38584 0.7 1.5 1.6 2.0 0.7 1.6 2.5 0.6

 
Table V reports the compression ratios compared with 

other previous works such as GOLOMB [11], FDR [12], 
ALT-FDR [13], EFDR [15], Huffman coding-based SHC [7], 
VIHC [9], RL-HC [17], 9C [10], BM [16] and MD-PRC [18]. 
Results show the proposed method can achieve a better 
compression effect for most cases. The numbers bolded 
denote the best results for each circuit. 

IV. CONCLUSIONS 
This paper has presented a run-length-based compression 

method called 2n Pattern Run-Length. This method is very 
effective in compressing 2|n| successively compatible (or 
inversely compatible) patterns either inside a segment or 
across multiple segments. The decompression architecture is 
small and easy to implement. Experimental results for the six 
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large ISCAS’89 benchmark circuits have demonstrated that 
the average compression ratio of up to 67.64% can be 

achieved. 
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