

2n Pattern Run-Length for Test Data Compression

Cheng-Ho Chang, Lung-Jen Lee, Wang-Dauh Tseng and Rung-Bin Lin
Department of Computer Science & Engineering

Yuan Ze University
Taoyuan, Taiwan

s976145@mail.yzu.edu.tw

Abstract- This paper presents a pattern run-length
compression method. Compression is conducted by encoding 2|n|
runs of compatible or inversely compatible patterns into
codewords in both views either inside a single segment or across
multiple segments. With the provision of high compression
flexibility, this method can achieve significant compression.
Experimental results for the large ISCAS’89 benchmark
circuits have demonstrated that the proposed approach can
achieve up to 67.64% of average compression ratio.

Keywords- automated test equipment (ATE); pattern

run-length; circuit under test (CUT); test data compression.

I. INTRODUCTION
AS the increased complexity of System-on-a-Chip (SOC),

more functions and hence more transistors have been
crammed into a single chip. Although producing robust
designs, much more faults are created accordingly. To detect
them, a large amount of test data with longer testing time is
essentially required, which has majorly increased the cost of
manufacturing testing for integrated circuits [1]-[4]. An
actively researched area is to use the compression techniques
to reduce the large test data volume so as to extend the life of
the aged testers that have limited memory.

Test data compression can reduce the large test data
volume transmitted to the circuit under test (CUT) where,
typically, only a small portion of test data is care bits. During
compression, the large portion of don’t cares can be flexibly
specified to promote compression effect without impacting
the fault coverage. In addition to saving in ATE memory, it
saves a significant amount of testing time. During test, the
compressed data is first sent to CUT, decompressed losslessly
by the on-chip decoder and then serially scanned into the scan
chain for later test. Techniques of test data compression can
broadly be classified into three types: Code-based schemes,
Linear-decompression-based schemes, and
Broadcast-scan-based schemes [5]. Code-based scheme
transfers test data into a number of codewords by recognizing
specific properties embedded in corresponding bit-strings of
the test data. The Huffman code [6] provides the shortest
average codeword length among all uniquely decodable
variable length codes. Although optimal in statistical code, it

suffers from its exponentially grown decoder size. The
extending works such as Huffman coding-based SHC [7],
OSHC [8] and VIHC [9] are also proposed. Selective
Huffman Coding [7] is an efficient test data compression
method with low hardware overhead, which merely encodes
the most frequently occurring symbols. Variable-Length
Input Huffman Coding [9] analyzes the compression
environment and fully exploits the type and length of pattern
during compression. A 9C technique [10] uses exactly nine
codewords to compress the pre-computed data of intellectual
property cores in SOC. It is flexible in utilizing both fixed-
and variable-length blocks. Besides, run-length-based
compression method is also an effective code-based
compression scheme, which encodes runs of repeated values.
Examples include GOLOMB [11], FDR [12], ALT-FDR
[13], PRL [14], and EFDR [15]. ALT-FDR [13] is a
variable-to- variable length compression method adopting the
same encoding manner as FDR [12]. PRL [14] is also
efficient in compressing consecutive patterns. BM [16], a
block merging technique in which good compression effect
was achieved by encoding runs of fixed-length blocks, only
the merged block and number of block merged are recorded.
The RL-HC [17] combines the above two methods:
run-length-based and Huffman coding for scan testing to
reduce test data volume, test application time, and scan in
power. MD-PRC [18], a multi- dimensional pattern
run-length compression method was recently proposed where
multiple pattern information is considered for compressing
runs of variable-length patterns.

In this paper, we present the 2n Pattern Run-Length
(2n-PRL) compression method. The basic idea is to iteratively
encode 2|n| runs of (inversely) compatible patterns either
inside a single segment or across multiple segments into
codewords. Being flexible, this method can achieve
significant compression. The decompression logic is also
simple and easy to implement. Experimental results have
demonstrated its efficiency in compression. The rest of this
paper is organized as follows: Section II presents the
proposed method and the decompression architecture. To
evaluate the effectiveness of the proposed method, in Section
III, experiments for six large ISCAS’89 benchmark circuits

562

cdclab
打字機
978-1-4244-7638-1/10/$26.00 ©2010 IEEE

are performed. Finally, we conclude this work in Section IV.

II. PROPOSED METHOD

A. Test Data Compression
Two patterns are recognized as compatible if every bit

pair at the same position has the same value or any of them is
a don’t-care. In the proposed approach, test set is first
partitioned into several fixed-length (L-bit) segments in
which L is a power of 2. Compression is then conducted on
2|n| compatible patterns where n is a signed integer.
Depending on the encoded pattern, the proposed method can
be classified into two types: the internal 2n-PRL (n < 0) and
the external 2n-PRL (n ≥ 0), characterized by the sign of the
exponent n. The internal 2n-PRL is conducted inside a single
segment for compressing 2|n| runs of compatible
sub-segments. For example, consider the segment
“100011011011” with length of 12 bits. If it is divided into 4
sub-segments with length 12 × 2-2 = 3 bits for each, data in the
last 3 sub-segments will be found inversely compatible with
the first sub-segment. In this case, the segment can be
encoded by -2-2-PRL, where the negative sign in front of the
radix represents an inverse compatibility of the rest
sub-segments with the first sub-segment, and the exponent
value -2 represents that this segment is divided into 1/2-2 = 4
segments. To represent the encoding of -2-2-PRL, we show
the internal 2n-PRL codeword format with 3 components in
Fig. 1(a), where sign (S) is the sign in front of the radix (“1”
for negative and “0” for positive), exponent (E) is the value in
the exponent field (including the sign of the exponent), and
pattern (P) is the first sub-segment data with its don’t-cares
properly filled-in to match the compatibility with all other
sub-segments. As a result, this segment can be encoded into
the codeword 1 110 100 as shown in Fig.1 (b). Note that, a
3-bit exponent field is assumed in this case and we use a 2’s
complement-like format to represent the value in the
exponent field which will be explained later.

Alternatively, the external 2n-PRL is conducted on 2n
consecutive compatible segments. For example, if two
consecutive segments, Si = “001xx0000xx0” and Si+1 =

sign

1 bit

exponent pattern

L/2n bitsK bits

(a)

100 011 011 011

Single segment
-2-2-PRL

1 110 100

ES P

(b)

Figure 1. (a) Codeword format for internal 2n-PRL (b) an
encoding example.

sign

1 bit

exponent

K bits

 (a)

001000000000

001xx0000xx0

00xx00000000

+21-PRL
0 001

ES
Sbase

Si

Si+1
(b)

Figure 2. (a) Codeword format for external 2n-PRL (b) an
encoding example.

“00xx00000000”, to be encoded are compatible with the base
segment, Sbase = “001000000000”, which is the previous
segment remained in the buffer in the decompressor. These
two segments can be encoded by +21-PRL, where the plus
sign in front of the radix represents that the base segment are
compatible (not inversely compatible) with the successive
segments and the exponent value 1 represents that there are 21
= 2 consecutive segments compatible (or inverse compatible)
with the base segment. To represent the encoding of +21-PRL,
the external 2n-PRL codeword format with 2 components is
shown in Fig. 2(a). The meanings of the two components in
the codeword for the external 2n-PRL are the same with those
in the internal 2n-PRL. As a result, the above segments can
then be encoded as 0 001 as shown in Fig. 2(b). Typically, the
external type of encodings is used when there is a valid base
segment in the buffer (i.e., there exists at least one succeeding
segment compatible with the base segment). While the
internal type of encodings is used to either fill-in the buffer in
the beginning or to renew the buffer when the base segment is
invalid.

In the following, as shown in Fig. 3, a simple example with
a simplified test set is introduced to illustrate the proposed

11X11XX111XXXXX1X1XXXXX10XXXXX0X
X0XXXXXXX01XXXXXX10XXXX10XXXXXXX
XXXXXXXXX1XXXXX1X0X010XX1XXX1XXX
100XXXX1101XXXX0

Figure 3. A simplified test set.

TABLE I
AN ENCODING TABLE FOR 3 EXPONENT BITS

Type S E Type S E

External

+24 0 100 -24 1 100
+23 0 011 -23 1 011
+22 0 010 -22 1 010
+21 0 001 -21 1 001
+20 0 000 -20 1 000

Internal
+2-1 0 111 -2-1 1 111
+2-2 0 110 -2-2 1 110
+2-3 0 101 -2-3 1 101

compression method. In this example, test data is divided into
ten 8-bit segments and the exponent length is assumed 3 bits.
Table I shows the encoding table where a 3-bit exponent are
used for 16 encodings ranged from ±24-PRL to ±2-3-PRL. As

563

can be seen, the encoding for the exponent field is very
similar to the 2’s complement representations except that the
most negative binary number 100 is moved to represent the
biggest positive number +4 rather than -4. For an n-bit binary,
the 2’s complement representations can offer an encoding
ranged from -2n-1 to +2n-1 – 1, while in the proposed
representation,
 the encoding is ranged from - (2n-1 – 1) to +2n-1. Table II
shows the compression results, where the column “Buffer”
shows the base segment in the buffer after the decompression
of codeword. Initially, the buffer is empty and hence the
internal 2n-PRL is used to fill in S1 to be the base segment.
Since a larger absolute value of exponent can achieve a better

TABLE II

 A SIMPLE ENCODING EXAMPLE FOR L = 8
Segments Buffer Codewords Types

S1 11X11XX1 11111111 01011 +2-3-PRL
S2 11XXXXX1 11111111 0001 +21-PRL S3 X1XXXXX1
S4 0XXXXX0X 00000000 1001 -21- PRL S5 X0XXXXXX
S6 X01XXXXX 10101010 011010 +2-2 -PRL
S7 X10XXXX1

01010101 1010 -22-PRL S8 0XXXXXXX
S9 XXXXXXX
S10 X1XXXXX1

compression, during the fill-in of S1, the encoding types of
±2-3-PRL are firstly considered. By partitioning S1 into 23
sub-segments with 1 bit for each, the first sub-segment is

Start

Set exponent field
length = K

Set i = 2K-1

& j = 2K-1 – 1

i ≥ 0?

Encode segments
by +2i-PRL

i ≥ 0?

Yes

Segments
encodable by

+2i-PRL?

Yes

Segments
encodable by

-2i-PRL?

Encode segments
by -2i-PRL

Yes

No

Any segments left?

Yes

i = i – 1

No

Segment
encodable by

+2-j-PRL?

Yes

Encode segment
by +2-j-PRL

Yes

Segment
encodable by

-2-j-PRL?

Encode segment
by -2-j-PRL

Yes

No
j ≥ 1?

Yes

No

j = j – 1

No

No
End

No
Exception and input

original segment

Figure 4. The Complete Encoding Flow.

564

D0D1D2D3D4D5D6D7

Decoder
SelectHold

MUX MUX MUX MUX

Buffer To scan
chain

Codeword from ATE

Input
Inverse

D0D1D2D3D4D5D6D7

Decoder
SelectHold

MUX MUX MUX MUX

Buffer To scan
chain

Codeword from ATE

Input
Inverse

Figure 5. The decompression architecture with L = 8 and K = 2.

found compatible with all the rest sub-segments.
Consequently, S1 is encoded by +2-3-PRL with the

codeword 0 101 1. After decompression, the base segment
(Sbase) in the buffer becomes “11111111”. Next, segments S2
and S3 are found compatible with Sbase, they can be
compressed by +21-PRL. Similarly, the segments S4 and S5
are inversely compatible with Sbase, they are compressed by
-21-PRL. S6 is not compatible or inversely compatible with
Sbase (i.e., Sbase is invalid and has to be renewed). As can be
seen, S6 can be compressed through the encoding of +2-2-PRL
by partitioning it into 4 sub-segments with “10” as the
encoded pattern and, after decompression, Sbase is updated as
10101010.

Now, the segments from S7 to S10 can be compressed by
-22-PRL and Sbase is inverted to 01010101. Consequently,
total test data volume is reduced from the original 80 bits to
23 bits with the compression ratio of 71.25%. Inevitably, if
some segments are found not fit any of the 2n-PRL encoding
types, to cover these uncompressible segments, the least
frequently-used type will be removed and the associated
control code (sign + exponent) will be designated as
“exceptions”. The exception type will be compressed by the
codeword format constituted by a control code followed by
the entire segment data. Fig. 4 shows the complete encoding
flow for the proposed method.

MUX
Original
2-1
-2-1

Output

Selection

Figure 6. The multiplexer for 2-bit exponent.

B. The Decompression Architecture

In this section, we introduce the decompression
architecture. As shown in Fig. 5, the decompression
architecture is designed for the compression of test data with
segment length equal to 8 (L = 8) and the exponent length
equal to 2 (K = 2). The encoding range is from ±22-PRL to
±2-1-PRL. The main components include a decoder, a
multiplexer array, and an 8-bit buffer. Decompression starts
by receiving and identifying the control bits from the ATE.
The corresponding signals are then launched by the decoder.
For the internal 2n-PRL decompression, the buffer will be
filled-in through a proper broadcast of the encoded pattern
depending on the compression type. For the decompression of
external 2n-PRL, the base segment in the buffer can be
inverted, updated or remains unchanged according to the
associated signals. We will explain the function for each
component as follows.

Decoder: It is a Finite State Machine (FSM), which
receives codewords from ATE, decides the next state and
launches the associated signals to the multiplexer array and
buffer. Three signals, “Inverse”, “Input” and “Hold” decide
the buffer content to be “inverted”, “updated” or “unchanged”
respectively.

0.42

0.45

0.48

0.51

0.54

0.57

2 3 4
Exponent Length (K)

C
om

pr
es

si
on

 R
at

io

Figure 7. The impact of different K’s on compression effect for

circuit s5378
Multiplexer array: It is composed of multiplexers and

565

inverters. As shown in Fig. 6, the multiplexers are placed in
between the decoder and the buffer, each of which determines
the output data according to the selection signal from the
decoder. Fig. 6 shows the multiplexer. If the selection signal
is “00” (i.e., -2-1-PRL), the attached 4-bit encoded pattern and
its inversion pattern are output. If the selection signal is “01”
(i.e., +2-1-PRL), a direct broadcast of the attached 4-bit
encoded pattern is output. If the selection signal is “10”, the
original 8-bit segment data is directly output.

Buffer: It receives the decompressed test data and sends
them to the scan chain for later test. The data in buffer is also
treated as the base segment for the follow-up encoding.

III. EXPERIMENTAL RESULTS
We have implemented experiments on six large ISCAS89

benchmark circuits adopting test data generated by Mintest
[19] ATPG with dynamic compaction. The compression
effect is evaluated by the compression ratio, which is defined
as CR% = [(|TD| - |TE|) / |TD|] × 100%, where |TD| is the size of
test set and |TE| is the size of the compressed test set.

At first, we explore the impact of varying K’s (length of
exponent) on the compression effect on the circuit s5378. As
shown in Fig. 7, the compression ratio increases with the
increase in K. It reaches the peak at K = 3 and then decreases
as K continues to grow. For the compression adopting a
smaller K, due to fewer matches in compression types, only
low compression is obtained. While for those adopting larger
K’s, compression effect is negatively affected by the long
exponent in each codeword. Exploration on the optimal
segment length (L) under a certain K is also conducted on the
circuit s5378. The resulting compression ratios are presented
in Fig. 8, where continue the above experiment, K is assumed
3 and L varies from 8 to 128. As shown, the best compression
ratio occurs at L = 16. In Table III, we explore the impact of L
on compression effect for the six circuits with the best ones
bolded and reports the best results in the last column. As
shown, four out of the six reach the best compression ratios at
L = 8 while the other two at L = 16.

In the following, we analyze the hardware overhead of the
decompressor architecture. The benchmark circuits and the
decompressor were synthesized using Synopsys Design
Compiler with a single scan chain. The decompressor area
overhead is computed as follows:

Area overhead = 100%
circuitbenchmark of area

ordecompress of area ×

Table IV shows the comparison results for the proposed
method with other methods for six large ISCAS89 benchmark
circuits. As shown, the decompressor area overhead for the
proposed method is reasonably small.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

8 16 32 64 128

Segment Length (bits)

C
om

pr
es

si
on

 R
at

io

Figure 8. The impact of different L’s on the compression effect for

circuit s5378.

TABLE III
 THE COMPRESSION EFFECT UNDER DIFFERENT L’S FOR SIX CIRCUITS

Circuits Segment length Best
CR% 8 16 32 64 128

s5378 54.2 54.9 53.8 48.7 34.4 54.9
s9234 57.7 55.7 49.1 35.0 23.4 57.7

s13207 87.6 88.1 86.7 84.2 78.9 88.1
s15850 74.3 72.1 67.8 61.5 55.8 74.3
s38417 58.3 57.3 52.0 44.6 22.6 58.3
s38584 72.4 71.5 68.3 62.0 53.0 72.4
Average 67.4 66.6 63.0 56.0 44.7 67.6

TABLE IV
COMPARISONS WITH PREVIOUS WORKS IN DECOMPRESSOR AREA

OVERHEAD(%)

Circuits GOLOMB
[11]

FDR
[12]

EFDR
[15]

SHC
[7]

VIHC
[9]

9C
[10]

BM
[16] 2n-PRL

s5378 4.0 7.8 8.3 16.0 5.8 8.2 12.8 4.6
s9234 3.2 5.9 6.3 13.0 4.6 6.2 9.7 3.6

s13207 4.1 3.5 3.7 5.7 2.2 3.7 5.8 1.7
s15850 2.0 3.6 3.8 6.5 2.3 3.8 5.9 1.8
s38417 0.5 1.4 1.5 2.0 0.7 1.5 2.3 0.6
s38584 0.7 1.5 1.6 2.0 0.7 1.6 2.5 0.6

Table V reports the compression ratios compared with

other previous works such as GOLOMB [11], FDR [12],
ALT-FDR [13], EFDR [15], Huffman coding-based SHC [7],
VIHC [9], RL-HC [17], 9C [10], BM [16] and MD-PRC [18].
Results show the proposed method can achieve a better
compression effect for most cases. The numbers bolded
denote the best results for each circuit.

IV. CONCLUSIONS
This paper has presented a run-length-based compression

method called 2n Pattern Run-Length. This method is very
effective in compressing 2|n| successively compatible (or
inversely compatible) patterns either inside a segment or
across multiple segments. The decompression architecture is
small and easy to implement. Experimental results for the six

566

large ISCAS’89 benchmark circuits have demonstrated that
the average compression ratio of up to 67.64% can be

achieved.

REFERENCES

[1] S. Mitra and K. S. Kim, “X-Compact: an efficient response compaction
technique,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, Mar. 2004, pp. 421-432.

[2] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded
deterministic test," IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 23, May 2004, pp. 776-792.

[3] S. Mitra and K. S. Kim, “XMAX: X-Tolerant architecture for maximal
test compression,” Proc. IEEE Int. Conf. Comput. Design, pp 326-330.

[4] B. Koenemann, C. Banhart, B. Keller, T. Snethen, O. Farnsworth, and
D. Wheater, “A SmartBIST variant with guaranteed encoding,” Proc.
Asia Test Symp., 2001, pp. 325-330.

[5] N.A. Touba, “Survey of Test Vector Compression Techniques,” IEEE
Des. Test Comput., vol. 23, no. 4, Apr. 2006, pp. 294-303.

[6] D. A. Huffman, “A Method for the construction of minimum
redundancy codes,” Proc. IRE, vol. 40, 1952, pp. 1098-1101.

[7] A. Jas, J. Ghosh-Dastidar, Ng Mom-Eng, and N.A. Touba, “An
efficient test vector compression scheme using selective Huffman
coding,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 22, no. 6, Jun. 2003, pp. 797-806.

[8] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal Selective
Huffman Coding for test-data compression,” IEEE Trans. Comput.,
vol. 56, no. 8, Aug. 2007, pp. 1146-1152.

[9] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, “Improving
compression ratio, area overhead, and test application time for
system-on-a-chip test data compression/decompression,” in Proc. Des.
Autom. Test in Europe, Paris, France, Mar. 2002, pp. 604–611.

[10] M. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-coded
compression technique for testing embedded cores in SoCs,” IEEE
Trans. VLSI Syst., vol.13, no.6, Jun. 2005, pp.719-731.

[11] A. Chandra and K. Chakrabarty, “System-on-a-chip data compression
and decompression architecture based on Golomb codes,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no.3, 2001, pp.
355–368.

[12] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed
run-length (FDR) codes,” IEEE Trans. Comput., vol. 52, no. 8, Aug.
2003, pp. 1076–1088.

[13] A. Chandra and K. Chakrabarty, “A unified approach to reduce SoC
test data volume, scan power and testing time,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 3, Mar. 2003,
pp. 352-363.

[14] X. Ruan and R. Katti, “An efficient data-independent technique for
compressing test vectors in systems-on-a-chip,” ISVLSI, 2006, pp.
153-158.

[15] A.H. El-Maleh and R.H. Al-Abaji, “Extended frequency-directed run
length code with improved application to system-on-a-chip test data
compression,” Proc. 9th IEEE Int. Conf. Electron., Circuits Syst., Sep.
2002, pp. 449–452.

[16] A.H. El-Maleh, “Effcient test compression technique based on block
merging”, IET Comput. Digit. Tech., vol. 2, no. 5, 2008, pp. 327–335.

[17] M. Nourani and M. Tehranipour, “RL-Huffman encoding for test
compression and power reduction in scan application,” ACM Trans.
Des. Autom. Electron. Syst., vol. 10, no. 1, 2005, pp. 91–115.

[18] L-J Lee, W-D Tseng, R-B Lin, and C-L Lee, “A multi-dimensional
pattern run-length method for test data compression,” in Proc. Asian
Test Symp., 2009, pp. 111-116.

[19] I. Hamzaoglu and J.H. Patel, “Test set compaction algorithms for
combinational circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 19, no. 8, 2000, pp. 957-963.

TABLE V
 RESULT COMPARISONS WITH PREVIOUS WORKS

Circuits GOLOMB
[11]

FDR
[12]

ALT-FDR
 13]

EFDR
 [15]

SHC
[7]

VIHC
 [9]

RL-HC
 [17]

9C
[10]

BM
[16]

MD-PRC
[18] 2n -PRL

s5378 37.11 47.98 50.77 51.93 55.10 51.52 53.75 51.64 54.98 54.63 54.94
s9234 45.25 43.61 44.96 45.89 54.20 54.84 47.59 50.91 51.19 53.20 57.72

s13207 79.74 81.3 80.23 81.85 77.00 83.21 82.51 82.31 84.89 86.01 88.1
s15850 62.82 66.21 65.83 67.99 66.00 60.68 67.34 66.38 69.49 69.99 74.29
s38417 28.37 43.37 60.55 60.57 59.00 54.51 64.17 60.63 59.39 55.38 58.33
s38584 57.17 60.93 61.13 62.91 64.10 56.97 62.40 65.53 66.86 67.73 72.44
Average 51.74 57.23 60.58 61.86 62.57 60.29 62.96 62.90 64.47 64.49 67.64

567

	S7-W3-08

