
Energy-Efficient Tasks scheduling Algorithm for Dual-core Real-time Systems

Wann-Yun Shieh
Chang Gung University

Computer Science and Information Engineering
Tao-Yuan, Taiwan

wyshieh@mail.cgu.edu.tw

Bo-Wei Chen
Chang Gung University

Computer Science and Information Engineering
Tao-Yuan, Taiwan

m9729012@stmail.cgu.edu.tw

Abstract— Real-time embedded devices have been widely used
in our daily life. To satisfy the performance requirements,
most current designs tend to apply the dual- or multi-core
processor architecture in the systems. Such systems, however,
usually have low power consumption demands. Therefore the
Dynamic Voltage Scaling (DVS) technique has been included
in most designs. In this paper, we focus our study on the
energy-efficient task scheduling algorithm for the dual-core
real-time systems. Our goal is to minimize the system’s energy
consumption and maintain the performance of task execution
at the same time. To achieve this goal, we propose two
approaches: off-line and on-line. For the off-line approach, we
propose an Integer Linear Programming (ILP) based
algorithm to find the optimal scheduling. For the on-line
approach, we propose a heuristic algorithm. The experimental
results show that the energy consumption can be reduced
effectively by the heuristic algorithm, and is close to the
optimal bounds obtained by the ILP model.

Keywords-component; energy-efficient task scheduling; dual-
core real-time system; integer linear programming

I. INTRODUCTION
 Many mobile or portable devices, like car information

systems, smart phones, CULV laptops etc, become more
and more popular in our daily life. These devices usually
need to execute the real-time operations like multimedia
communications, digital signal processing, and video-stream
displaying etc. To satisfy the performance requirements,
most of their designs tend to apply the dual- or multi-core
processor architecture. However, these devices still use the
battery as the major power supply. Therefore the low-power
design issues for multi-core real-time systems become more
and more important.

 To address this problem, many studies proposed the
energy-aware task scheduling algorithms to arrange the
executions for all real-time tasks on multiple cores (typical
is dual) [4][7]. These approaches first calculate the
utilization of incoming tasks. They defined the utilization of
tasks as the ratio of time the tasks spending on executing
their works in a time interval. The time interval is usually
measured from the time the task released to its deadline.
Through the evaluation of task utilization, they can predict
whether the cores will become idle in that interval. In other
words, if a task is predicted that it will finish the execution
in one of cores before the deadline, then we can let it work
on that core by a lower voltage to save the power

consumption. Though decreasing a core’s voltage will delay
a task’s finish time, the overall energy consumption can still
be reduced by the equations of Energy (E) = Power (P) ×
Execution time (T) and P =α × CL × V2× f, whereαis the
switching probability, CL is the load capacitance, and V is
the supply voltage. This is so called the dynamic voltage
scaling (DVS) technique [2][3].

 By using the DVS technique in the energy-aware task
scheduling algorithm, each task will be scheduled to one of
cores to perform the execution by its own supply voltage.
Such a utilization-based approach is more suitable for
periodic tasks. This is because we can obtain the
information about task release time, period, workload, and
deadline of each periodic task upon its first arrival, and we
can use them to make an optimal scheduling strategy in
advance. For aperiodic tasks, however, the only information
we have is each incoming task’s workload and deadline, and
we have to use them to make low-power scheduling
decisions on the run-time.

 We use a simple example to show the scheduling effects
on aperiodic tasks. We assume the number of cores is two,
and each core can be supplied by two voltage levels for
DVS. Table 1 shows the properties of six tasks. We assume
that their arrival times are 0, 0, 1, 1, 4, and 4, respectively.
The simplest task scheduling is to use the as-soon-as-
possible (ASAP) policy without DVS. When each task
arrives, a scheduler will issue it to the core of which the
workload is the lowest. The result after scheduling is shown
in Fig. 1(a). We can see that both cores have slack time left
after all tasks finish their executions.

Instead of immediately issuing the task to a core on its
arrival, we let it wait in a queue first. When any one of cores
finishes all of allocated tasks (we call this time the
scheduling point), the scheduler will wake up to schedule
the tasks waiting in the queue by predicting the workloads
in two cores from current time to the worst deadline. Take
the tasks in Table 1 for example. At time 0, task 1 and task 2
will be allocated to core 1 and core 2, initially. Because the
deadline of task 2 is at time 4, we can let core 2 work in a
lower voltage level, say half of the original one, to perform
task 2’s execution, as shown in Fig. 1(b). (Here we assume
the execution time will become double as the voltage
reduced half times.) The first scheduling point happens at
time 2 because core 1 has task 1’s work done. Recall that
task 3 and task 4 arrived at time 1. Therefore the scheduler
will pick them up from the queue and schedule them to core
1 and core 2 afterwards. Note that due to the deadline

568

cdclab
打字機
978-1-4244-7638-1/10/$26.00 ©2010 IEEE

constraints, they cannot be executed by a lower voltage. The
scheduled result is shown in Fig. 1(c). The last scheduling
point happens at time 5, where task 3 finishes the execution
earlier than task 4. At this point, the scheduler will
determine which cores task 5 and task 6 should be issued to,
and by which voltage levels. We show one of scheduling
results in Fig. 1(d).

In Fig. 1(d), we can find that each task can be issued
dynamically to different cores by different supply voltages
with all deadline constraints satisfied. If we let the high
voltage be the 6 Volts and the low voltage be the 3 Volts, by
replacing the variables with real values in the energy
equations mentioned above, we can obtain that the energy
consumption is reduced byabout 23.3% from Fig.1(a) to Fig.
1(d).

From above example, we conclude that the key design
issue of a runtime energy-aware scheduling algorithm is, at
each scheduling point, which cores should the waiting tasks
be issued to, and which voltage level should be selected to
perform each task’s execution.

Table 1. Task Table
Task Deadline Workload

T1 2 2

T2 4 2

T3 6 3

T4 8 3

T5 11 3

T6 11 2

Time

Time

Core1
High

High

Low

Voltage

Low

T1

T2

T3

T4

T5

T6

Slack

time

Slack

time

2 5 8 11

112 5 7

Core2

0

Core1
High

High

Low

Low

2

0

T1

T2

4

Scheduling
Point

Time

Time

Voltage

Core2

(a) (b)

Core1
High

High

Low

Low

2

0

T1

T2

4

Scheduling
Point

Time

Time

Voltage

Core2

T3

T4

7

5

Core1
High

High

Low

Low

2

0

T1

T2

4

Time

Time

Voltage

Core2

T3

T4

7

5

T6

11

T5

11

 (c) (d)

 Fig. 1 The task scheduling of Table. 1

II. RELATEWORK
Many studies about real time task scheduling have been

proposed. Most of them focused on static task scheduling.
These static task scheduling approaches can also be
partitioned into two types by their constraints; one is the
time constraint [13][16], and the other is the resource

constraint [12][16]. The time constraint is to limit the total
execution time of function units for each task during
scheduling, and the resource constraint is to limit the
number of function units used in each task. Both of them
have to obtain total tasks’ detail information like release
time, deadline, and execution time before scheduling; that’s
why we call them static task scheduling.

In recent years, however, the requirements of dynamic
task scheduling have been addressed [4][8][7][17]. In [4],
the authors proposed an algorithm to balance the periodic
task loads on multi-cores and adjusted the number of active
cores to reduce leakage power. In [8], the authors proposed
a periodic task scheduling algorithm to reduce the system-
level energy consumption. They delayed the execution time
of some tasks to reduce the I/O device waiting time, thus
reduce the energy consumption for I/O device to stay in idle
state. In [7], the authors proposed an algorithm to schedule
periodic tasks on common deadline for reduce energy
consumption on multi-cores. In [17], the authors proposed
an ILP solution for aperiodic tasks on unique core. They
adjusted the execution voltage in a task at different time to
reduce energy consumption.

These studies[4][7][8][17], however, were not suitable
for the aperiodic task scheduling on multi-cores
architectures. In the unique-core architecture, the scheduler
considers only the time space to allocate tasks and
determines their execution voltages. But in the multi-core
architectures, the scheduler needs more considerations about
core selection. This is because different core-selection
policies will have different effects on the problems of load
unbalancing between cores, or task deadline-miss rates.
These issues become challenging for aperiodic tasks, and
they are what we addressed in this paper.

III. PRELIMINARIES
We show the preliminaries for the ILP model. At first,

we will give the basic definitions about the inputs of the
model, including the tasks, and the processor cores. Then
we will show the architectural model about the cores, tasks,
and the scheduler. Finally, we will show the power model
about the DVS.

A. Basic Definitions

Given an aperiodic task set T ={task1,task2,task3…taskk}
and a core set C={core1,core2}, our goal is to schedule the
tasks on the cores to finish their executions on time and
minimize energy consumption. Each task arrives upon its
release time (Ri), and contains its properties including the
predicted execution time (ei.) and the deadline (Di). The
release time is the time a task is forked to the processor. The
predicted execution time can be obtained by evaluating how
many operations in a task should be executed by the highest
supply voltage on any one of cores. All operations in a task
should be finished before the deadline. We also assume that
the execution of the task is non-preemptive. Without loss of
generality, we assume the number of cores is two, and each
core can supply two level voltages (6V, 3V) for task
execution.

569

B. Architecture model

The architectural model between the cores, tasks, and
the scheduler is shown in Fig. 2. When a task is released, it
will be inserted in the ready queue first. The scheduler will
wake up when a core finishes the executions of the tasks
allocated to it previously. At this time one core will become
idle, and we call this time a scheduling point. Note that at
each of this point, the scheduler will schedule all waiting
tasks to both of the cores depending on each core’s free time
slots and total workload of tasks currently in the ready
queue. The free time slots on each core can be counted from
the current time to the worst deadline, which is the farthest
deadline among the waiting tasks in the ready queue. The
total workload is the accumulation of predicted execution
time for all tasks waiting for scheduling. After scheduling,
the ready queue becomes empty to wait for other incoming
tasks, and the scheduler will sleep until the next time to be
awakened.

Core2Core1

Ready
Queue

Scheduler

Tasks
Fig. 2 Architecture model

C. Power model

We assume the core has two working modes, low
supply-voltage mode and high supply-voltage mode. Each
working mode will let a core have different power
consumption and different delays in task execution. The
relationship between the power consumption and the supply
voltage follows the rule of (Eq. 1), where α is the
switching probability, CL is the load capacitance, and v is the
supply voltage. From (Eq. 1), if the core needs T time slots
to execute the task, we can obtain the energy consumption
as shown in (Eq. 2). On the other hand, the relationship
between the delayed execution time and the supply voltage
follows the rule of (Eq. 3), where the v is the task executed
voltage. That is, we assume that the execution time will
become double as the voltage reduced half times.

2vCumptionPower cons
L
××= α (Eq. 1)

timeExecution umptionPower conssumptionEnergy con ×= (Eq. 2)

=×

=×
=

low vtime execution predicted

high vtime execution predicted
 timeExecution

2

1

 (Eq. 3)

Other variables which will be used in the following ILP
model and the heuristic algorithm are defined in Table 2.

Table 2. Parameters of a DVS System

Ri The taski release time.
Di The taski deadline.

ei The taski execute time when use highest voltage level.

T Aperiodic Task set T={task1,task2,task3…taskk}

taski Aperiodic taski

vi
The taski execution voltage level. vi = 1 means task execute at high
voltage, vi = 2 means task execute at low voltage.

ci The taski execution at Corei.

Li The taski start execution time.

Mi The taski finished execution time.

Qready The queue of store tasks which not be schedule.

V The voltage set v, where the V={v1,v2}

C The core set c, where’s the C={c1,c2}

IV. ILP MODEL
In this section, we show the ILP model for the dual-core

aperiodic task scheduling. To store the information about
the scheduling results, we use the decision variable

iiiii MLvctaskx ,,,,
 .The decision variable

iiiii MLvctaskx ,,,,
 is an

{0, 1} integer variable. If taski is scheduled on corei and
uses voltage vj to perform the execution in time interval

(Li,Mi), then 1,,,, =

iiiii MLvctaskx . Otherwise, 0,,,, =
iiiii MLvctaskx .

Recall that the energy consumption of a task running in
a core depends on the core’s α, c, and v. In this paper, we
assume both cores are homogeneous architecture under the
same technology. Therefore the values of α and CL for
each core can be considered as the constants. That is, Etotal
= ∑

∈Ttask
task

i

i
E , where the Etaski ∝ power × taski execute time,

and the power ∝ v2. Using the decision variable

iiiii MLvctaskx ,,,, , we write the objective function as follows.

Minimize:

∑
∈

−×=
Ttask

iiitotal
i

LMvE))((2 (Eq. 4)

For the objective function, there were several constraints

need to be followed to ensure the schedule is valid:

(1) Unique constraint
This constraint ensures that every task can be scheduled

to only one core for execution with a particular voltage level
at one time interval. We represent it as, ∀ taski T∈ ,
1<=i<=n,

570

,1,,,,,,,, ≤+∑ ∑ ∑ ∑
∈ = ∈ =Ttask

high

lowv Ttask

high

lowv
MLvctaskMLvctask

i i j j

jjjijiiiii
xx

 ∑ ∑ ∑ ∑
= =

−+

= =

=
2

1

1

,,,, 1
i i

ii

ii

i

ii

iiiii
c

high

lowv

eL

RL

D

LM
MLvctaskx (Eq. 5)

(2) Task overlap constraint

This constraint ensures that at any time each core can
execute at most one task. If taski and taskj were executed at
the same corei, then their execution times cannot overlap.
We represent it as, given core ci executed taski by voltage vi
at time interval (Li,Mi), and taskj by voltage vj at time
interval (Li,Mj), if jLiM > and iLjL > , or

iLjM > and

jLiL > ,

(Eq. 6)

In Eq. 6, the first term in the left side represents all

possible schedules for taski on core ci, and the second term
represents for taskj on the same core. There are two cases
that taski’s execution may overlap with taskj’s execution: the
first case (i.e., jLiM > and iLjL >) is shown in Fig. 3(a),

and the second case (i.e.,
iLjM > and jLiL >) is shown in

Fig. 3(b). It should guarantee that in both cases at most one
task can be scheduled to its interval for execution.

Time

Core

0

Taski

Taskj

Mi MjLjLi

Time

Core

0

Taskj

Taski

Mj MiLiLj
 (a) (b)

Fig. 3 Task overlap example

(3) Deadline constraint

This constraint ensures that each task should finish its
execution before the deadline, no matter what voltages it
used. We represent it as,∀ taski T∈ , 1<=i<=n,

 ii DM ≤ (Eq. 7)

V. HEURISTIC ALGORITHM
Considering the time complexity of the ILP approach,

we design a heuristic algorithm to schedule the tasks in the
runtime. This algorithm will be executed at each scheduling
point. We define the schedule point as the time when any
one of cores becomes idle and at that time there are tasks
waiting in the queue. In other words, between any two
scheduling points, all arriving tasks will stay in the queue
first. The major processes of the scheduling algorithm
include picking up a task from the queue, and determining
which core will perform its execution by what voltage. The
details of the algorithm are shown in Fig. 4.

In algorithm Heuristic_Scheduling, the first step is to
select a task which has the earliest deadline from the queue.
Then we call a function named DVS_decision to decide
which voltage should be used in the execution. If the free
time space from now on to the task’s deadline can tolerate
the delay of DVS execution and expanding the task’s
execution would not cause remaining tasks to miss
deadlines, then we can let it work by a low voltage. Next,
we call another function named Core_decision to decide
which core the task should be scheduled to. Here, the fact of
load balancing will be the major concern. All above steps
will repeat until all waiting tasks have been scheduled on.
The details of DVS_decision and Core_decision are
discussed below.

Algorithm Heuristic_Scheduling
Step1: Select a task (say taski) from the queue, which has
 the earliest deadline;
Step2: Call DVS_decision to decide which supply voltage
 will be used in taski’s execution;
Step3: Call Core_decision to decide which core will
 perform taski’s execution;
Step4: Repeat Step1~Step3 until all waiting tasks have been
 scheduled.

Fig. 4 Heuristic scheduling algorithm

A. DVS_decision

In this function, we use two variables to decide a
selected task’s execution voltage: Remain_time_slot and
Expected_DVS_time_slot. Remain_time_slot represents how
many free time slots on both of cores from now on can be
allocated to the remaining tasks. Assume there are n tasks
waiting in the queue, and the first farthest, and the second
farthest deadlines among these tasks are Dn, and Dn-1,
respectively. Also we assume Core1 will finish its current
task execution at Tn , and Core2 at Tn-1. Then
Remain_time_slot can be calculated by

 Remain_time_slot = (Dn + Dn-1) - (Tn + Tn-1) (Eq. 8)

On the other hand, the Expected_DVS_time_slot repres-

ents the minimal requirement of time space to perform the
DVS execution for all waiting tasks. It can be calculated by

 tasks waiting
∑

∈

=
i

i
task

DVS
taskTslottimeDVSExpected , (Eq. 9)

where DVS
taski

T is the required time space to perform taski’s
execution by DVS.

Take Fig. 5 for example. We assume Core1 will finish its
current task up at time 5, and Core2 at time 6. Also we
assume at time 5 there are three tasks waiting in the queue,
which the deadlines are 9, 11, 12, and the required DVS
execution times are 4, 2, 4, respectively. Then we can obtain
that Remain_time_slot=12 (i.e., (11+12)-(5+6)), and
Expected_DVS_ time_slot= 10 (i.e., 4+2+4) in this case.

571

For a task selected from the queue, say taski, if
Remain_time_slot ≧ Expected_DVS_time_slot and one of
cores has enough time space to tolerate taski’s DVS
execution (i.e.,≧ DVS

taski
T), then we can let taski use a low

voltage in execution. In this case, delaying taski’s execution
would not produce too much “time pressure” on the
remaining waiting tasks.

For the contrary cases, i.e., either Remain_time_slot ≦
Expected_DVS_time_slot or both of cores have free time
space smaller than DVS

taski
T , then taski should use a high

voltage to catch up the deadline constraint, the algorithm
shows as Fig. 6.

Voltage

Core1

Core2

High

High

Low

Low

Has been

allocated

Has been

allocated

5

0 6 11 12

TnTn-1

Fig. 5 Example of algorithm

Algorithm DVS_decision
Input: Remain_time_slot、Expected_DVS_time_slot
Output: taski execute voltage
Step1: If(Remain_time_slot >= Expected_DVS_time_slot
 and has one of cores has enough time space to
 tolerate taski DVS execution)
 taski do DVS;
 else
 taski can’t not do DVS;
Step2:Update Remain_time_slot、 Expected_DVS_time_slot.

Fig. 6 DVS decision algorithm

B. Core_decision

There are two cases that we have to take care of when
we schedule a task on one of cores. Take Fig. 5 for example.
Assume Core1 will finish its current task earlier than Core2.
We say that Core1 has a “larger” free time space for
scheduling, and Core2 has a “smaller” one. If we tend to
schedule a task, say taski, on Core1, both of cores may leave
too small free time space to accommodate remaining tasks’
DVS execution. Conversely, if we tend to schedule taski on
Core2, Core1 will have more free time space left, which can
let more other tasks perform their execution by DVS.
However, this is not always the best policy for all cases. For
example, if we always compact the tasks collectively on one
core (e.g., Core2 in Fig. 5), and save more and more free
time space on the other (i.e., Core1 in Fig. 5), an obvious
problem of load unbalancing will occur. To prevent this
problem, we use a variable Workload_density to decide
which core taski should be scheduled on.

The variable Workload_density represents the average
workloads per unit time that two cores may suffer during the
remaining free time clots. It can be calculated by
summarizing the total workloads of all waiting tasks, and
dividing it by Remain_time_slot, as shown in (Eq. 10):

slottimeRemain

T
densityWorkload i

i
task

DVSNon
task

__
_ tasks waiting

_∑
∈= , (Eq. 10)

where DVSNon
taski

T _ is the minimal requirement of free time

space to run taski’s execution on any one core by the highest
voltage (i.e., Non_DVS). For example, in Fig. 5,
Remain_time_slot is 12, and the total required time space
for all tasks without DVS is 5 (i.e., (4+2+4)/2); therefore the
Workload_density is 0.41.

When we select a core for scheduling, we will compare
current Workload_density and free time space in two cores.
We setup a thresholdαto identify if Workload_density is
high or low. If Workload_density is greater than α, we will
use the policy of which the waiting tasks are scheduled as
compact as possible on the core having smaller free time
space (e.g., Core2 in Fig. 5). This policy will change
reversely if the free time space on the other core (i.e., Core1
in Fig. 5) have been greater than an amount. For example, If
we have taski to be scheduled and now Core1 has free time
space of size over than four times of DVSNon

taski
T _ , then we

schedule taski to Core1 instead. This can make sure that the
workloads of two cores after scheduling would not differ too
much.

Fig. 7 shows such an example. Assume that we have
task1, task2, and task3 to be scheduled in order and the
deadlines of them are 5, 9, 10, respectively. If we have
scheduled task1 on Core1 from time 0 to time 4, then we
have two options to schedule task2: the first is to schedule it
on Core2 like Fig. 7 (a), and the second is to schedule it on
Core1 like Fig. 7 (b). It is clear to know that only saving
more free time space on one core, as shown in Fig.7 (b), can
let task3 work without missing its deadline. If now we
assume the deadline of task3 is far from time 10 and we
continue to schedule task3 on Core1, it is obvious that the
workloads of two cores are very unbalanced, which may
cause many side-effects on utilization, and energy-saving
etc.

Deadline

Time

Time

Voltage

Core1

Core2

High

High

Low

Low

T1

4

0

12

T2

T3

4

(a)

572

Time

Time

Voltage

Core1

Core2

High

High

Low

Low

T1

4

0

8

8

T2

T3

(b)

Fig. 7 Example of Workload_density is greater than α

On the hand, if Workload_density is lower than α, we
will consider the core having larger free time space first for
scheduling. Fig. 8 shows such an example. Assume at first
we have task1, task2, and task3 to be scheduled in order and
their deadlines are 5, 8, and 8 respectively. If we tend to
compact the tasks on one core and leave more free time
space on the other, then we have the scheduling as shown in
Fig. 8(a). Otherwise we have another scheduling as shown
in Fig. 8(b). Now assume that we have task4 and task5
arriving at time 5, and their deadlines are the same at time 9.
For Fig. 8(a), it is obvious that task4 can be scheduled to
Core2, but there are no free time space left for task5 any
more. But for Fig. 8(b), both of cores have enough free time
space to accommodate task4 and task5 at the same time. This
example shows that Fig. 8(a)’s policy is not suitable for the
tasks of low Workload_density because may free time space
saved from previous tasks will become unused or say a
waste for the later tasks. In this case, it is better to let
previous tasks (i.e., task1 to task3) finish their execution as
early as possible and let later tasks (i.e., task4 and task5) start
their execution immediately.

Time

Time

Voltage

Core1

Core2

High

High

Low

Low

2

T2T1

T3

4

0

8

T5

T4

5

11

9

Deadline
(a)

Time

Time

Voltage

Core1

Core2

High

High

Low

Low

6

T2

T1 T3

4

0 4

T4

5 8

T5

9

(b)

Fig. 8 Example of Workload_density is lower than α

The detail algorithm of Core_decision is shown in Fig. 9.
In our experiments, we use different workloads of tasks to

evaluate the value of α. The experimental results shows the
better value of α would be 0.4 for most cases.

Algorithm Core_decision
Input:taski、α
Output: taski execute at which core
If(workload_density > α && both of cores has enough time

 space to tolerate taski’s execution &&
no free time slot >= 4* taski execution time)

 Choose the core with small free time space;
else
 Choose the core with large free time space;

Fig. 9 Core decision algorithm

VI. EXPERIMENTAL RESULT
We implement a task generator to the generate tasks

aperiodically for evaluation. We first determine the
workload of each task, say

itaskWL , by a normal

distribution model with mean ρ. The
itaskWL is defined as:

itaskWL
ii

DVSNon
task

RD
T

i

−
=

_
, (Eq. 11)

where Di and Ri are the deadline and the release time of taski.
In later experiments, we will assign the value of ρ from 0.1
to 0.9 to represent different workloads of tasks. Once the
release time (Ri) and the workload of each task (

itaskWL)
are determined, its minimal requirement of free time space
for high-voltage execution (DVSNon

taski
T _) and the deadline (Di)

can be obtained. We let each task’s release time (Ri) follow
the Poisson distribution.

To evaluate the optimal scheduling, we implement the
ILP model in Lingo 11.0 [18], which is an optimization
modeling software for linear Programming. The results
found by Lingo can be considered as a bound for
conventional approaches. On the other hand, we implement
a runtime scheduler to run the heuristic algorithm. The
outputs of the task generator discussed above will be fed
into the scheduler. The evaluation metrics collected from the
scheduler include the energy consumption, deadline miss
rate, and each core’s utilization. Here we use the same
power model as used in [7] to calculate the energy
consumption. The deadline miss rate is the ratio of tasks
missing their deadlines by their executions, and each core’s
utilization is the ratio of total working time over the total
time for each core.

At first, we vary the threshold α in algorithm

Core_decision to determine which core selection policy
should be used for high or low Workload_density of tasks.
Fig. 10 shows the impacts of different α on energy
consumption and deadline miss rate. We can find thatα has

573

few impacts on the former but has significant impacts on the
later. This is because when theαis increased, the most tasks
will allocate on core with large free time slots, thus causes
the deadline miss (i.e., Core1 in Fig. 7(a).) But some of tasks
will allocate on another core (i.e., Core2 in Fig. 7(a).), which
means that the core has enough time slots for those tasks
execute with DVS, thus reduce energy consumption.
Because the minimal deadline miss rate happens at α=0.4,
we apply this value in the following experiments.

(a)

 (b)
Fig. 10 The Different α value in algorithm Core_decision

Fig. 11 shows the energy savings obtained by our

scheduling algorithm for different workloads of tasks (i.e.,
varied byρ). We compare the energy consumption of the
heuristic algorithm with the ILP algorithm. Both of results
are normalized to the energy consumption without any DVS
execution. When ρ equals to 0.1, the energy consumption
of the heuristic algorithm can be saved about 38% while the
bound is about 42%. The energy savings reduce whenρ
increases. This is because when the workloads of tasks are
very heavy, both of cores almost have no free time space to
let the tasks perform their execution by DVS. Fig. 11 also
shows that the differences between the heuristic algorithm’s
results and the bounds of energy saving can be limited in
5%.

Fig. 12 further shows the deadline miss rates of the
heuristic algorithm for different workloads of tasks. We can
find that only when ρ=0.9 the deadline miss rate has a
significant increase, about 10%. For most cases, the
deadline miss rates are less than 10%.

Fig. 13 further shows the core utilization of the heuristic
algorithm for different workloads of tasks. For each cores

utilization only has about 4.8% difference average.

Fig. 11 Energy saving bound

Fig. 12 Deadline miss of heuristic algorithm

Fig. 13 Core utilization of heuristic algorithm

VII. CONCLUSION
In this paper, we proposed an energy-aware task

scheduling algorithm for aperiodic tasks running on a dual-
core system. We developed the ILP models for the off-line
approach to find optimal solutions, and designed a heuristic
algorithm for the on-line approach.

In the proposed heuristic algorithm, we use two decision
functions to reduce core’s energy consumption and maintain
task’s performance. The Core_decision will leave more time
space in one core during scheduling tasks; therefore the
following tasks can get larger time space to execute with
low voltage to reduce energy consumption. The
DVS_decision will let as most as waiting tasks perform their
execution by DVS but satisfying their deadline constraints;

574

thus performance can be maintained. The experimental
results show the energy consumption can reduce effectively
by our heuristic algorithm, and is close to the optimal
bounds obtained by the ILP model.

REFERENCES
[1] AYDIN, H et al., “Dynamic and aggressive scheduling techniques for

power-aware real-time systems,” IEEE Real-Time Systems
Symposium (RTSS), 95-105, 2001

[2] BURD, T. et al., “Design issues for dynamic voltage scaling,” In
Proceedings of International Symposium on Low Power Electronics
and Design (ISLPED-00), 2000

[3] X. FEN et al., “Intraprogram Dynamic Voltage Scaling:Bounding
Opportunities with Analytic Modeling,” ACM Transactions on
Architecture and Code Optimization, Vol. 1, No. 3, Pages 323–367,
September 2004

[4] Euiseong Seo et al., “Energy Efficient Scheduling of Real-Time
Tasks on Multicore Processors,” IEEE Transactions on Parallel and
Distributed System, Vol.19, No. 11, 2008

[5] G. Magklis et al., “Dynamic Frequency and Voltage Scaling for a
Multiple-Clock-Domain Microprocessor,” IEEE Micro., Vol.23, 62-
68, 2003

[6] G. QUAN et al., “Energy Efficient DVS Scheduling for Fixed-
Priority Real-Time Systems,” ACM Transactions on Embedded
Computing System, Vol 6, No. 4, Article 29, 2007

[7] J. Chen et al., “Energy-Efficient Real-Time Task Scheduling in
Multiprocessor DVS System,” Asia and South Pacific Design
Automation Conference, 2005

[8] J. ZHUO et al., “Energy-Efficient Dynamic Task Scheduling
Algorithms for DVS System,” ACM Transactions on Embedded
Computing System, Vol 7, Article 17, 2000

[9] J. ZHUO et al., “System-level energy-efficient dynamic task
scheduling ,” IEEE Design Automation Conference, page 628-631,
2005

[10] J.M. Lopez et al., “Worst-Case Utilization Bound for EDF
Scheduling on Real-Time Multiprocessor Systems,” Proc. 12th
Euromicro Conf. Real-Time Systems, 25-33, 2000

[11] P. Tan, “Task scheduling of Real-time System Systems on Multi-
Core Architectures,” IEEE Computer Society, 2009

[12] P. Mohanty, “Peak Power Minimization Through Datapath
Scheduling,” IEEE Computer Society Annual Symposium on VLSI,
2003

[13] P. Mohanty, “Energy-Efficient Datapath Scheduling Using Multiple
Voltages and Dynamic Clocking,” ACM Transactions on Embedded
Computing System, Vol10, No. 2, Pages 330-353, 2005

[14] R. Jerjurikar et al., “Leakage Aware Dynamic Voltage Scaling for
Real-Time Embedded Systems,” Proc. 41st Ann. Technical Conf.
Design Automation, page. 275-280, 2004

[15] S.K. Baruah, “Optimal Utilization Bounds for the Fixed-Priority
Scheduling of Periodic Task Systems on Identical Multiprocessors,”
IEEE Trans. Computers,Vol.53, 781-784, 2004

[16] W. Shiue, “Low-Power Scheduling with Resource Operating at
Multiple Voltages,” IEEE Transactions on Circuits and System, Vol.
47, No 6, 2000

[17] W. KWON et al., “Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors,” ACM Transactions on
Embedded Computing System, Vol 4, Pages211-230, 2005

[18] http://www.lindo.com

575

	S7-W3-09

