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Routing Algorithms on the Bus-Based Hypercube Network
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Abstract

In this paper, we study the property of the bus-based
hypercube, denoted as Ufn,b), which is a kind of
multiple-bus network(MBN). We show the diameter and
Jault diameter of Un,b) and present an algorithm to
select the best neighbor processor via which we can
obtain one shortest routing path.
Keywords: hypercube, routing algorithm, diameter,
faulttolerance.

1 Introduction

One of the most important components of a paral-
lel processing system is the interconnection network.
The method of connecting processors is also an im-
portant consideration for design and performance of
the system. Various interconnection networks have
been proposed and studied. Notable examples are
the crossbar swiich nd multiple bus systems, muliz-
stage networks, and poini-to-point (direct) connection
schemes.

In this paper, we consider a kind of interconnection
network called the muliiple-bus network(MBN) [3,5,7,
9,16-19]. The MBN is an extension of the single bus
network. An MBN consists of a set of processors and a
set of buses. Any pair of processors can communicate
via the buses which they both are connected to, and
only one message may be transmitted on a bus during
a time step. '

MBNs have several advantages over point-to-point
networks. Some of them are listed as follows: (1)
In a point-to-point network, a communication link
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is connected to a pair of processors. In an MBN,
a cluster of processors share a single communication
bus, therefore it can be used more efficiently. (2) The
number of buses is independent of the number of pro-
cessors. Hence the network designer can make trade-
off between the performance of the architecture and
the physical resource. (3) Broadcasting is easy in an
MBN. (4) An MBN is easy to be extended to a larger
system. :

One of the disadvantages of MBNs is that it is diffi-
cult to implement very large systems. As the length of
a bus increases, the system will operate slowly. Some
overlapping connectivity networks were proposed to
solve the problem, and bandwidth formulas for these
networks were derived by using probabilistic analy-
sis methods [9]. Vaidyanathan and Padmanabhan
proposed a bus-based hypercube network, which can
perform uniform hypercube algorithms optimally [16].
Many practical hypercube algorithms are uniform.
Some special cases of uniform hypercube algorithms

have been studied and some applications of them have
been identified [1].

Many other MBNs have been proposed. Dighe et
al. proposed a class of MBN called bus-connected
ring trees(BRTs) and bus based trees(BBTs) [3]. Ali
and Vaidyanathan presented the exact lower bounds
on running ASCEND/DECEND and FAN-IN algo-
rithms on synchronous MBNs [1]. Multiple buses have
also been used in some synchronous reconfigurable
systems 11,13, 15]. Some modified network topolo-
gies have been proposed to enhance communication
performance [4, 5, 14]. Ishikawa proposed a modified
hypercube with multiple buses which used a bypass
routing method to reduce the diameter to two [6].

The rest of this paper is organized as follows. In
Section 2, we shall review the construction of the net-
work. In Section 3, we shall give the terms and no-
tations we shall use in this paper. In Section 4 and
Section 5, the distance properties between two proces-
sors will be investigated. We show that the diameter
of the n-dimensional network without faults is [%].
Accordingly, we design the shortest path routing algo-
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Figure 1: Initial structure of U.  (a)U(1,0).
(b)U(1,0).

rithm for the network, which has never been designed
before. In Section 6, We shall present some fault tol-
erant properties of this network. By finding disjoint
paths, we obtain the diameters with some bus faults
and with some bus and/or processor faults. These
results improve significantly the previous result. Fi-
nally, the conclusion will be given in Section 7.

2 Construction of the Bus-based Hy-
"~ percube Network

In this section, we shall describe how to construct
the bus-based hypercube network [16]. The bus-based
hypercube network U(n,b) consisis of 2" processors
and 2% buses, where b < n. The fan-out of each pro-
cessor, the number of connections to buses, is either
[4£2] or [4£1]. A processor with fan-out [X$2] is
called a high processor and with [21] is called a low
Pprocessor. ’

The construction of U(n, b) is similar to that of the
hypercube. In U(n,b), each processor has a unique
identifier between 0 and 2" — 1, and each bus also has
a unique identifier between 0 and 2° — 1. U(n,b) can
be represented by a Boolean matrix A4, ; of size 2" x
2%, where the entry (%, ) = 1if and only if processor
1 is connected to bus j. U(n,b) can be defined by the
following recursive way:

(1) The initial structure of the bus-based hypercube
network, U(1,0) and U(1,0), are shown in Figure 1.
In the figure, L and H are used to denote a low pro-
cessor and a high processor respectively. U(1,0) is an
inverse of U(1,0). In U(1,0) or U(1,0), the bus is
called the host bus of these two processors, because
the processors are connected to the bus first.

(2) The construction of U(n + 1,5+ 1) can be ex-

plained by the Boolean matrix M,41 341, which is .

divided into four quadrants, as shown in Figure 2.
Each quadrant is a matrix of size 27 x 2. Initially,
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Figure 2: Construction of U(n+1,b+1).
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Figure 3: Construction of U(2,1). (a) Combining
U(1,0) and U(1,0). (b) Adding connections(dashed
lines) in low processors in U(1,0) and T (1,0). Then
change the state from low to high and the state from
high to low.

the first and third quadrants are all 0’s, the second
and fourth quadrants are U(n,b) and U (n,b) respec-
tively. Assume i and j, 0 < 4,7 < 2" — 1, are a low
and a high processor in U(n,b) respectively. Then i
and j are high and low processors in U (n,b) respec-
tively. As shown in Figure 2, a connection is added
from a low processor ¢ of U(n,b) to the host bus d
of the high processor i of U(n,b). Here the bus d is
called a guest bus of ¢ of U(n,b). And, similarly, a
connection is added from a low processor j of U(n, b)
to the host bus ¢ of the high processor j of U(n,b),
and the bus ¢ is a guest bus of j of U(n, b). A

(3) To obtain U(n + 1,b), two U(n, b)’s are com-
bined, but the buses are not doubled. The buses in
the two U(n,b)’s are overlapped.

As examples, the constructions of U(2,1), U(3,1)
and U(3, 2) are shown in Figure 3, Figure 4 and Figure
5 respectively.

The following theorem gives some properties of
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Figure 4: The construction of U(3,1). U(3,1) consists
of two U(2,1)’s, and the buses are shared to each
other.
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Figure 5: The bus-based hypercube U(3,2).

U(n,b) and U(n,b).
Theorem 1 [16] For all0<b<n -1,

(1) U(n,b) can run any step of a uniform hypercube
algorithm optimally.

(2) Each bus is connected by (b+ 2)2*~*~1 proces-
sors.

(3) Processori, 0 < i< 2" —1, is a high(low) pro-
cessor of U(n,b) if and only if processor i is a
low(high) processor of U(n,b).

(4) Each bus j of U(n,b) or U(n,b) is connected to
at least 1wo processors iy and iz such that 0 <
i1 <21 —1and 21 <ip <27 - 1.

Vaidyanathan and Padmanabhan also showed that
U(n,b) has a low diameter and is highly resilient to
bus faults [16].
denotes the diameter of U(n,b) with any f bus faults.

Theorem 2 [16] For alln > b > 0, for allO<f<
2511, DB(n,b,f) < b+2f +1. :

3 Definitions and Notations

We need some notations as follows.

¢ Bin(é,n): n binary bits for representing i, where
0 <7 < 2" — 1. The rightmost and leftmost bits
of B(¢,n) are counted as bits 0 and n — 1 respec-
tively.

e Zero(i,n): number of bit positions in Bin(i, n)
having value 0.

The bus-fault diameter DB(n,b, f) .

© One(z) number of b1t positions in Bén(i,n) hav-
ing value 1.

Even(t): number of even bit positions, excluding
bit 0, in Bin(%,n) having value 1.

Odd(z): number of odd bit positions in Bin(i,n) -
having value 1.

B(i): the set of buses connected to processor i.

H(i,4): the distance from processor i to proces-
sor j, which is the number of hops in the shortest
path from 7 to j.

e Rjj: the bit-wise exclusive-or operation on ¢ and
i, Le. Ry = Bin(i,n) @ Bin(j,n) = (ra-1,
TRe2y00ey T'g).

e SP(i,j): the processors on one shortest routing
path from processor ¢ to processor j.

o State(i): the state of processor 7, either high or
low.

e High(i): a Boolean function. If processor i is
high, then High(i) = 1, and High(¢) = 0 if oth-
erwise.

e D(n,b): the diameter of U(n,b).

e DB(n,b,f): the bus-fault diameter of U(n,b)
with any f bus faults.

e DF(n,b, f): the fault diameter of U (n, b), where
f is the sum of bus faults and processor faults.

4 Distance Properties of U(n,b) where

b=n-—-1

We shall present some distance properties of
U(n,b), with which we can route message efficiently.
We discuss the simple case that b = n — 1 in this sec-
tion. The properties of U(n,b) when b < n — 1 can
be easily extended and will be discussed in the next
section.

Theorem 3 In U(n,b), b =n—1, Zero(i,n) is even
if and only if i is a high processor and Zero(j,n) is

~odd if and only if j is a low processor.
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Theorem 4 InU(n,b), b = n—1, processor i=(cp—-1,
Cn—2,..., Cg) 18 connected to the buses
(1)(en=1,cn-2,...,c1), which is the host bus of pro-
cessor i, and
(2)(en=1,¢n=2, .., T, ..., 1), where (n — 1) is odd if
i is o high processor, and (n —1t) is even tf i i3 a low
processor.
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Suppose i = (Cn—1, Cn=2,-C0) and j = (daliy
dn-2,..,do). Let R;; = Bin(i,n) @ Bin(j,n) =
(Pn=1y Tn—2yeeey o), Where rp = ¢ Pdz, 0 < 2 <
n—1.

Theorem 5 In U(n,b), b =n —1, let B denote the
set of buses to which both processors i=(cn-1, Ca-2,
cery €0) and j=(dn_1, dn_2,..., do) are connected, i.c.
B = B(i) N B(j). Each of the following is true.

(1) H(i,j)=1 and Siate(i)=State(j)=high if and
only if One(R;;)=2, rs=ry=1, where s > t,
and (n — s) is odd, (n —1) is odd or t=0, and
B={(tn-1, Cn=2, s Csy.., €1)} UB', where

B’—{ ift>0.

ift=0.
(2) H(i,j)=1 and State(i)=State(j)=low if and
only if One(Ry;)=2, re=r;=1, where s > 1, and
(n — s) is even, (n —1) is even ort = 0, and
B={(cn-1, Cn=2,.-) Csy.-, 1)} UB', where

B'—{ ift>0.

ift=0.
(8) H(i,j)=1 and State(i)=high and State(j)=low
if and only if one of the following two subcases
are iruve.

(Cn-1,Cne2, ., -y C1)
(cn-;, Cn=2; ) C1)

(Cn-la cn—?al“)at.; 23 C])
(en-1,Cn=2,..,€1)

(i) One(R;;)=1 and ry=1, where 0 < s <n—1,
and B =

~Lemma 2 In U(n,b), b = n — 1, suppose i is

(Cn—ly Cn=2; -+ Cs) »-,01) Z'f(n—s)
is odd, or
(Cn=1,Cn=2y.sCs,.n€1) if (n—3) is

even or s=0.

(#1) One(R;;)=3 and ro=r;=ry=1, where n —
" s is odd and n — 1 is even, and B ={
(Cn—lacn—ﬁrﬂc_s.s"acl)}'

Theorem 5 can be used to guide the routing from
a source processor to a destination processor. If one
of case (1) or case (2) of Theorem 5 is applied in one
routing step, we call it is a 2-bit routing step. If case
(3)(i) and case (3)(ii) of Theorem 5 are applied in one
routing step, we call them are I1-bit and 3-bét routing
steps respectively.

To send messages from source ¢ to destination j via
one shortest path, we must select a neighbor processor
from all connections of processor 7 properly. Before
presenting how to select one best neighbor processor
of the source processor, we give the distance between
two processors.

Lemma 1 InU(n,b), b = n—1, the distance belween
processors i and j is H(i,j) < [%-g—'ﬂj +1.
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the source processor and j is the destlination pro-
cessor. There exists a neighbor h of processor i,
where One(Rpj) < One(Ry;), such that for any neigh-
bor k of processor i, if One(Ri;) < One(Re;), then
H(h,5) < H(E, ).

Theorem 6 In U(n,b), b=n—1,

(1) H(i, j)=2 if Odd(Rij)=ro=1 and Even(R:;)=0
and n+ High(i) = even, or if Even(Ry;)= ro=1
and Odd(R;;) =0 and n+ High(i) =odd.

(2) H(,j) = [2reniidy 4 [Q0ERDT if o =),

(3) H(i,j)= |Benffil| 4 2446 | 17 4f other-
wise.

Theorem 7 In U(n,b), b = n — 1, the diameter is
D(n,b) =[%] ifn >3, and D(n,b)=n ifn < 2.

Since the case that One(R;;) < 3 can be obtained in
the proof of Theorem 6, we present only the case that
One(R;;) > 3 as follows. Our shortest path routing
algorithm is described in the following corollary.

Corollary 1 In U(n,b), b = n~1, suppose i is the
source, j is the destinatlion processor and One(R;;) >
3. The following rules can be used to select the best
neighbor of processor i.

(1) 7o = 0: a 3-bit routing step, a 2-bit routing step,
or a 1-bit routing step which changes bit z, where -
z is even if Even(Ry;) is odd end x is odd if
-Odd(Rij) s odd.

(2) Case 2: ro = 1, Even(R;;) and Odd(R;;) are
even: a 3-bit routing step, a 2-bit rouling siep,
or a 1-bit rouling siep.

(3) ro = 1, Even(R;;) and Odd(R;;) are odd: o 3- -
bit routing step, or a 2-bit routing step excluding
changing bt 0.

(4) ro=1, Even(Ry;) is even and Odd(Ry;) is odd: a
3-bit routing step, ¢ 2-bit routing step ezcluding
bit 0, or a 1-bit routing step which changes an
even bit.

(5) ro=1, Even(R;;)is odd and Odd(Ry;) is even: a
3-bit routing step, a 2-bit routing step, or a 1-bit
rouling step which changes an odd bit.
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5 Extension to an Arbitrary Value b of

U(n,b)

In this section, we shall extend the properties of
U(n,b) to the case 0< b < n — 2. By the construct-
ing method of U(n,b), we apply the fully doubling
method in b times, and the partially doubling method
in(n—5b- 1) times. Therefore, there are 27?1
U(b+ 1,b)’s in U(n,b), and each U(b + 1,b) shares
the common buses to each other. The processor i=
(€n=1y Cn=2,0y C1,¢0) in U(n, b) can be viewed as the
processor &' =(¢p, Cp=1,+++ €1,¢0) in U(b+1,0), and the
bits Cn—1, Cn—2,..y Ch+1 Of processor i can be viewed
as the binary index of the U(b+ 1,b) which processor
i belongs to. Hence, the extension method is to reas-
sign the processor identifier by excluding bit (b + 1)
through bit (n— 1), and all properties in the previous
section can also be obtained.

By the above extension method, the diameter of
U(n,b) is the same as that of U(b + 1,b). Thus, we
can extend Theorem 7 to the theorem as follow.

Theorem 8 In U(n,b), 0 <b< n—1, the diameter
is D(n,b) = [5L] if b > 2, and D(n,b)=b+ 1 if
b< 1.

6 Fault Tolerance of the Bus-based
Hypercube

Hypercube networks have some good fault toler-
ance properties. Much interest has been paid on the
hypercube network [2, 8,10,12]. Therefore, we are
also interested in the fault tolerance properties of the
bus-based hypercube network.

In the following, we shall list the lemmas and the-
orems, and omit their proofs due to the pages limita-
tion.

Lemma 3 In U(n,b), b=n~1, let i and j are two
processors. If there exist k paths whose buses are all
distinct and the number of difference bils between ev-
ery two adjacent buses on one path is one, then the k
paths are processor disjoint.

Theorem 9 In U(n,b), b=n—1, b > 2, there are
(m — 1) bus disjoint and processor disjoint paths be-
tween any pair of processors where m is the minimun
value of fan-ouls of the two processors.

Then, we have the following corollary.
Corollary 2 In U(n,b), b = n—1, b > 2, for all

0 < f < [%52], the fault diameter DF(n,b, f) < b+1,
where f is the sum of bus foults and processor faults.
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Theorem 10 In U(n,b), b=n—1, b > 4, there are
m bus disjoint paths beiween any pair of processors
where m is the minimun value of fan-outs of the two
processors.

For example, in U(8,7), assume processors
i =(00000000), j =(11111110) and & = (1111111).
Then we have B(7) = {0000000, 0000001, 0000100,
0010000, 1000000}, B(j) = {1111111, 1111101,
1110111, 1011111}, and B(k) = {1111111, 1111110,
1111011, 1101111, 0111111}, There are 4 bus
disjoint paths between processor ¢ and j. They
are Bg(i,j) = {B0000000, B0001010, B0101010,
B1111010, B1111111}, By(i,]) {B0000001,
B0101001, B0111101, B1111101}, Ba(4,j)
{B0000100, B0100110, B0110111, B1110111}, and

Bs(i,j) = { B0010000, B0011010, B0011111,
B1011111}. There are 5 bus disjoint paths
between processors ¢ and k. And they are
Bo(i,k) = {B0000000, B0001010, B000111l,
B1011111, B1111111}, Bi(i, k) = {B0000001,
B0000011, B0000010, B0010110, B1010110,
B1111110 }, Bao(i, k) {B0000100, B0001100,
B0001000, B0011001, B1011001, B1111110 },
Bs(i,k) = { B0010000, B0110000, B0100000,

B0100101, B1100101, B1101111 }, and By(i, k) =
{ B1000000, B1101000, B0101000, [B0101101,
B0111101, BO111111 }.

Then, we also have the following corollary.

Corollary 3 InU(n,b),b=n—1,b2> 4, farallO <
< [9—'—] the fault diameter DB(n, b, f) < |3 +3,
where [ is the number of bus faults.

Theorem 9 and Theorem 10 can be extended to the
case b < n—1 easily. The reason is similar to Section
5. Therefore, by Theorem 9, the diameter DF (n, b, k)
in U(n,b) is no more than b+ 1. Similarly, Theorem
10 is also true when b < n—1,

Theorem 11 InU(n,b),1<b<n—-1,b2>2, forall
0<r< fb 31, the fault dzameierDF(n b, f) <b+1,
where fis the sum of bus faults and processor faults.

Theorem 12 In U(n,b), 1 <b<n—1,0b24, for
all 0 < f < [%54], the fault diameter DB(n,b, f) <
[-%J + 3, where f is the number of bus faulis.

Vaidyanathan and Padmanabhan showed thai
U(n,b) is highly resilient to bus faults [16]. Thus, our
result has a significant improvement on their result.

7 Conclusion

Given a processor ¢ in U(n,b), by the binary iden-
tifier of ¢, the state of , high or low, can be deter-
mined. Then we obtain the buses which processor ¢
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is connected to. Purthermore, the neighbor proces-
sors of 7 can also be obtained. From the properties of
neighbor processors, we present a routing algorithm
to transmit messages from the source processor to the
destination processor via one shortest path, and the
diameter is shown to be [%1] in U(n,b). We also
present a method to find (m — 1) bus disjoint and
processor disjoint paths between the source processor
and the destination processor, where m is the min-
imum value of fan-outs of the source processor and
the destination processor. In U(n,b), we show that
the diameter DF(n,b, f) < b+ 1 where f is the sum
of bus faults and processor faults and 0 < f < ["'73]
We also show that DB(n,b,f) < [3] + 3, where
0<f< [ﬁg—l-'l and f is the number of bus faults,
The results are independent of the number of faults.
Therefore, the result is better than that was proposed
by Vaidyanathan and Padmanabhan [16].
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