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ract—Let G(V, E) be an undirected and connected 

simple graph with n vertices. A positive weight 1w (v) is 

ociated to each vertex v and a positive length 2w (e) is 

ciated with each edge e. Given an integer p ≥ 1, the 

fundamental p-Center problem is to locate a p-vertex set 

Q of G for the establishment of facilities. Minimizing the 

maximum weighted distance for each vertex v in V – Q to 

its nearest facility site is the most important criteria. This 

paper focuses on the issue of finding connected p-centers 

on graphs, called the Connected p-Center problem (the 

CpC problem), which is a new practical variant from the 

p-Center problem. A p-center Q is connected if the 

subgraph induced by the vertices in Q is connected. 

Under the assumption that the clique path is given, this 

paper designs an O(n)-time algorithm for the CpC 

problem on interval graphs with 1w (v) = 1, for all 

tices v, and 2w (e) = 1, for all edges e. 
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I. INTRODUCTION 
E) be an undirected an

le graph with n vertices. A positive weight 
1w (v) is associated to each vertex v and a positive 
gth 2w (e) is associated with each edge e. The 

notation u, v) denotes the length of the shortest 
path from v to u, for all pairs of vertices u and v. 
For any subset Q of V, d(Q, v) = min{d(u, v) | for 
all u ∈ Q}, for all v ∈ (V – Q) and β(Q) = 
max{ 1w (v) * d(Q, v) | for all v ∈ (V – Q)}. Given 
an integer p ≥ 1, the p-Center problem involves 

finding a set D with p vertices of G(V, E) to 
minimize β(D). 
 The p-Ce

len
 d(

applications to wide-area of real-life problems. For 
example, issues related to find the best locations 
for placing various facilities, such as routers and 
Web proxy servers over the Internet, can be 
modeled by the p-Center problem. If the input 
graph can be any general graph, the p-Center 
problem is well-known to be NP-Hard [5]. Due to 
theoretical and practical importance, extensive 
research results exist for the p-Center problem as 
well as its related problems. Some literatures gave 
elegant and detail surveys. Please refer [2, 3, 9, 11] 
for understanding the newest results about models, 
generalizations, variations, algorithmic results, etc., 
for the p-Center problem. 

Recently, the authors 
tical variant of the p-Center problem, called 

the CpC problem. From the aspects of selection of 
backup sites of Web proxy servers or distribution 
of the workloads among the routers over a 
computer network, it is practical to require that the 
p-vertex center induces a connected subgraph. In 
such allocations, if a center vertex u fails or its 
load volume is too high, then at least one of other 
center vertex v can take or share the tasks of u 
without passing messages through any non-center 
vertices. This can greatly improve the quality and 
efficiency of backup and load balancing among the 
center vertices. 

A p-center 
e input graph G herein. Furthermore, if the 

subgraph induced by H is connected, then H will 
be called a connected p-center. The following 
formally states the problem studied in this paper. 
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The Connected p-Center Problem (The CpC 
problem): Given an integer 1 ≤ p < n, find a 

s follows. Section 2 
ill give basic concepts of interval graphs and 

show
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ELIMINARY RESULTS 
Interval graphs form an important subclass 

of chord Ω be a 

evelop the 

, the authors in [1] proved that it 

heo m 1: The CpC problem is NP-Hard on 

, y
r p and a graph G, 

connected p-center D of the given graph G(V, E) 
to minimize β(D). D is called an optimal 
connected p-center, or simply an optimal solution 
of the CpC problem on G. Meanwhile, β(D) is 
called the optimal value of G. 
 

The paper is organized a
w

 some preliminary results. Give the clique 
path with q cliques, Section 3 will design an 
O(n)-time algorithm for the CpC problem on 
interval graphs with 1w (v) = 1, for all vertices v, 
and 2w (e) = 1, for all edges e. Finally, Section 4 
will discuss possib  extensions and make 
conclusions. 
 

II. PR
 

al graphs. For any graph G, let 
cycle containing four or more vertices. A chord of 
Ω is an edge connecting any two nonadjacent 
vertices of Ω. G is a chordal graph iff each cycle 
Ω of G has a chord [4, 6, 10]. Meanwhile, let I be 
any set of n intervals on the real line. A graph 
G(V, E) is an interval graph if there exists a 
1-to-1 and onto function f from V to I, such that 
(u, v) ∈ E iff the two intervals f(u) and f(v) 
intersect nonempty, and vice versa [7]. 
 This paper uses an elegant representation of 
interval graphs, called clique path, to d
algorithm. In [6], the author proposed a clique 
tree T to represent a chordal graph G, where each 
node of T corresponds to a maximal clique of G 
and each vertex v of G corresponds to the subtree 
formed by the clique nodes containing v. Given 
any chordal graph G, a clique tree T can be 
constructed in O(m + n) time [10]. In addition, if 
the clique trees are restricted to paths, called 
clique paths, then it defines the class of interval 
graphs [4, 8]. 
 For the traditional p-Center problem on 
interval graphs
remains NP-Hard even 2w (e) is either 1 or 2, for 
all edges e, and proposed an O(n)-time for the 

case 2w (e) = 1, for all edges e, if the endpoints 
of all intervals are sorted in advance. Though the 
following theorem can be easily obtained from 
the result in [1], we give a formal proof for the 
completeness of this paper. 
 
T re
interval graphs satisfying the triangle inequality, 
i.e., 2w (x, y) + 2w (y, z) > 2w (x, z), for all three 
distinct vertices x , z. 
Proof: Given a positive intege
the problem of finding a connected dominating 
set H of G with H  = p is a well-known 
NP-complete problem ]. Given a graph G(V, E), 
we add edges to G to obtain a complete graph 

*G  with vertex-set V. Meanwhile, in *G , 2
*w (e) 

, if e is an original edge of G, and * = 
1.5, if e is an added edge. Clearly, *w  y) + 

2
*w (y, z) > 2

*w (x, z), for all thr distinct 
ices x, y, e can also ascertain that a 

p-vertex set Q is a connected dominating set of G 
iff Q is a connected p-center of *G  such that 
β(Q) = 1. Since a complete graph can be viewed 
s an interval graph with single clique, we have 

completed the proof.   
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 An example i ntervals on the real 
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III. THE 
GRAPHS 

nstance of i
line, the corresponding interval graph and clique 
path are illustrated from Fig. 1 to Fig. 3, 
respectively. They are also used to explain the 
main idea of our algorithm throughout this section. 
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Figure 1: A set I of 15 intervals on the real line. 
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 By the above properties, for each vertex v, 
define lc(v) and rc(v) to be the leftmost (smallest) 
clique and the rightmost (largest) clique containing 
v, respectively. Then, for any two distinct vertices 
u and v, we say that u < v iff (rc(u) < rc(v)) or (rc(u) 
= rc(v) and lc(u) ≤ lc(v)). In the rest of the paper, 
we assume that the n-vertex of G are , …,  
such that  < , 1 ≤ j ≤ (n – 1). Now, the 
following definitions can be made. 

1v nv

jv 1+jv
Figure 2: The interval graph corresponding to the 
set I in Fig. 1.  
 Definition 1: For each clique , the vertex  

is defined as follows: 
jC jf
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(1) If j = 1, then jf  = 1v . 
(2) For each 2 ≤ j ≤ q, let Π = {v | v ∈ jC  and 

lc( jf ) is the smallest}. Then, jf  denotes the 
smallest vertex in Π. 

 
Definition 2: For each clique  – , the 
vertex  is defined as follows: 

jC 1−jC

jlFigure 3: The clique path corresponding to the 
interval graph in Fig. 2. (1) If j = q, then jl  = nv . 
 (2) For each 1 ≤ j ≤ (q – 1), let Φ = {v | v ∈ j  

and rc( jl ) is the largest}. Then, jl  denotes 
the largest vertex in Φ 

C Suppose that P is the clique path of the input 
interval graph G with cliques , …, , where 
the cliques are numbered by 1, 2, …, q from left to 
right. For any two cliques  and , we say 
that  ≤  iff i ≤ j. The notation  
represents the subpath P consisting of , , 
…, , for all i ≤ j. The following properties can 
be easily derived from the definition of clique 
paths. 

1C

i

qC

jC

iC

C

iC

jC

jC ],[ jiC

1+iC

. 
Definition 3: For each 2 ≤ j ≤ q, let lc( ) = , 
then define Previous( ) = . 

jf hC

jf hf
 
Definition 4: For each 1 ≤ j ≤ (q – 1), let rc( ) = 

, then define Next( ) = . For any positive 
integer p, define ( ) = { , …, } such 
that  =  and  = Next( ), z = 2, …, p. 
For simplicity, we define ( ) = { }. 

jl

kC jl

)( p

kl

x

1(

Next

zx
jl
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1x

1−z

) jl

px

jl
1x jl

 
Property 1: For each vertex v, let Π = {  | v ∈ 

, 1 ≤ t ≤ q}. Then, all  ∈ Π form a subpath 
of P. 

tC

tC tC

  For the clique path in Fig. 3, , 
Previous( ), , and Next( ), 1 ≤ j ≤ 7, are 
shown in Table 1. Note that Previous( ) = 
Previous( ) =  = . Meanwhile, 

( ) = { , , } = { , , }. 

jf

4

jf

5f

2l

jl

2l

jl

v
v

f

3f

5l
3

5)3(Next 3l 10v 11v

Property 2:  ∩  is nonempty, and both 
 –  and  –  are nonempty, for all 

1 ≤ i ≤ (q – 1). 

iC 1+iC
CiC 1+iC 1+iC i

 
Property 3: If v ∈  – , then v ∉ , 
for all 2 ≤ i ≤ q. 

iC 1−iC ]1,1[ −iC
 



Definition 5:   
Definition 6: For each connected p-center Q of G, 
define lc(Q) to be leftmost clique which contains 
at least one vertex in Q. 

(1) For each clique jC , 2 ≤ j ≤ q, the backward 

distance of jf  is defined as Bd ( jf ) = 
max{d( jf , y) | y ∈ ]1,1[ −jC }.  

Definition 7: Let  be a connected p-center of 
G such that β( ) is minimized among {Q | Q is a 
connected p-center of G such that lc(Q) = }, 1 
≤ j ≤ q. 

jD

jD

jC

(2) For each clique jC , 1 ≤ j ≤ (q – 1), the 

forward distance of jl  is defined as Fd ( jl ) 
= max{d( jl , x) | x ∉ ]1,1[ −jC }. 

 
 Table 1: , Previous( ), , and Next( ), 1 ≤ 

j ≤ 7, for the clique path in Fig. 3. 
jf jf jl jl

Definition 6 can imply the following lemma 
immediately. 

j 1 2 3 4 5 6 7

jf  
1v  2v  3v 10v  10v  11v 13v

Previous( )

 
Lemma 3: 
(1) jD  ∩ ]1,1[ −jC  = ∅ and jD  must contain at 

least one vertex in ( jC  –  1−jC ), 2 ≤ j ≤ q. 
jf × 1f  2f  3f  3f  5f 6f

jl  
2v  5v  

(2) 1D  must contain at least one vertex in 1C . 
10v 10v 13v 15v  11v  

Next( ) jl
2l  3l  5l 5l  6l  7l ×

 
Let  ∈ { , …, } such that β( ) is 
minimized. Definition 7 directly implies that  
must be an optimal solution of G, i.e., β(G) can be 
obtained in O(q)-time after β( ), …, β( ) have 
been obtained. The followings deal with the 
finding of , …, . 

minD 1D qD minD
D

qD

min

1D

1D qD

 By the definition of Previous( ) and 
Next( ), it must have d( , Previous( )) = 1, 
for all 2 ≤ j ≤ q, since  and Previous( ) 
belongs to the same clique. Similarly, d( , 
Next( )) = 1, for all 1 ≤ j ≤ (q – 1). Meanwhile, 
by the definition of interval graphs, d( , ) = 1 
and d( , ) = 1. These can easily establish the 
following Lemma 1. 

jf

jl

jl

ql

jf

jf
jf

2 v

jf

jl

f 1

1− nv

 
• Finding  1D

The following two cases should be 
considered. 
Case 1. There exists 1 ≤ k ≤ p such that  
= { , …, } and  ∈ . 

)(Next k

1x kx kx qC
 
Lemma 1: ( ) and ( ), for all 1 ≤ j ≤ q, 
can be computed O(q)-time by scanning Table 1 
from left to right once and from right to left once, 
respectively. 

Bd jf Fd jl
 In this case, it is easy to see that  contains 
at least one vertex in , 1 ≤ j ≤ q. Clearly, 

 =  ∪ H, where H contains any (p – k) 
vertices in (V – ) and β( ) = 1 since we 
assume that p ≤ n. 

jC

)(Next k

)k

1D )(Next k

(Next 1D
 
 The following lemma can be easily verified. 
 
Lemma 2: For each clique , 2 ≤ j ≤ q, ( ) 
= d( , ) and for each clique , 1 ≤ i ≤ (q – 1), 

( ) = d( , ). 

jC Bd jf

jf

il
1v iC

Fd il nv

Case 2.  = { , …, } with  ∈  
and t < q. 

)(Next p 1x px px tC

 Let Q be any connected p-center of G such 
that Q contains at one vertex in . The reasoning 
so far easily guarantees that β(Q) ≥ β( ) = 

( ). This means that  =  and 

1C

1

)(Next p

)(Next p
Fd px D

 
 Now, it is the time to explain the idea of our 
algorithm. 



β( ) = ( ) in this case. 1D

1−j

jC

3

F l

Fd

D

jl

1−jC

6v
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jC

px

j

C
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• Finding , 2 ≤ j ≤ (q – 1) 
 The following two cases should be 
considered. 
Case 1.  ∉ (  – ) j 1−jC
 In this case, the induced subgraph by the 
vertices in (  – ) forms a connected 
component. Meanwhile, all vertices in (  – 

) only belong to . This implies that Q ⊆ 
(  – ), for all connected p-centers Q such 
that at least one vertex in (  – ) belongs to 
Q. For example, in Fig. 3,  =  ∉ (  – 

) = { , , } and , , and  only 
belong to . It is also easy to verify that H is a 
p-vertex subset of (  – ) iff H forms a 
connected p-center of G such that at least one 
vertex in (  – ) belongs to H. Meanwhile, 
their β values will be the same. Therefore,  is 
just any p-vertex subset of (  – ) and we 

can easily check that β( ) = max{ ( ), 

( )} + 1. If p > 

1−jC

jC

jC

jC

4C

8

jD

B
jf

C

C

d

jC
l

6v

C

C

jD

1−jC

10v

7v

jC

4

1−j

j

8v

−jC

v

d

1

1−

j 1−jC−jC , then no solution 

exist in this situation and we simply set  = 
NULL and assume that β(NULL) = ∞. 

jD

Case 2.  ∈  –  jl

kx

)(k

−jC

],[ qjC

jC

1

(Next

1−jC
Using the similar reasoning used in the 

description of Finding , the following two 
cases should be considered. 

1D

Case 2.1 There exists 1 ≤ k ≤ p such that  
= { , …, } and  ∈ . 

)(Next k

1x

],[ qjC

kx qC
 In this case,  contains at least one vertex 
in , j ≤ t ≤ q. Clearly,  =  ∪ 
H, where H contains any (p – k) vertices in 
(  – ) – ) and β( ) = ( ) 
+ 1, if (  – ) contains at least p vertices. 
Otherwise, we simply set  = NULL. 

tC

Next

1−jC

Next jD

D

)(Next k

Bd f)(k j j

jD
Case 2.2  = { , …, } with  ∈ 

 and t < q. 

)p 1x px px

tC

qC

 Let Q be any connected p-center of G such 
that Q contains at one vertex in . Then, β(Q) ≥ 

β( ) = max{ ( ) + 1, ( )}. This 
means that  =  and β( ) = 

max{ ( ) + 1, ( )} in this case. 

jC

d)(Next p

Bd

Bd

Fd

jf
Next

px

F
px

jD )( p jD

jf
 
• Finding  qD
 This case means that  ⊆ (  – ). 
Obviously,  can be any p-vertex subset of 
(  – ) and we can easily check that β( ) 

= ( ) + 1. If p > 

qD qC 1−qC

jD
qD

1−qC

jfBd 1−qC−qC , then no solution 

exist and we set  = NULL. jD
 
 The above reasoning can establish the 
following lemma consequently. 
 
Lemma 4: All β( ), 1 ≤ j ≤ q, can be computed 

in O(q)-time, if ( ) and ( ), 1 ≤ j ≤ q, 
have been computed. 

jD
Bd jf Fd jl

 
 Combining all reasoning so far, the following 
algorithm can be designed for solving the CpC 
problem on interval graphs with unit edge-lengths 
correctly. 
 
Algorithm CpC_Interval 
Input: A positive integer p and an interval graph G 
with (v) = 1, for all v ∈ V and (e) = 1, for 
all e ∈ E. 

1w 2w

Output: A connected p-Center D such that β(D) is 
minimized. 
Step 1: find the clique path P of G; 
  /* Assume that P has q clique nodes , …, 

. 
1C

qC

Step 2: compute ( ) and ( ), for all 1 ≤ 
j ≤ q; 

Bd jf Fd jl

Step 3: compute β( ), …, β( ) to obtain 
β( ); 

1D qD

minD
Step 4: D = ; minD
Step 5: return (D); 
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