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Abstract

In this paper, we propose a new class of graphs
called generalized recursive circulant graphs
(GRCGs for short). As it is named, GR-
CGs are a generalization of recursive circulant
graphs. This generalization is achieved by us-
ing a multidimensional vertex labeling scheme.
Various network metrics of GRCGs, such as de-
gree, connectivity and hamiltonian properties
are studied. A shortest path routing algorithm
for GRCGs is also proposed in this paper.
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1 Introduction

In [7], Boesch and Tindell proposed a class of
new graphs called circulant graphs. A circu-
lant graph G(N ; s1, s2, . . . , sk) has N vertices
labeled with integers modulo N where each
vertex i is adjacent to 2k vertices i± s1, i± s2,
. . . , i±sk and 0 < s1 < s2 < · · · < sk < bN/2c.
After that, a wide variety of its related graphs
were proposed, e.g., chordal rings [3, 4], recur-
sive circulant graphs [16], etc. A chordal ring
[4] is a circulant graph G(N ; 1, d), or denoted
by CR(N, d). By the definition of chordal
rings, the degree of every vertex in a chordal
ring is 4 except that N is even and d = N/2.
In this exception, the degree becomes 3. The
class of recursive circulant graphs (RCGs for
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short) was first proposed by Park and Chwa in
[16]. An RCG RC(N, d) has N = cdm ver-
tices, where 0 < c < d. Every vertex i in
RC(N, d) is adjacent to vertices i±dk(mod N),
where k = 0, 1, 2, . . . , dlogd Ne − 1. That
is, RC(N, d) = G(N ; d0, d1, . . . , ddlogd Ne−1)
where N = cdm. Since RC(cdm, d) can be re-
cursively partitioned into d induced subgraphs
RC(cdm−1, d), this is the reason why this fam-
ily of circulant graphs is named as “recur-
sive”. RC(cdm, d) is regular with degree δ,
where δ is 2m − 1, 2m, 2m + 1 or 2m + 2,
depending on the values of parameters c and
d [17]. Figure 1 gives some examples of RCGs
with different parameters c and d. Note that
RC(9, 3) and RC(12, 4) shown in Figures 1(b)
and 1(d), respectively, are both chordal rings
while RC(8, 2) and RC(18, 3) are not.

Since RCGs are a subclass of circu-
lant graphs, they are vertex-symmetric [9].
As a network topology, RCGs have been
widely studied, such as pancyclicity [1], edge-
pancyclicity [2], parallel routing algorithm [11],
strong hamiltonicity [18], Hamiltonian proper-
ties in faulty condition [19], super-connected
property [20], and independent spanning trees
problem on RCGs [23, 24]. Embeddings of
hypercubes and meshes [17], trees [14], full
ternary trees [13], and disjoint Hamiltonian cy-
cles [6, 15] were also studied.

A good labeling of the vertices in a graph
often results in efficient algorithms for solving
the problems in that class of graphs. For exam-
ple, in hypercubes [5], star graphs [12], general-
ized hypercubes [5], etc., the label of each ver-
tex is represented as a multidimensional vector.
Based on those labeling, a lot of efficient algo-
rithms have been proposed, e.g, routing algo-



Figure 1: Examples of different recursive circu-
lant graphs: (a)RC(23, 2), c = 1, d = 2,m = 3;
(b)RC(32, 3), c = 1, d = 3,m = 2; (c)RC(2 ∗
32, 3), c = 2, d = 3,m = 2; (d)RC(3 ∗ 4, 4), c =
3, d = 4,m = 1.

rithms, Hamiltonicity algorithms, pancyclicity
algorithms, etc. Inspired by these labeling sys-
tems, we also relabel each vertex of an RCG as
a multidimensional vector. For example, Fig-
ure 2 shows the two-dimensional vertex label-
ing of RC(12, 4). Note that the new labels of
vertices 0, 1, . . . , 11 are (0,0), (0,1), . . . , (2,3),
respectively.

Besides, we shall extend the definition of
RCGs and consequently form a new class of
graphs, called generalized recursive circulant
graphs (GRCGs for short).

The remaining part of this paper is organized
as follows. Section 2 presents the definition and
basic properties of GRCG. Section 3 presents a
routing algorithm for GRCG. The last section
contains our concluding remarks.

Figure 2: Two dimensional vertex labeling of
RC(12, 4).

2 The definition and basic
properties of GRCGs

A GRCG, denoted by
GR(mh,mh−1, . . . ,m2,m1), has N = Πh

i=1mi

vertices where mi > 2 for 1 6 i 6 h.
An index i is referred to as a dimension
of the labeling system, while mi is the
size of dimension i. Each vertex in the
graph is labeled by (xh, xh−1, . . . , x1) where
0 ≤ xi ≤ mi for i = 1, 2, . . . , h. Further,
vertex (xh, . . . , xi+1, xi, xi−1, . . . , x1) is ad-
jacent to all of those vertices labeled by
(xh, . . . , xi+1, xi ± 1, xi−1, . . . , x1), where
xi ± 1 is calculated with “carry” and “bor-
row” when the resulting value is greater
than mi or less than 0, respectively. That
is, if xi + 1 = mi, then xi becomes 0 and
a carry 1 is added to xi+1. If xi = 0,
then the operation xi − 1 will borrow 1
from xi+1. The borrow operation results in
xi+1 = xi+1 − 1 and xi = xi + mi. However,
vertex (xh, xh−1, . . . , xi+1, xi − 1, xi−1, . . . , x1)
with xh = xh−1 = · · · = xi = 0 is equal to
vertex (mh − 1,mh−1 − 1, . . . ,mi+1 − 1,mi −
1, xi−1, . . . , x1). For example, see Figure 3.
Figure 3 shows the graph GR(2, 4, 3) with
h = 3. That is, m1 = 3,m2 = 4, and m3 = 2.
The neighbors of vertex (1,3,0) in GR(2, 4, 3)
are (1, 3, 0 + 1), (1, 3, 0− 1), (1, 3 + 1, 0), (1, 3−
1, 0), (1 + 1, 3, 0), and (1 − 1, 3, 0) which are
(1, 3, 1), (1, 2, 2), (0, 0, 0), (1, 2, 0), (0, 3, 0), and
(0, 3, 0), respectively.

We recall the vertex adjacency of an RCG.
Let v be a vertex in RC(N, d). Then, the
neighbors of v are vertices v ± di(mod N),
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Figure 3: A generalized recursive circulant
graph GR(2, 4, 3)

where 0 6 i 6 dlogd Ne − 1. The increment
+di or the decrement −di is called a jump of v.
We adapt the meaning of jump to GRCGs. Let
ji be a jump of dimension i. Then, for any ver-
tex in GR(mh, . . . ,m2,m1), jump j1 = 1 and
ji =

∏i−1
k=1 mk for i = 2, 3, . . . , h.

Let x = (xh, xh−1, . . . , x1) be a vertex in
GR(mh,mh−1, . . . ,m1). The serial number of
x, denoted by s(x), is a unique number between
0 to N − 1 that represents the original decimal
label of x. Based on the definition of GRCGs,
s(x) is obtained by using the formula:

s(x) = x1 +
h∑

i=2

(xi · ji).

Conversely, a serial number number s(x) be-
tween 0 to N − 1 can be transformed to a h-
dimensional label (xh, xh−1, . . . , x1) by setting

xi =

⌊
(s(x)−

h∑
k=i+1

xk · jk) / ji

⌋
,

for i = h, h− 1, . . . , 1.

For example, the serial number of x =

(1, 3, 0) in GR(2, 4, 3) is:

s(x) = x1 + x2 · j2 + x3 · j3

= x1 + x2 ·m1 + x3 ·m2 ·m1

= 0 + 3 · 3 + 1 · 4 · 3
= 0 + 9 + 12

= 21.

Conversely, given s(x) = 21, we can compute
x3 = bs(x)/j3c = b21/12c = 1, x2 = b(s(x) −
x3 ·j3)/j2c = b(21−1·12)/3c = b(21−12)/3c =
3, and x1 = bs(x) −

∑3
k=2(xk · jk)/j1c = 21 −

x2 · j2 − x3 · j3 = 21− 9− 12 = 0.

From above discussion, we can figure out
that an RCG RC(cdm, d) is isomorphic to an
(m + 1)-dimensional GRCG GR(c, d, d, . . . , d)
(in case that c > 1) or an m-dimensional
GRCG GR(d, d, . . . , d) (in case that c = 1).
Therefore, RCG is a subclass of GRCG. Since
each vertex in a GRCG has the same jump set,
GRCG form a subclass of circulant graphs.

Moreover, we review the recursive structure
of RCG. Let Vi be a vertex set in RC(cdm, d)
such that Vi = {v| v ≡ i (mod d)}. For
0 6 i 6 d − 1, the subgraph induced by Vi

is isomorphic to RC(cdm−1, d). For example,
RC(18, 3) shown in Figure 1(c) contains three
disjoint copies of RC(6, 3). Further, any in-
duced subgraph contains exactly those vertices
congruent to modulo 3. In addition, the basic
cycle of an RCG is the cycle that consists of all
those edges not in the induced subgraphs [6].
The basic cycle of an RCG contains precisely
the edges of the form (i, i + 1(mod N)) and
forms a Hamiltonian cycle in the graph.

Suppose the recursive structure still holds in
GRCGs. A GRCG can be decomposed recur-
sively. That is, GR(mh, . . . ,m2,m1) can be
partitioned into m1 subgraphs isomorphic to
GR(mh, . . . ,m2). The partition process can be
continued, and for all i 6 h, GR(mh, . . . ,mi) is
still a GRCG. Finally, GR(mh) is a cycle with
mh number of vertices (if mh > 2) or a 2-clique
(if mh = 2).

We denote by δh the degree of
GR(mh, . . . ,m2,m1). Then, it is obvious
that δh = δh−1 + 2 when h > 2. The close
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form of δh is shown as follows:

δh =
{

2h, if mh > 2;
2h− 1, if mh = 2.

The connectivity and edge connectivity of a
GRCG are the same as its degree. Since GR-
CGs form a subclass of circulant graphs, they
are vertex-symmetric. But most of them are
not edge-symmetric.

A graph G is hamiltonian connected if every
two vertices of G are connected by a hamilto-
nian path [8]. Necessarily, a Hamiltonian con-
nected graph cannot be a bipartite. A bipartite
graph G with equal partite sets is hamiltonian-
laceable if there is a Hamiltonian path between
every pair of vertices that separately belong to
different partite sets of G [21].

As for the hamiltonian property of GRCGs,
we apply an important theorem proposed by
Chen et al. in [10] and obtain the following
lemma.

Lemma 2.1. A GRCG is hamiltonian con-
nected if it is neither a bipartite graph nor a
cycle.

Proof. By Chen’s theorem [10], a Cayley
graph is hamiltonian connected if it is not a
bipartite graph, nor a cycle. Since circulant
graphs are Cayley graphs, the lemma holds. �

We have known that GR(m1) is a cycle. The
following lemma provides a simple rule to iden-
tify bipartite GRCGs.

Lemma 2.2. GR(mh,mh−1, . . . ,m1) with h >
2 is bipartite if and only if mh is even and
mh−1, . . . ,m1 are odd.

Proof. Suppose a vertex v in the graph
belongs to different vertex sets according to
whether s(v) is even or odd. For the suffi-
ciency, if mh is even, as well as mh−1, . . . ,m1

are odd, jumps ±1, ±m1, ±m2m1, . . . and
±

∏h−1
i=1 mi connect a pair of vertices that sep-

arately belong to different vertex sets. Thus,
GR(mh,mh−1, . . . ,m1) is a bipartite graph.

For the necessity, we should know that there
is no induced odd cycle in a bipartite graph.

The basic cycle of GR(mh,mh−1, . . . ,m1) is
even. That is,

∏h
i=1 mi must be even. Since a

jump +
∏p

i=1 mi from any vertex v followed by∏p
i=1 mi number of jumps −1 also forms a cy-

cle with
∏p

i=1 mi+1 vertices. That is,
∏p

i=1 mi

must be odd for 1 6 p 6 h− 1. Therefore, mh

must even and mh−1, . . . ,m1 must be odd. �

An r× c rectangular grid G is bipartite. We
call a vertex in G a corner vertex if its degree
is two. In [10], the authors proved that if rc is
even, then G has a hamiltonian path from any
corner vertex to any other vertex in different
partite set. We employ this result to prove the
following lemma.

Lemma 2.3. A bipartite GRCG
GR(mh,mh−1, . . . ,m1) with h > 2 is
hamiltonian-laceable.

Proof. Let N =
∏h

i=1 mi be the num-
ber of vertices in GR(mh,mh−1, . . . ,m1). Let
r = mh and c =

∏h−1
i=1 mi. According to

Lemma 2.4, N = rc is even. Since GRCGs
are vertex-symmetric, without loss of gener-
ality, we assign vertex (0, . . . , 0) (all dimen-
sions are 0, hereafter called “vertex 0” ) as a
corner vertex, and embed an r × c grid into
the GRCG. The embedding is achieved by tak-
ing two types of jumps from vertex 0 to ev-
ery other vertices. That is, jumps +1 (or j1)
can form a horizontal path from vertex 0 to
vertex (0,mh−1 − 1, . . . ,m1 − 1). Meanwhile,
jumps +

∏h−1
i=1 mi (or jh) can form a vertical

path from vertex 0 to vertex (mh−1, 0, . . . , 0).
Then, the product graph of the two paths is
mapped to the grid (guest graph). By the re-
sult proposed in [10], there exists a hamiltonian
path from vertex 0 to any other vertex that be-
longs to a different partite set. This completes
the proof. �

By combining Lemmas 2.1, 2.2 and 2.3, we
have the following theorem.

Theorem 1. GR(mh,mh−1, . . . ,m1) with
h > 2 is either hamiltonian connected or
hamiltonian-laceable.
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3 Routing algorithm in GR-
CGs

In this section, we develop a shortest-
path routing algorithm in a GRCG. Let
x = (xh, xh−1, . . ., x1) be a vertex in
GR(mh,mh−1, . . . ,m1) with h > 2. We de-
sign an algorithm that can find a shortest path
from x to vertex 0. Since GRCGs are vertex-
symmetric, without loss of generality, we sim-
ply consider vertex 0 as the end vertex of a
shortest path, and denote a shortest path of x

by Px. For simplicity, Px is represented by a
set of jumps (not necessarily distinct). We de-
note by Jx the set of distinct jumps in Px. For
j ∈ Jx, we denote by n(j) the number of occur-
rences of j appeared in Px. Let dim(j) denote
the dimension of jump j. It is quite obvious
that the following properties hold:

(i) one vertex cannot be visited twice in a
shortest path,

(ii) j and −j cannot coexist in Jx, and
(iii) n(j) 6 bmdim(j)

2 c for every j ∈ Jx.

The basic idea on finding Px is to reduce all
dimension values to 0 with the minimum num-
ber of jumps. In case of mp > 3 (1 6 p 6 h),
the decision is easy to make. That is, if xp 6
bmp

2 c, a negative jump in dimension p (−jp)
is taken until xp is reduced to 0. Otherwise, a
positive jump jp is taken. Variable Carry is set
to 1 when a positive jump increases xp to mp

(congruent to 0).

We can perform the following procedure to
generate the jump set Jx and counts n(j) for
jump j ∈ Jx.

Procedure Shortest-Path(x)
begin
1. Jx = ∅; Carry = 0;
2. For i = 1 to h do
3. if 0 < xi 6 bmi/2c
4. Jx = Jx ∪ {−ji}; n(−ji) = xi;
5. Carry = 0;
6. else if bmi/2c < xi 6 mi − 1
7. Jx = Jx ∪ {ji}; n(ji) = mi − xi;
8. xi+1 = xi+1 + 1;
9. Carry = 1;

10. else
11. if Carry = 1
12. xi+1 = xi+1 + 1;
13. endif
14. endif
15. enddo
end Shortest-Path

Note that the addition operations in lines 8
and 12 of Procedure Shortest-Path are both
taken modulo mi+1.

Procedure Shortest-Path can be applied
to the case of mp = 2, but it requires that
mp+1 > 3 and mp−1 > 3 if they exist. For
example, a shortest path of x = (0, 2, 1) in
GR(2, 4, 3) (See Figure 3) goes through (0,2,0)
and (0,1,0). That is, Px = {−j1,−j2,−j2},
Jx = {−j1,−j2}, while n(−j1) = 1 and
n(−j2) = 2.

In case of consecutive dimensions with mi =
2 (p > i > q, where h > p, q > 1, and
p > q), the decision selection of jumps be-
comes more complex. Since the partial vector
(xp, xp−1, . . . , xq+1, xq) is a binary representa-
tion, it can be separately viewed as a vertex
in RC(2p−q+1, 2). The routing algorithm for a
vertex in RC(2m, 2) can refer to [24]. Briefly,
two candidate paths (called elementary paths)
are constructed in this case. Finally, the path
with less jumps is chosen as the solution Px.

4 Concluding remarks

In this paper, we propose a new class of circu-
lant graphs, the GRCGs, as a generalization of
the well-known RCGs. With some properties
similar to multidimensional tori, the topology
of GRCGs is suitable for the design of paral-
lel computers. Some network metrics of GR-
CGs, such as diameter, mean internode dis-
tance, node visit ratio, etc., ought to be studied
later.

Based on the structure characterizations,
GRCGs present more flexibility than RCGs
in adjusting the number of vertices. Further,
many algorithms developed for RCGs, such as
independent spanning trees, super-connected
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property, pancyclicity, and hamiltonian decom-
position, and so forth, can be adapted to GR-
CGs.
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