hEERE/\ AR EE RS

S—EREERETFIIRER S LB EEE
Another Fastest Systolic Algorithm for the Longest
Common Subsequence Problem

MWEE
Yen-Chun Lin

BRERR
Jyh-Chian Chen

B2 5 E@REAE EF TRENTER
Dept. of Elecironic Engineering
National Taiwan University of Science and Technology, Taipei 106, Taiwan
george@elcl.lhjc.edu.itw

yclin@et.ntust.edu.tw

I

FAERNERARFFIIREMFFERER
EENEXRTFEFY -mEEmXERMES —
ERkFEEXRAFFAREEENLHRESE
EoHRESWNEn R o WRHFE m 20
sHBE m + -1 FHAREG - EFREFEH
ABER n AREBEFNBREOCHKEAE . B
HHENHESERR/INTR ZEEETE
WRFIAEEN IR AESm+n e

WET RRIERTHFI PERESE - FTH
Bk e DB - EAREEER

Abstract

A longest common subsequence (LCS) of two
strings is a common subsequence of the two strings of
maximal length. The LCS problem is to find an LCS
of two given strings and the length of the LCS. In
this paper, a fast systolic algorithm for the LCS
problem is presented. For two strings of length m and
n, where m 2 n, the problem can be solved in m + 2n
— I time steps. The algorithm achieves the tight
lower bound of the computation time when symbols
are input sequentially to a linear array of n processors.
The systolic algorithm can be modified to take only m
+ n steps on a multicomputer by using the broadcast
operation.

Keywords: longest common subsequence,
multicomputer, parallel algorithm, systolic array, VLSI

This research was supported in part by the National
Science Council of the R.O.C. under contracts NSC85-
2213-E-011-017.

E-34

1. Introduction

String C is a subsequence of string A if C is
obtained by deleting zero or more symbols from A.
For example, opt is a subsequence of computation.
String C is a common subsequence (CS) of strings A
and B if C is a subsequence of both A and B. For
example, ac is a CS of beabeb and abech. A longest
CS (LCS) of two strings is a CS of the two strings of
maximal length. For example, abeb and beeb are two
LCSs of bcabch and abeeb. The LCS problem is to
find an LCS of two given sirings and the length of the
LCS (LLCS). Throughout this paper, we assume that
the strings in question are A = A(1)A(2)...A(m)
and B = B(1)B(2)...B(n), m 2 n, and that the
LLCS of A and B is p. The LCS problem has been
the subject of much research because it can be applied
to many areas, such as molecular biology, word
processing, pattern recognition, and data compression
[2, 5, 12, 15-17).

The time complexity of “equal-unequal”
comparison-based approach to solve the LCS problem
has been shown to be Q(mn) when the number of
distinct symbols is not fixed [2]). Many time-optimal
sequential algorithms have been devised (3, 5-7, 14,
18]. To obtain even faster solutions for this problem,
many parallel algorithms have also been proposed. On
the concurrent-read exclusive-write (CREW) parallel
random-access machine (PRAM) model, with
mnflog n processing elements (PEs) an efficient
algorithm runs in O(log m + log®n) time [12]. On
the same model, the only cost-optimal algorithm uses
mnl(log?n loglog n) PEs and takes O(log?n
loglog n) time when log?n loglog n > log m; it
uses mnflog m PEs and takes O(log m) time when
log® n loglog n < log m [12]. However, the CREW
PRAM model is not praciical for this problem because
of the physical limitation in building a machine with
more than 100 PEs.

In contrast, the systolic model {8] is more practical
for the LCS problem. Systolic algorithms can be
implemented on VLSI chips or distributed-memory

FERENTAF2EHERES

multicomputers, and these implementations can have
much more PEs than PRAMSs. In addition, systolic
algorithms for the LCS problem can be cost-optimal
while using a reasonable number of PEs. A systolic
array consists of identical PEs in which data are passed
locally and operated on rhythmically. It has the merit
of simplicity, regularity, and locality. High
performance can be achieved by the concurrent operation
of PEs. Robert and Tchuente propose using a 2-D
systolic array to solve the LCS problem in m + 5n
— 3 time steps (15, 16]. Lin uses a linear systolic array
of n PEs to solve the problem in m + 4n ~ 2 time
steps [10]. Luce and Myoupo solve the problem on a
linear array of n PEs inm + 3n + p — 1 time steps
[13]. Lecroq et al. propose using a linear array of n
PEs to solve the problem in m + 2n time steps [9].
Lin and Chen devise an even faster linear systolic array
of n PEs to solve the LCS problem in m + 2n - 1
time steps [11].

In this paper, another fast systolic algorithm that
improves on the previous ones for the LCS problem is
presented. Although it also uses a linear array of n
PEs and takes m + 2n — 1 time steps, it is derived
with a relation different from the one used in [11]. The
new algorithm performs simpler operations, and thus
takes less time for a time step. Possible
implementation refinements of our systolic algorithm
are also presented. It is noteworthy that a
straightforward modification of the algorithm is suited
to multicomputer implementation and requires only m
+ 1 steps. :

Section 2 derives the new systolic algorithm.
Section 3 gives an example to help understand the
algorithm. Section 4 compares our algorithm with
previous ones, Section 5 gives possible
implementation refinements. Section 6 concludes this

paper.
2. Deriving a new systolic algorithm

In this section, we present a systolic algorithm that
computes the LLCS and an LCS simultaneously, For
ease of presentation, let LCS(i, j) denote an LCS of
A(1)A(2)...A(i) and B(1)B(2)...B(j), and
L(i,j) denote the length of LCS(i,j), 1 i<
m, 1 £j< n; in addition, let ¢ denote the empty
string. It is easy to see that the following property
exists [5, 91:
Forl€i<mand 15j<n,
Li,00=L(0,j)=L0,00=0
LCS(i,0)=LCSO, j))=LCS(0,0)=¢
if A(¥) = B(j) then
LG,)y=L@-1,j-1)+ 1
LCS(, jy = LCS(i-1, j-1)B()

else if L(i, j-1) > L(i-1, j) then
LG, j) = L(, j-1)

E-35

LCSG, j) = LCS3, j-1)
else
LG, p=L3-1,))
LGS, j)=LCS(i-1, j)
end if
The above property has been used to derive a
systolic algorithm for the LCS problem [9]. Based on
this property, we give a theorem and obtain a modified
property, as follows.

Theorem 1. LCS(i-1, j-1) is equal to the first

L(i~1, j-1) symbols of LCS(i-1, j).

Proof. Consider the following two cases.

Case 1. If L(i-1, j-1) < L(i-1, j), then L(i-1,
J)=L(i-1, j-1) + 1. Apparently, it means
that A(i-1) = B(j), and LCS(i-1, j~1) is
equal to the first L(i-1, j~1) symbols of
LCS(3i-1, j). ‘

Case 2.If L (i-1, j-1) L(i-1, j), clearly
LCS(i-1, j-1) = LCS(i~1, j). Thus,
LCS(i-1, j-1) is equal to the first L(i-1,
J-1) symbols of LCS(i-1, j). Q.E.D.

From Theorem 1, we can replace
LCS(i, j) = LCS(i~1, j-1)B(j)
in the above property with
LCS(@, j)= the first L(i~1, j~1) symbols of
LCS(i-1, j) appended by B()).
We will also replace the greater-than test in the
property, i.e.,
else if L(i, j—1) > L(i-1, j) then,
with the greater-than-or-equal-to test
else if L(i, j-1) 2 L(i-1, j) then.

Although either test is correct, as will be
explained, this change contributes to the conception of
the new algorithm shown in Fig. 1, which computes
L(m,n)=pand LCS(m,n)inm + 2n - 1
time steps. The comments in the figure describe the
meanings of operations performed by PE j, 1</ <
n. The systolic algorithm uses n PEs, each
containing n + 3 registers: BR, LR, XR, LCS[1],...,
LCS([n). Each PE has n + 2 input ports, named SI,
YI, LI{1],..., LI[n], and n + 2 output ports, called
SO, YO, LO[1]...., LO[n]. For ease of presentation,
LCS[1] through LCS[n] will be abbreviated to
LCS[1..n]; LI{1] through LIfr] to LI{1..n]); and
LO{1] through LO[#] to LO[1..n].

Before explaining how the algorithm works, we
first examine the input and output data. The SI input
stream contains symbols of B and A. The YI input
siream consists of n negative integers —1,..., -n and
m O-valued flags; the negative integer — indicates that
the accompanying symbol in the ST input stream is
B(i), while the jth O-valued flag represents L(j, 0)
= 0 and implies that the accompanying SI input is
A(j). As specified in Fig. 1, the YI input to a PE

PERENAEREHEREE

1 2 n
A(n) .- A)B@)...B(1)~& "BR || BR |~ =B BR &
LR LR LR
0 <+ 0 -n ...~1 B> XR | XR | —B XR [
" |LCS[t.n]| T | LCS[l.n] . LCS[1..l|
> > RS- .
SI—& BR |—& SO
YI— LR L Y0
B
LCS[1..n])
Li[] —3> - LO[]
{Operations performed by PEj, 1 <j<n}
1: if YI<Othen {SI belongs to string B}
2: if YI=~1 then {SI=B()}
3 BR :=SI {load B(j) into PE j}
4: LR:=0 {L(0, j) = 0}
5: XR:=0 {L(, j-1) =0}
6: else {SI = B(k), where k > j}
7: SO :=8I {forward B(k)}
8: YO :=YI+1
9: end if
10: else {SI belongs to string A, say, A(i)}
11: if SI = BR then {A(i)) = B(j)} :
12: LR:=XR +1 (L3,)=L3GE-1,j-1)+ 1}
13: LCS[LR]:=BR {the first L(i-1, j~1) symbols of LCS(i-1, j) in
LCS[1..XR] appended by B(j) to make LCS(, j)}
14: else {A(i) # B(j)} (
15: if YIZLR then {L@, j-1) 2 L(i-1,)}
16: LR :=YI {save L(i, j-1) as L(i, j)}
17: LCS[1..LR] := LI[1..LR] ({save LCS(,j-1) as LCS(i, j)}
18: end if
19: end if
20: SO =8I {send out A(¥)}
21: XR:=YI {save L(i, j~1)}
22: YO :=LR {send out L(i, j)}
23: LO[1..LR] := LCS[1..LR] {send out LCS(i, j)}
24: endif

Fig. 1. Systolic algorithm for the LCS problem.

E-36

hERE A EEH e

affects the operations performed by the PE. The
LI[1..n] input ports of the leftmost PE in Fig. 1 are
shown simply for consistency among all PEs; no input
data are needed for them. The LLCS p can be obtained
at the YO port of the rightmost PE at the
(m+2n-1)th time step, and an LCS can be retrieved
simultaneously from the LO[1..n] ports, or more
precisely from LO[1..p]. '

Next, consider the roles played by the registers and
the meanings of the /O data of each PE to understand
how the whole array can produce an LCS and the
LLCS. Register BR in PE j is used to hold B(j).
Table 1 summarizes the meanings of values in registers
BR, LR, XR, and LCS[1..LR]; in inputs YI and
LI[1..YI]; and in outputs YO and LO[1..YO] of PE j
at the time step A(i) is sent to the PE. Note that
although registers LCS[1..n] are available for storing
LCS5(, j), it is quite probable that only a portion of
them are needed; specifically, as register LR keeps
L(i,j), only LCS[1..LR] are needed to hold
LCS(, j).

Table 1. Meanings of values in registers and values
transferred through I/O ports in the step A(i)
is sent to PE j,

Register and | Before inputs | At the end of
VO values | are processed the step
BR 1)) BG)
- LR L@-1,) LG, p
XR L(i-1, j~1) L, j-1)
LCS[1.LR] | LCS(G-1,)) LCS(, j)
Y1 LG, j~1) -
LI[1..Y]] LCS(@i, j-1) -
Yo - LG, j)
LO[1..YOQ] - LCSG, j)

The operations of PE j, 1 £j <n, are
explained in the following. If the YI input is -1 (line
2), three registers are initialized. Specifically, the SI
input, which is symbol B(j), is loaded into the BR
register (line 3), and the LR and XR registers are set to
0 to represent L(0, j) = 0 and L(0, j-1) = 0,
respectively (lines 4-5); otherwise, when YI < -1, the
SI input, which is B(k), k > j, is sent out through
the SO port (line 7), and the Y1 input plus 1 is sent out
through the YO port (line 8) so that B(k) can be
loaded into the BR register of the kth PE.

If YI 2 0 and thus the SI input is a symbol of

E-37

string A, say, A(i), PE j computes L(i,j) and
LCS(i, j). First, consider computing L(i, j).
Note that as shown in Table 1, the YI input carries the
value L(i, j-1), and registers LR and XR initially
contain L(i-1, j) and L(i-1, j-1), respectively, If
A(i) = B(j), register LR is loaded with L(i-1,
J-1)y + 1, or L(i, j) (lines 11-12). In case A(i) =
B(@j), if L(i, j~1) 2 L(i-1, j), register LR is also
loaded with L(i, j), which is L(i, j-1) from the YI
input (lines 15-16); if L(i, j-1) < L(i-1, s no
operations are needed because LR has already contained
L(i-1, j), which is also L(i, j).

Next, consider finding LCS(i, j). If A(i) =
B(j)., because registers LCS[I1..XR], or
LCS[1..LR-1], contains the first L (i-1, Jj-1)
symbols of LCS(i-1, j), LCS[1..LR] contains
LCS(i, j) after B(j) is loaded into LCS[LR] (line
13). In case A(i) # B(j), if L(i, j-1) = L(i-1,
J), registers LCS[1..LR] are loaded with LCS(i,
Jj=1) from the LI{1..LR] inputs (line 17); if L(i,
Jj-1) < L(i-1, j), LCS[1..LR] need not be modified
because LCS(i, j) equals LCS(i-1, j), which has
already resided in registers LCS[1..LR].

Finally, when YI 2 0, some more operations are
needed to output data and save a temporary value. The
symbol A(i) is sent out through port SO (line 20).
The YI input, or L(i, j-1), is saved in register XR
(line 21), and will become L(i-1, j-1) when the next
A(i) is input in the next time step. Further, L(i, j)
in register LR and LCS(i, j) in LCS[1..LR] are sent
to the right through ports YO and LO[1..LR],
respectively (lines 22-23),

As already noted, it is necessary to test L(i, j~1)
2 L(i-1, j) (line 15); testing L(i, j-1) > L(i-1,
J) will not make a working algorithm. Actually,
either test is good for computing the LLCS. However,
because there may be more than one LCS, when L(i,
Jj-1) = L(i-1, j), it is crucial to save LCS(i, j-1)
rather than L CS(i-1, j) as' LCS (i, j) in
LCS[1..LR] (line 17). We now examine the effects of
the two saves. First, consider the correct save: in the
next time step, LCS[1..XR] keeps LCS(i-1, J-1),
which from Theorem 1 is the first L (i-1, j=1)
symbols of LCS(i-1, j). Therefore, in this time
step, if A(i) = B(j), line 13 is appropriate. Next,
consider the case LCS(i-1, j) is wrongly saved in
LCS[1..LR]. In the next time step, if A(J) = B()),
the fact that LCS[1..XR] contains LCS(i-2, J) will
make line 13 pointless.

3. An example

Fig. 2 shows some initial snapshots of our
algorithm for an example of A = bcabch and B =
abecb. The first snapshot is taken just before the first
time step begins. An LCS abch and p =4 can be

hERENTAEEEH S EH

obtained at ports LO[1..4] and YO, respectively, of the
rightmost PE at time step m + 2n -1 = 15.

bcecb a-py = - i =5
54 =3 =2 -] = - - e =
o= - == - -
= - - - -
-2 - . = =
-5 - _— > >
= - - - >
b bcc bepmy a =P ma B >
0 -5 4 -3 28 0 =P e —— P>
wiz () feel e e el
i e 5% > e e
e — i - S
> el - =i —0
el o 5 e S i
¢cbbc caf e el] -
0 0-5-4-3 0 Kol Ll |l L
Bl O |t - - -
o - B2 - -
Leegy S - el el
e e - S e S
.= L b - -
. S
acbb cfa fz b e]
0 0 0-5~4am= 0 [ol
o] () el O et e e
e e o2 ot e
B> > e > -
B e === = =iz
i U " e 2200 i
b acb bwa _c?_ b :c-fav--_ﬁ-v e
000 0-59= 0 | 0 |=b] el =)
B 0 [=B 0 =B — e
af o o — —
ey a0 S a2 a5
=B g - — i
5 i el i i
Fig. 2. Initial snapshots for A = becabcb and B =

abcecb.

Comparison with previous systolic
algorithms

The time complexity of systolic algorithms is
measured by the number of time steps required to obtain
results. The systolic algorithm presented in this paper
takes m + 2n — 1 time steps, and is one of the two
fastest systolic algorithms for the LCS problem. In
fact, as it takes m + 2n — 1 time steps for the last one
of the m + n sequentially input symbols to be sent to
the nth PE, for linear systolic arrays of n PEs that
input m + n symbols sequentially as our systolic
algorithm does, the tight lower bound of the time
complexity is exactly m + 2n - 1 time steps. Note
that in each time step at most six assignments are
executed. The other fastest systolic algorithm, which
also takes m + 2n - 1 time steps, in a time step
performs at most seven assignments and never requires
fewer assignments than the new algorithm [11]). The
second fastest systolic algorithm takes m + 2n time
steps; it requires at most six assignments in each time
step [9]. Thus, the new algorithm should be more

E-38

desirable than the others. Note that these algorithms
are all cost-optimal.

Either of the two fastest algorithms needs in each
PE one register more than the second fastest algorithm;
however, either of the two fastest algorithms uses one
fewer input port and one fewer output port for each PE
to transfer fewer data. Furthermore, either of the two
fastest algorithms requires only two input sireams,
while the second fastest needs three input streams.

For the two reasons that follow, requiring fewer
1/0 ports is desirable when systolic algorithms are
realized on a chip or with the wafer-scale integration
technology. First, links between PEs may occupy very
much space and become very expensive [4]. Second,
VLSI components have limited number of /O pins.

When algorithms are implemented on a
multicomputer, requiring fewer I/O ports to send fewer
data is also advantageous. As PEs have limited number
of physical links among them, it is faster to pass fewer
data.

5. Refinements of our algorithm

We have assumed that each PE contains registers
LCS[1..n], input ports LI[1..n], and output ports
LO[1..n). However, not every PE uses all of the
registers and ports. It is easy to see that PE i, 1 <
< n, uses at most i registers, LCS[1..£], for storing
an LCS of A(1)A(2)...A(m) and B(1)B(2)...B(i).
Thus, PE i needs at most i output ports LO[1..]] to
send out the LCS, and uses at most i — 1 input ports
LI[1..i-1] to receive an LCS of A(1)A(2)...A(m)
and B(1)B(2)...B(i-1).

When implemented on a multicomputer, such as
the IBM SP2 [1], the systolic algorithm can be
modified to take advantage of the scatter operation or
the broadcast operation. A scatter operation can send
B(j) to PE j, 1 £ j < n, in the first step.
Alternatively, a broadcast operation can send the string
B to every PE in the first step. In the same first step,
B(j) is retrieved and saved in register BR of PE j, and
registers LR and XR are initialized to 0 to represent
L(0, j) = L0, j-1) = 0. After the first initialization
step, symbols of A can be sent to the array step by
step. At the (i+1)th step, the ith Y1 input flag
accompanying A(7) is 0, representing L(#, 0) = 0 for
1 £i<m. Beginning at the second step, the PE
operations performed in each step are exactly the same
as those specified by lines 11-23 in Fig. 1. Although
the first step should take longer than the other steps,
the algorithm now takes only m + n steps. Note that
the scatier operation sends to each PE only 1/n of the
amount of data sent by the broadcast operation, thus
one may expect the scatter operation to be faster than
the broadcast operation; however, the scatter operation
is experimentally slower than the broadcast operation

hERENHAERE G H

[19].
6. Conclusion

We have presented a systolic algorithm for solving
the LCS problem. The algorithm takes m + 2n - 1
time steps, which is the tight lower bound for systolic
algorithms that use a linear array of n PEs to process
m + n sequentially input items. The algorithm is
thus not only cost-optimal but also the fasiest when
symbols are input sequentially to a linear systolic array
of n PEs. Moreover, compared with the other fastest

systolic algorithm, it may take less time but never

takes more time in a time step. It is suited to both
VLSI and multicomputer implementations. In fact, for
implementation on multicomputers, our algorithm can
be modified to take advantage of the broadcast operation
and takes only m + n steps.

References
(1
[2]

T. Agerwala, et al., SP2 system architecture,
IBM Syst. J. 34 (2) (1995) 152-184.

A. Aho, D. Hirschberg and J. Ullman, Bounds on
the complexity of the longest common
subsequence problem, J. ACM 23 (1) (1976) 1-
12.

A. Apostolico, S. Browne and C. Guerra, Fast
linear-space computations of longest common
subsequences, Theoretical Comput. Science 92
(1992) 3-17.

Y. Feldman and E. Shapiro, Spatial machines: A
more realistic approach a parallel computation,
CACM 35 (10) (1992) 61-73.

D.S. Hirschberg, A linear space algorithm for
computing maximal common subsequences,
CACM 18 (6) (1975) 341-343,

D.S. Hirschberg, Algorithms for the longest
common subsequence problem, J. ACM 24 (4)
(1977) 664-675.

S.K. Kumar and C.P. Rangan, A linear-space
algorithm for the LCS problem, Acta Inform. 24
(1987) 353-362.

H.T. Kung, Why systolic architectures?, IEEE
Computer 15 (1) (1982) 37-46.

B3]

[4]

(3]

(6]

M

(8

19

E-39

[91 T. Lecrog, G. Luce and J.F. Myoupo, A faster
linear systolic algorithm for recovering a longest
common subsequence, Inforn. Process. Lett. 61
(3) (1997) 129-136.

Y.C. Lin, New systolic arrays for the longest
common subsequence problem, Parallel Comput.
20 (9) (1994) 1323-1334.

Y.C. Lin and J.C. Chen, An even faster systolic
algorithm for the longest common subsequence
problem, in: Proc. 1997 Workshop on
Distributed System Technologies and
Applications (1997) 603-610.

M. Lu and H. Lin, Parallel algorithms for the
longest common subsequence problem, IEEE
Trans. Parallel Distributed Syst. 5 (8) (1994)
835-848.

G. Luce and JL.F. Myoupo, An efficient linear
systolic algorithm for recovering longest common
subsequences, in: Proc. IEEE Int. Conf. on
Algorithms and Architectures for Parallel
Processing (1995) 20-29,

N. Nakatsu, Y. Kambayashi and S. Yajima, A
longest common subsequence algorithm suitable
for similar text strings, Acta Inform. 18 (1982)
171-179.

P. Quinton and Y. Robert, Systolic Algorithms
& Architectures. (Prentice Hall International,
Hertfordshire, UK, 1991).

Y. Robert and M. Tchuente, A systolic array for
the longest common subsequence problem,
Inform. Process. Leit. 21 (4) (1985) 191-198.

D. Sankoff and J.B. Kruskal, Time Warps,
String Edits and Macromolecules: The Theory
and Practice of Sequence Comparison. (Addison-
Wesley, Reading, MA, 1983).

R.A. Wagner and M.J. Fischer, The string to
string correction problem, J. ACM 21 (1974)
168-173.

Z. Xu and K. Hwang, Modeling communication
overhead: MPI and MPL performance on the IBM
SP2, IEEE Parallel & Distributed Technology 4
(1) (1996) 9-23.

[10)
[11]
[12]

[13]

[14]

[13]
(16}

(17

(18]

