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Abstract ― This study presents an O(n2)-time algorithm 
for counting the number of minimum weighted minimal 
vertex covers and maximum weighted minimal vertex 
covers in a weighted trapezoid graph simultaneously. 

Index Terms ― Minimum / Maximum Weighted 
Minimal Vertex Covers, Weighted Trapezoid Graph, 
Counting Problem. 

I. INTRODUCTION 

Let G = (V, E) be a simple graph, where V and E 
are the vertex set and edge set of G, respectively. A 
subset C ⊆ V is called a vertex cover of G if and 
only if every edge in E has at least one endpoint in 
C. A vertex cover C is called a minimal vertex 
cover if and only if no proper subset of C is a 
vertex cover. A simple graph G = (V, E) is weighted 
if each v ∈ V is associated with a weight w(v). The 
weight of a vertex cover C, denoted w(C), is the 
sum of the weights of vertices that it contains. A 
minimal vertex cover with maximum (minimum) 
weight is called a maximum (minimum) weighted 
minimal vertex cover. 

Okamoto et al. [9] developed O(n + m) time 
algorithms for counting the numbers of 
independent sets (vertex covers) and maximum 
independent sets (minimum vertex covers) in a 
chordal graph, where n is the number of vertices 
and m is the number of edges. They found that the 
problems of counting the numbers of maximal 
independent sets (minimal vertex covers) and 
minimum maximal independent sets (maximum 
minimal vertex covers) are #P-complete for a 
chordal graph. No efficient algorithms have yet 

been developed for solving #P-complete problems 
[10]. Consequently, many researchers have 
examined on a restricted sub-class of #P-complete 
problems. Lin et al. [6, 7] considered a sub-class of 
the chordal graphs, interval graphs, and obtained 
efficient algorithms in O(n) time for counting the 
number of vertex covers, minimal vertex covers, 
minimum vertex covers, and maximum minimal 
vertex covers in an interval graph. In addition, they 
extended these problems in the super-class of both 
interval graphs and permutation graphs, trapezoid 
graphs, and proposed O(n2) time algorithms for 
solving them [8]. Table 1.1 lists the comparisons of 
results of papers [6-9]. 

Various researchers have independently 
introduced trapezoid graphs (also called 
Interval-Interval graphs) [1 - 5, 8]. A graph G = (V, 
E) is a trapezoid graph if there exists a set of 
trapezoids between a pair of horizontal lines such 
that for each vertex i ∈ V there exists a 
corresponding trapezoid i, and an edge (i, j) ∈ E if 
and only if trapezoids i and j intersect each other. 
Such a family of trapezoids between a pair of 
horizontal lines is referred to as a trapezoid 
diagram for G. A trapezoid i in the trapezoid 
diagram is denoted by four corner points a(i), b(i), 
c(i) and d(i), which represent the upper left, the 
upper right, the lower left and the lower right 
corner points of trapezoid i, respectively; notably 
a(i) < b(i) and c(i) < d(i). Figure 1.1 illustrates a 
trapezoid graph and its corresponding trapezoid 
diagram.
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Figure 1.1: Example of a trapezoid graph and its corresponding trapezoid diagram 

 
 

Table 1.1: Summary of the results 

Graphs
Counting problems Chordal Interval Trapezoid 

# of vertex covers O(n + m)    [9] O(n) [6] O(n2) [8] 
# of minimal vertex covers #P-Complete [9] O(n) [6] O(n2) [8] 
# of minimum vertex covers O(n + m)    [9] O(n) [7] O(n2) [8] 
# of maximum minimal vertex covers #P-Complete [9] O(n) [7] O(n2) [8] 

 

The rest of this paper is organized as follows. 
The next section introduces preliminaries on which 
the rest of the paper depends. Section III presents 
an O(n2) time algorithm that simultaneously counts 
the number of minimum weighted minimal vertex 
covers and maximum weighted minimal vertex 
covers. 

II. PRELIMINARIES 

This section presents the preliminaries on which 
the desired algorithms depend. Trapezoid graphs 
generalize both interval graphs and permutation 
graphs. A graph G = (V, E) is an interval graph if 
there exists a set of intervals on the real line such 
that for each vertex i ∈ V, a corresponding interval 
i exists, and an edge (i, j) ∈ E if and only if 
intervals i and j intersect each other. A graph G = (V, 
E) with V = {1, 2, …, n} is a permutation graph if 
there exists a permutation π over {1, 2, …, n} such 
that an edge (i, j) ∈ E if and only if (i − j) (π−1(i) − 
π−1(j)) < 0. A permutation graph G = (V, E) can be 
represented by a permutation diagram consisting of 
two horizontal lines. The points of the top line are 
numbered from 1 to n and the points of the bottom 

line are numbered by a permutation π over {1, 2, …, 
n}. Each vertex i in V corresponds to a line i with 
points i and π−1(i) in the diagram, and an edge (i, j) 
∈ E if and only if lines i and j intersect each other 
in the diagram. A trapezoid graph can be reduced to 
an interval graph if a(i) = c(i) and b(i) = d(i) for 
each trapezoid i in its trapezoid diagram. 
Additionally, a trapezoid graph can be reduced to a 
permutation graph if a(i) = b(i) and c(i) = d(i) for 
each trapezoid i in its trapezoid diagram. Thus, 
both permutation graphs and interval graphs are 
sub-classes of trapezoid graphs. 

Let T = {1, 2, …, n} denote the trapezoid 
diagram of trapezoid graph G = (V, E) with |V| = n. 
Additionally, for each v ∈ V is associated with a 
weight w(v). For simplicity, the trapezoid in T that 
corresponds to vertex i in V is called trapezoid i. 
The terms trapezoid and vertex are used 
interchangeably whenever the context is 
unambiguous. Without loss of generality, the 
following assumptions are made. First, no two 
trapezoids share a common endpoint. The points on 
each horizontal line in T are labeled with distinct 
integers between 1 and 2n. Second, two dummy 
vertices (trapezoids) 0 and n+1 are added to T, 
where a(0) = b(0) = c(0) = d(0) = 0 for vertex 0 and 
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a(n+1) = b(n+1) = c(n+1) = d(n+1) = 2n+1 for 
vertex n+1. Therefore, T = {0, 1, 2, …, n, n+1} now. 
In addition, the weights of these dummy vertices 
are both 0; i.e., w(0) = 0 and w(n+1) = 0. 

Let i, j be two trapezoids in the trapezoid 
diagram T. Trapezoid i lies entirely to the left of 
trapezoid j, denoted by i j, if b(i) < a(j) and d(i) < 
c(j). Clearly, if i j and j k, then i k.  
Accordingly, the relation  is a partial order over 
the trapezoid diagram T and (T, ) is a strictly 
partially ordered set. Clearly, two trapezoids i, j 
intersect each other, expressed by i ~ j, if and only 
if neither i j nor j i. Restated, i ~ j if and only if 
vertices i, j are adjacent to each other. Notice that 
{i : i 0} = ∅ and {i : i n+1} = {0, 1, 2, …, n}. 

A subgraph induced by the set of trapezoids 
satisfying {x : x k} − {0}, 1 ≤ k ≤ n+1, denoted 
by Gk. One can easily see that Gk, 1 ≤ k ≤ n+1, is 
also a trapezoid graph and Gn+1 = G when k = n+1. 
In the following context, the trapezoids are 
reordered in topological order according to the 
strictly partially ordered set (T, ). Therefore, for 
trapezoids i and j, if i j then i < j. The work for 
the topological sorting can be done in O(n2) time. A 
trapezoid i is called the rightmost trapezoid of Gk if 
and only if i ∈ {x : x k} and no trapezoid lies 
entirely to the right of trapezoid i in the trapezoid 
diagram of Gk; that is, there exists no trapezoid j ∈ 
{x : x k} such that i j k. Let y(k) denote the 
set of all rightmost trapezoids of Gk. According to 
the definition of y(k), y(k) form a clique. Let 
MVC(Gk) be the set of all minimal vertex covers in 
Gk. Lin et al.[8] designed an O(n2) algorithm to 
obtain y(k) and showed that  

MVC(Gk) =
( )

{ ( ) : ( )}k i
i y k

C i C MVCN G
∈

′ ′∪ ∈∪  (1) 

, where Nk(i) is the set of vertices adjacent to vertex 
i in Gk. 

Furthermore, they established the following 
theorem for counting the number of minimal vertex 
covers in a trapezoid graph. 

Theorem 2.1 [8] For 1 ≤ k ≤ n+1, 

|MVC(Gk)| = ∑
∈ )(

)(
kyi

iGMVC ; |MVC(G0)| = 1. 

It is obvious that an O(n2) algorithm can be 

applied to compute |MVC(Gk)| for 1 ≤ k ≤ n+1. 
Next section, we deal with problems for counting 
the number of minimum weighted minimal vertex 
covers and maximum weighted minimal vertex 
covers in a weighted trapezoid graph. 

III. O(n2)-TIME ALGORITHM TO COUNT THE 
NUMBER OF MINIMUM / MAXIMUM 

WEIGHTED MINIMAL VERTEX COVERS 

This section presents an O(n2) algorithm for 
simultaneously counting the number of minimum 
vertex covers and maximum minimal vertex covers. 
Let W(k) be the weight of the set of the trapezoids 
lying entirely to the left of trapezoid k, i.e., W(k) = 

( )
i k

w i
<<
∑  for 1 ≤ k ≤ n+1. Hence, it is easily to get 

W(k), 1 ≤ k ≤ n+1, in O(n2) time. 
 Let α(k) and β(k) be the minimum weight of 

minimal vertex covers in Gk and the maximum 
weight of those in Gk, respectively. 

Lemma 3.1 For 1 ≤ k ≤ n+1, 

α(k) = { }
( )

min ( ) ( ) ( ) ( )
i y k

i W k W i w iα
∈

+ − − ;  

α(0) = 0. 

Proof. According to the definition of α(k), 

α(k) = min{ ( )
v C

w v
∈
∑

 
: C ∈ MVC(Gk)}. Recall 

that MVC(Gk) = 
( )

{ ( ) : ( )}k i
i y k

C i C MVCN G
∈

′ ′∪ ∈∪ . 

Hence, 

( )
( ) min{ ( ) : ( )}min i

i y k j C
k w j C MVC Gα

∈ ′∈

⎧
′= ∈⎨

⎩
∑  

( )

( )
kj N i

w j
∈

⎫⎪+ ⎬
⎪⎭

∑ . 

Since y(k) is a clique, by the definition of y(k), 
Nk(i) = {x : x k} − {x : x i} − {i} for i ∈ y(k). 

B e c a u s e  min ( ) : ( ) ( )i
j C

w j C MVC G iα
′∈

⎧ ⎫
′∈ =⎨ ⎬

⎩ ⎭
∑  

and 
( )

( )
kj N i

w j
∈
∑ = W(k) − W(i) − w(i) for i ∈ y(k),  

the lemma follows.   
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A similar lemma applies for β(k). 

Lemma 3.2 For 1 ≤ k ≤ n+1, 

β(k) = { }
( )

max ( ) ( ) ( ) ( )
i y k

i W k W i w iβ
∈

+ − − ; 

β(0) = 0. 

Based on Lemmas 3.1 and 3.2, the following 
algorithm can be used to compute α(k) and β(k), for 
1 ≤ k ≤ n+1, in O(n2) time. 

Algorithm Compute_αk_and_βk 
α(0) ← 0;  //initial condition // 
β(0) ← 0;  //initial condition // 
for k ← 1 to n+1 do 
  α(k) ← W(k);  β(k) ← 0; 
  for each i ∈ y(k) do 

       if α(i) + W(k) − W(i) − w(i) < α(k) then 
      α(k) ← α(i) + W(k) − W(i) − w(i); 

       if β(i) + W(k) − W(i) − w(i) > β(k) then 
      β(k) ← β(i) + W(k) − W(i) − w(i); 

end-for 
end-for 

end-Algorithm 

Let #α(k) and #β(k) be the number of minimum 
weighted minimal vertex covers in Gk and the 
number of maximum weighted minimal vertex 
covers in Gk, respectively. 

Theorem 3.1 For 1 ≤ k ≤ n+1, 

#α(k) =
( )

# ( ) ( , )
i y k

i t k iα
∈

⋅∑ , where 

1 ( ) ( ) ( ) ( ) ( )
( , ) ;

0
if i W k W i w i k

t k i
otherwise
α α+ − − =⎧

= ⎨
⎩

 

#α(0) = 1. 

Proof. Let MVC(Gk, i), i ∈ {x : x k}, be the set of 
all minimal vertex covers C in Gk such that vertex i 
is the largest vertex that is not in C; that is, 
MVC(Gk, i) = {C ∈ MVC(Gk) : i ∉ C and {j ∈ {x : 
x k} : i < j} ⊆ C}. Let C ∈ MVC(Gk, i) be a 
minimal vertex cover in Gk and i ∈ y(k). By the 
definition of MVC(Gk, i), vertex i ∉ C, implying 
Nk(i) ⊆ C. Since C is a minimal vertex cover in Gk, 
C' = C − Nk(i) must be a minimal vertex cover in Gk 
− i − Nk(i). When i ∈ y(k), Gk − i − Nk(i) = Gi. 

Therefore, C = C' ∪ Nk(i) and C' ∈ MVC(Gi). 
Accordingly, for i ∈ y(k), a one-to-one 
correspondence clearly exists between MVC(Gk, i) 
and MVC(Gi); that is C = C' ∪ Nk(i) for C ∈ 
MVC(Gk, i) and C' ∈ MVC(Gi). Therefore, the 
number of all minimal vertex covers with the 
minimum size α(k) in MVC(Gk, i) equals that with 
the minimum size α(i) in MVC(Gi). Thus, #α(k) 
can be accumulated through #α(i) by checking 
whether α(k) equals α(i) + W(k) − W(i) − w(i) for 
each i ∈ y(k).   

A similar theorem is valid for #β(k). 
Theorem 3.2 For 1 ≤ k ≤ n+1, 

#β(k) =
( )

# ( ) ( , )
i y k

i t k iβ
∈

⋅∑ , where 

1 ( ) ( ) ( ) ( ) ( )
( , ) ;

0
if i W k W i w i k

t k i
otherwise
β β+ − − =⎧

= ⎨
⎩

  

#β(0) = 1. 

Based on Theorems 3.1 and 3.2, the following 
algorithm can be applied to compute #α(k) and 
#β(k), for 1 ≤ k ≤ n+1, in O(n2) time. 

Algorithm Compute_#αk_and_#βk 
#α(0) ← 1; //initial condition // 
#β (0) ← 1; //initial condition // 
for k ← 1 to n+1 do 
   for each i ∈ y(k) do 

#α(k) ← 0;   
#β (k) ← 0; 

        if α(i) + W(k) − W(i) − w(i) = α(k) then  
#α(k) ← #α(k) + #α(i); 

        if β(i) + W(k) − W(i) − w(i) = β(k) then  
#β(k) ← #β(k) + #β(i); 

end-for 
end-for 
output("The number of minimum weighted 

minimal vertex covers is ", #α(n+1)); 
output("The number of maximum weighted 

minimal vertex covers is ", #β(n+1)); 
end-Algorithm 
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