
Heuristic Algorithms for finding 2-clubs in an
undirected graph

Chin-Ping Yang
Dept. of CSIE
CCU, Taiwan

ycp97m@cs.ccu.edu.tw

Hung-Chou Chen
Dept. of CSIE
CCU, Taiwan

allenc427@gmail.com

Sin-Da Hsiea
Dept. of CSIE
CCU, Taiwan

ibmibmibm.tw@gmail.com

Bang Ye Wu
Dept. of CSIE
CCU, Taiwan

bangye@cs.ccu.edu.tw

Abstract—In a graph G, a k-club is a node set inducing
a subgraph of diameter at most k. The structure is useful
to define a community or friend group on a social network.
However, similar to the maximum clique problem, finding
the largest k-club for any fixed k ≥ 1 is NP-hard. In this
paper, we propose a new heuristic algorithm to determine
a largest 2-club. To compare the performance, we also
implement the other three methods. The experimental
results show that our method indeed improves the previous
algorithms.

Index Terms—k-clubs, social network analysis, heuristic
algorithms

I. INTRODUCTION

Social and behavioral scientists frequently use
network analysis to identify the relationship be-
tween groups, individuals or any abstract entities.
It’s the work related to graph analysis and also
one branch of data mining called social network
analysis (SNA). From a statistical point of view,
SNA can be described as directed graphs for there is
an actor(node) who knows other by adding a direc-
tional edge from himself to the other. Moreover, the
applications are widely developed and among these
problems scientists usually tend to focus on how to
identify dense structures in a graph. For example,
Baker [1] analyzed market networks, Snyder and
Kick [9] studied transactional interactions between
nations, and Mintz and Schward [7] investigated
interlocking directorates in major corporations.

The most widely known in this type of research
is to find out clique defined as a set of nodes all
directly linked to each other by an edge, i.e. a
complete subgraph. In SNA, finding a friend group
can be referred to finding a clique in a graph.
The idea of a clique is relatively simple and the

subgraph is closely and intensely. However, the size
of cliques we found could be small in general since
its restricted condition. To overcome this problem,
several relaxations have been used [5]. A k-clique
relaxes the distance constraint such that the distance
from each node to any other is at most k but not
necessary 1. For example, the set S = {1, 2, 3, 4, 5}
in Fig.1 is a 2-clique by definition. However, the
shortest path between two nodes may pass through
a node outside the k-clique. For example, node 4
and 5 passes through node 6 which does not belong
to S. It doesn’t make sense in some applications
like friend group in reality.

Since there are property drawbacks that 1-clique
is too restricted and 2-clique is too sparse, there
is another usual way to identify more meaningful
structures called club. A k-club is defined as a
node set, by which the induced subgraph is of
diameter at most k. The diameter of a graph is
the largest distance between any two nodes. For
example, {1, 2, 3, 4}, {1, 2, 3, 4, 5, 6} in Fig.1 are 2-
clubs but {1, 2, 3, 4, 5} is not since the paths from
each other can only pass through the nodes within
club.

Due to the rapid growth of Internet, Internet
service providers(ISP) provide many kinds of social
network services(SNS), especially the personal web
space such as facebook. People can interactive with
each other by using various applications in the
platform. One important function of such platforms
is to introduce latent friends. One way to do this
is introducing the friends of friends to a user (such
as MSN and facebook currently do). But such a
easy way may be not precise at all. Instead people
in one 2-club may be latent friends more possibly.

Fig. 1. An example of a 2-clique but not a 2-club

However, finding 2-clubs seems even more difficult
than 2-clique although both problems are NP-hard.
UCINet is a popular software for SNA [10]. It
provides a function to compute k-clique but no
function for k-club. Previously Jean-Marie, Gilbert,
Gilles [2] showed that the maximum k-club problem
(MkCP) in an undirected graph is NP-hard and
give an exact branch-and-bound algorithm to obtain
optimal within insignificant computing time only
in very dense graphs. They also proposed three
heuristics [3] in an earlier paper.

In this paper, we propose another heuristic algo-
rithm to find the maximum 2-club (M2CP), which
is modified from a previous method called DROP.
To show the performance, we test it on randomly
generated network. Comparing to the other three
previous heuristics, the experimental results show
that the new method performs better in many situ-
ations.

The paper is organized as follows. The new
heuristic, as well as three previous ones are de-
scribed in the section 2. Then we show the experi-
mental results and discussions in section 3. Finally,
conclusions are given in section 4.

II. THE ALGORITHMS

We describe a new heuristic named VCOVER,
as well as three compared methods for the 2-club
problem in an undirected graph.

Heuristic 1: DROP

The algorithm DROP starts from a larger node set
and removes the nodes one-by-one until it becomes
a 2-club.

Algorithm DROP
For each vi, do the following and choose the best.
1: Calculate all-to-all distance;
2: Initially set W = Vi;

Compute for each node v of W the number
qv = |{u ∈ V (W) : d(u, v) > 2}|;
If qv = 0 for every node v, stop; W is a 2-club.

3: Delete from W the node with the smallest
degree among the largest value of qv.

4: Update the distances for W . Goto step 2.

For each node vi, we first find the nodes whose
distance to vi is at most two. Let Vi be the set
of such nodes. To speed up the computation, the
algorithm starts from Vi instead of the whole node
set. The algorithm is a modification of the one in
[2]. Their algorithm first finds a maximum 2-clique
and then removes the nodes one by one, therefore,
it’s less efficient when the number of node is large.

Heuristic 2: VCOVER

The heuristic DROP removes nodes one by one.
Although it is easy but may be lack of globe view.
To improve this drawback, we design a new heuris-
tic VCOVER. The intuition is as follows. Let H be a
network and F the set of node pair whose distance
larger than two, i.e., F = {(u, v)|dH(u, v) > 2}.
Clearly for each pair (u, v) in F , at least one
of the two nodes must be removed to make the
remaining a 2-club. Therefore, at each iteration, we
find minimum number of nodes to cover all the pairs
in F , which is exactly the so-call “minimum vertex
cover” of the graph induced by the edge set F .

The minimum vertex cover problem is NP-hard
[4]. We use the algorithm in [8]. Fortunately the
instance size for the problem is small and the
algorithm is practically efficient.

Algorithm VCOVER
For each vi, do the following and choose the best.
1: Let H = G[Vi];
2: find F = {(u, v)|dH(u, v) > 2};

3: if F = ∅ return H as the 2-club;
4: construct graph P induced by the edge F ;
5: find a minimum vector cover C of P ;
6: remove C from V (H) and goto Step 2;

To exhibit the performance of VCOVER, in the
following we introduce two previous methods for
comparison. One is INC [6], and the other is STAR
[2].

Heuristic 3: INC

Different from the first two methods, INC uses
the concept of incrementally adding nodes, one by
one or two by two. The algorithm is described as
follows:

Algorithm INC
/* Let V = {vi|1 ≤ i ≤ n} be the node set */
For i = 1 to n do the following p times and
choose the best

C ← {vi};
repeat forever

call ADD1;
if ADD1 returns FAIL then call ADD2;
if both ADD1 and ADD2 return FAIL then

compare C with best result and goto
next iteration;

end repeat;
end for;

Procedure ADD1

Input: A 2-club C
find all nodes v ∈ V − C such that C ∪ {v} is a
2-club;
put all such nodes into S;
if S is empty then

return FAIL;
else

randomly choose a node from S and insert it
into C;
return SUCCESS;

The procedure ADD2 is similar to ADD1 and is
omitted here. The only difference is that it tries to
insert two nodes at a time instead of one node at a

time. We can see that it is a randomized algorithm,
and the solution varies with the different choices.
Therefore, the quality of the result depends on the
times we repeat the program. The repetitions are
used in three places of the program: The first one is
that we use every node as an beginning to build a
2-club. The second is that for each staring node we
repeat p times. The third is that we do the whole
procedure q times.

Heuristic 4: STAR

This algorithm simply determines a node of max-
imum degree in G and output the node as well
as all its neighbors as a 2-club. Although it is a
simple method, the solution would be fine in some
certain cases and of course the least execution time.
The analysis of these cases and experimental results
would be shown later on.

III. EXPERIMENTAL RESULTS

A. Environment and data instance

These algorithms were coded in C++ and run
on a PC. The test graphs are generated randomly
by an algorithm used in [2]. The graph density
is controlled by two density parameters a and b,
0 ≤ a ≤ b ≤ 1. For each node v, we first generate
a random number p[v] drawn uniformly from the
interval [a, b]. Then, for each node u and v, the
edge (u, v) exists with probability (p[u] + p[v])/2.
The excepted edge density of the graph is equal to
(a + b)/2 and the node degree variance increases
with b − a. Tests were performed on 17 cases
controlled by several combination of a and b of 20-
node and 50-node graphs. There are 100 instances
tested for each case.

B. Running time

Theoretical time Complexities:
• The most time-consuming step of the DROP

algorithm is to compute all-pairs shortest path.
In our implementation we reduce the time
complexity to O(|Vi|2 + |Vi||Ei|), in which
Vi is the set of nodes with distance at most
two to node vi and Ei is the corresponding
edge set. For small degree graphs, |Vi| and
|Ei| are small. Since at most |Vi| nodes are
deleted and we do the procedure for each node

vi, the overall time complexity of DROP is
O(

∑
i(|Vi|3 + |Vi|2|Ei|)).

• For VCOVER, we implement a fixed parameter
algorithm of a search tree of size O(1.33k),
in which k is the solution size [8]. Although
the minimum vertex cover problem is NP-
hard, it’s not surprising that VCOVER takes not
much time since the small number of nodes in
the auxiliary graphs. Another reason to make
VCOVER efficient is that, in any iteration, the
larger k is, the more nodes we delete. The
efficiency is shown more obviously on middle
density graphs.

• The most cost step of INC algorithm is to check
nodes to be added into a 2-club, which takes
O(|V | + |E|) time. Since using every node as
a beginning and repeating p∗q times, the over-
all time complexity is O(pq(|V |2 + |V ||E|)),
where p and q are repetition times parameters
controlled by users.

• The STAR algorithm is the simplest and fast. It
takes O(|V |+|E|) to find the maximum degree
node.

Practical running time: Since the computing time
on 20-node instances is very fast, the following
discussion focuses on 50-node graphs.

• Among the four heuristic, INC and STAR cost
almost no time.

• For DROP and VCOVER, the most cost case
happened on the density around 0.1, spending
about 1.3 seconds and 0.28 seconds per in-
stance, respectively. But in low and high den-
sity, DROP and VCOVER take less time, about
0.4 seconds and 0.13 seconds, respectively.

• In summary, VCOVER runs about 4 times
faster than DROP although the former involves
an exponential time solver for an NP-hard
problem.

C. Performance
The density parameters a and b are given in the

column ab with the form aabb. For example, by
ab = 0515 we mean that a = 0.05 and b = 0.15.

In Tables I and III we list the winning percentage
of each of the four heuristics for all the cases of ab.
For example, the first row indicates that, in 98 of
the 100 test cases of a = 0.05 and b = 0.05, the
clubs found by DROP are best. The total percentage

of each row may exceed 100% when two or more
methods tie in some instances.

Tables II and IV show the average number of
nodes of the found 2-clubs on 20-node and 50-node
graphs, respectively. In Table II we also list the sizes
of optimal solutions, which were found by a brute-
force exact algorithm.

By the experimental results, we make some dis-
cussions on the performances of the heuristics in the
following:

For 20-node graphs:
• When density is 0.05, a maximum 2-clubs is

almost just a star. When density is up to 0.25,
almost the whole graph is a 2-club. That’s the
reason why we list the experimental results for
densities between the two extremes.

• INC and STAR perform well only for very low
density (0.05). As the density increases, we
notice that the performances of INC and STAR
are getting worse. But DROP and VCOVER
still perform very close to the exact algorithm.

For 50-node graphs:
• Just as the 20-node cases, when density is 0.05,

a maximum 2-clubs is almost just only a star.
For density is 0.2 and 0.25, almost the whole
graph is a 2-club. The most important cases are
density=0.1 and 0.15.

• Same as 20-node cases, these four heuristics
perform almost the same when density=0.05.
DROP and VCOVER have the best solution.

• When density=0.1 and 0.15, INC and STAR
work significantly worse. DROP performs bet-
ter than VCOVER in some cases of density=0.1
but they almost tie when density=0.15.

In Summary:
• From these two experiments of 20-node and

50-node graphs, we observe that STAR behaves
well only on graphs of very low density. For
other cases, DROP and VCOVER are the best
choices not only for giving good solutions but
also taking not much time.

• In the cases of density=0.1 and 50 nodes,
VCOVER performs worse but takes much less
time than DROP. It’s a trade-off for users
between time and quality. But in the case
of density=0.15, VCOVER is better than the
others in most of the cases, both in quality

TABLE I
THE WINNING PERCENTAGE (20 NODES)

Density ab DROP VCOVER INC STAR

0.05 0505 100 100 90 94
0010 100 100 93 95

0.1 1010 98 99 36 49
0515 98 97 30 43
0020 100 100 40 68

0.15 1515 98 98 6 4
1020 96 97 3 4
0525 98 97 9 10

0.2 2020 99 100 12 0
1525 100 98 13 0
1030 99 98 13 1

0.25 2525 100 100 56 0
2030 100 100 57 0
1535 100 100 50 0

TABLE II
AVERAGE SIZE OF 2-CLUBS FOR FOUR DIFFERENT HEURISTICS

(20 NODES)

Density ab DROP VCOVER INC STAR Exact

0.05 0505 5.58 5.58 5.48 5.52 5.58
0010 6.07 6.07 6.00 6.02 6.07

0.1 1010 8.87 8.88 7.92 8.13 8.89
0515 9.17 9.16 8.11 8.35 9.19
0020 8.89 8.89 8.08 8.41 8.89

0.15 1515 13.38 13.36 10.27 10.42 13.41
1020 13.29 13.31 10.13 10.51 13.34
0525 12.88 12.85 10.02 10.48 12.9

0.2 2020 17.52 17.52 13.82 12.53 17.53
1525 17.64 17.64 13.8 12.67 17.66
1030 16.73 16.72 13.2 12.54 16.76

0.25 2525 19.64 19.64 17.69 14.52 19.64
2030 19.57 19.57 17.95 14.56 19.57
1535 19.31 19.31 17.35 14.47 19.31

and in efficiency. Therefore, if quality is the
most important consideration, we suggest to
use both VCOVER and DROP algorithms and
then choose the better.

• For a specified node v, the 2-club can only
include nodes with distance at most two to v.
The locality property makes us determine the
number of nodes in our experiments. It may be
less of meaning to do experiment on graphs of
too many nodes.

IV. CONCLUSION

We have described four heuristics for determining
a maximum 2-club in an undirected graph. The

TABLE III
THE WINNING PERCENTAGE (50 NODES)

Density ab DROP VCOVER INC STAR

0.05 0505 90 91 66 88
0010 100 100 30 92

0.1 1010 83 44 0 2
0515 87 53 0 4
0020 88 84 0 13

0.15 1515 95 90 0 0
1020 88 91 0 0
0525 86 91 0 0

0.2 2020 100 100 5 0
1525 100 100 4 0
1030 98 99 1 0

0.25 2525 100 100 41 0
2030 100 100 44 0
1535 99 99 30 0

TABLE IV
AVERAGE SIZE OF 2-CLUBS FOR FOUR DIFFERENT HEURISTICS

(50 NODES)

Density ab DROP VCOVER INC STAR

0.05 0505 10.92 10.92 9.24 10.85
0010 12.22 12.22 10.11 12.13

0.1 1010 22.47 21.7 12.95 17.25
0515 23.57 22.94 13.74 18.09
0020 23.32 23.29 14.38 18.91

0.15 1515 45.21 45.15 18.25 23.15
1020 43.6 43.62 18.07 23.36
0525 40.47 40.54 18.12 24.41

0.2 2020 49.83 49.83 26.3 28.37
1525 49.79 49.79 26.33 28.84
1030 49.17 49.19 25.85 29.52

0.25 2525 50 50 39.7 33.41
2030 50 50 41.46 33.6
1535 49.99 49.99 36.78 33.5

experiment result on 20-node graph suggests that
DROP and VCOVER are effective and promising
since the performance of 17 cases is almost as good
as exact solution.

The result that DROP wins VCOVER in some
cases points out that maybe we should give more
considerations on the centrality (importance) of
nodes in the deletion step of VCOVER, such as
degree, betweenness and distance.

The 2-club problem has several applications
nowadays due to the rapid growth of Internet. We
will keep working on finding k-club for k > 2.
Another interesting problem is the club problem on
directed graph [6].

ACKNOWLEDGMENTS

The work was supported in part by an NSC
Grant NSC97-2221-E-366-001-MY3 from the Na-
tional Science Council, Taiwan.

REFERENCES

[1] W.E. Baker, Market networks and corporate behavior. American
Journal of Mathematical Sociology, 12:191–223, 1986.

[2] J.M. Bourjolly, G. Laporte and G. Pesant, Heuristics for finding
k-clubs in an undirected graph, Computers Operations Research,
27:559–569, 2000.

[3] J.M. Bourjolly, G. Laporte and G. Pesant, An exact algorithm for
the maximum k-club problem in an undirected graph, European
Journal of Operational Research, 138:21–28, 2002.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to The Theory of NP-Completeness, Freeman, NewYork,
1979.

[5] R.A. Hanneman and M. Riddle, Introduction to social network
methods, online at http://www.faculty.ucr.edu/hanneman/nettext/,
2005.

[6] S.T. Kuan, B.Y. Wu, and W.J. Lee, Finding friend groups in
Blogsphere, in the Proceedings of 22nd International Conference
on Advanced Information Networking and Applications, 1046–
1050, 2008.

[7] B. Mintz and M. Schwartz, Interlocking directorates and interest
group formation. American Sociological Review, 46:851–69,
1981.

[8] R. Niedermeier, Invitation to Fixed Parameter Algorithms, in
Oxford Lecture Series in Mathematics and Its Applications, 2006.

[9] D. Snyder, and EL. Kick, Structural position in the world system
and economic growth, 1955–1970: a multiple-network analysis
of transactional interactions. American Journal of Sociology,
84:1096–126, 1979.

[10] UCINet, Release 6.0, Mathematical Social Science Group,
Social School of Science, University of California at Irvine.

[11] S. Wasserman and K. Faust, Social Network Analysis, Cam-
bridge University Press, Cambridge, 1994.

