
A Defensive Strategy Combined with Threat-Space
Search in Connect6

Yun-Ching Liu and Shun-Shii Lin
Department of Computer Science and Information Engineering

National Taiwan Normal University, Taipei, Taiwan, R.O.C.
Email: cipherman@gmail.com, linss@csie.ntnu.edu.tw

Abstract—The study of k-in-a-row games has produced
a number of interesting results, and one of its sub-category
Connect6 proposed in 2005 has been of particular interest.
Since 2006, Connect6 has been included as one of the
major competition in the ICGA Computer Olympiad, and
is gaining more popularity every year.

In this paper, we briefly review current methods applied
in Connect6 and related results. A defensive strategy
is introduced along with a more strategically sensitive
evaluation scheme. Threat-space search is an important
algorithm applied in Connect6, some techniques for gain-
ing more efficiency and accuracy will be introduced. The
integration of the defensive strategy and threat-space
search will also be investigated.

The combination of the defensive strategy and threat-
space search is proved to be effective, and is able to
compete with other top Connect6 programs. The program
Kagami, which was implemented with these methods, won
the fourth place in the 14th Computer Olympiads.

Index Terms—Connect6, k-in-a-row, Threat-space
Search, Aritificial Intelligence

I. INTRODUCTION

Games are ideal domains for exploring the ca-
pabilities of artificial intelligence (AI), although
chess has long time been called the Drosophila of
AI[9], the research of other games has also provided
fruitful results.

The study of k-in-a-row games has produced
a number of interesting results [11][4][10][13],
and has also introduced new AI techniques
[3][2]. Variants of k-in-a-row games have also
been investigated, such as k-in-row games played
on higher-dimensional boards[6][5][1], and the
Connect(m, n, k, p, q) family of k-in-a-row games,
where two players place p stones in each turn on an
m × n board except for that the first player places
q stones for the first move, and the player who gets
k consecutive stones of his own first wins[12].

One member of the k-in-a-row games, Connect6,
proposed by Wu and Huang [11] in 2005, has
been of particular interest. Connect6 is essentially
a Connect(19, 19, 6, 2, 1) game. Since 2006, Con-
nect6 has been included as one of the major com-
petition in the ICGA Computer Olympiad, and is
gaining more popularity every year.

Many artificial intelligence methods applied in
Connect6 are largely under the influence of the
techniques used in solving Go-Moku[3][2], where
threat-space search was proposed and applied. Wu
and Huang proposed a Connect6 version of threat-
space search, and generalized it to the family of
k-in-a-row games[12][7]. It became the foundation
of today’s Connect6 programs, and much effort has
been made to increase the speed and accuracy. The
stage between the start of the game and a winning
sequence found by threat-space search is where the
evaluation heuristics have more influence. Allis used
proof number search for this stage in Go-Moku,
while in Connect6 most programs usedαβ-search.

Connect6 is a relatively new board game, and the
development of the evaluation heuristics is still in
its infancy, therefore there are still many unknown
territories to explore.

We will present a new evaluation scheme which
is based on the observation of how a stone imposes
its influence on the board, and it also has the
potential to be extended to other k-in-a-row games
and their variants. A defensive strategy will also
be presented, although it is just a simple greedy
algorithm based on the proposed evaluation scheme
without using any kind of search algorithm, it al-
ready can achieve admirable results against some of
today’s top Connect6 programs. When the defensive
strategy is combined with threat-space search, the



program can compete at the same level of the state-
of-the-art programs. The program Kagami, which
was based on these methods with the addition of
some heuristics such as the null-move heuristic, won
the fourth place in the 14th Computer Olympiad.

II. EVALUATION SCHEME

We will introduce a new evaluation scheme for
Connect6 based on the observation of the influence
of a stone on the board. The scheme is argued
to be more strategically sensitive than traditional
approaches.

A. Influence of a Stone

Apart from the first move, two stones are placed
on the board with each move, and these stones
change the development and nature of the previous
position. What does the presence of a new stone
alter?

A potential line is a line with a length of 6 on the
board, with no stones or only a single kind of stone
on it. Thus, it is a potential candidate to connect
six for one of the players. If there are two kinds of
stones on the line, then it can be sure that a winning
six will not occur on it. We will regard a line which
contains six consecutive stones to win the game as
a winning line.

A straight forward and tactical point of view is
that a stone played on the board increases the chance
of connecting six for one side, or decreases the
chance of winning for the opponent. But what is the
scale or range of its influence? Instead of viewing
the board as a collection of points, we regard it as a
collection of potential lines. Therefore, the presence
of a stone increases the probability of a potential
line, which contains the stone, to become a winning
line.

Hence, a stone’s influence area should be the area
that consists of all the potential lines which contain
the stone. The largest possible area of influence is
made up of four lines (horizontal, vertical, and two
diagonals) of length 11, with the stone in the center
as depicted in Figure 1.

Other points which are not included in the area
are by no means not important at all. Rather, they
differ from the included points by meaning. The
included points are under more direct influence of
the stone, thus may have more tactical meaning,

Fig. 1. Influence of a stone

whereas the ones that are not included are less
directly related to the stone, and may only retain
some strategic importance.

Connectivity is another major issue in Connect6,
since if one’s stones are sparsely spread across
the board, the chance of connecting six is low.
If two stones are close to each other, there are
less points between them for the opponent to cut
their connection. Thus, the relation between two
stones decreases with increasing distance, and this
relation is in a sense formed by the influences of the
two stones imposing on each other. It is therefore
natural to imply that the influence of a single stone
decreases with increasing distance.

The influence of a stone should stop when the
border or an opponent’s stone is encountered, since
it can’t make any connections with any stones
beyond them. Therefore, the length of the lines in
the statement of the influence area should be refined
to lines with a length of 11 or less, as shown in
Figure 2.

We will not try to take the points that are not
in the influence area into consideration, since we
believe that their strategic values may vary for dif-
ferent positions, and a perfect model may not exist.
Even if it does exist, it may introduce unnecessary
complexities.



Fig. 2. The influence area encountering borders or opponent stones

B. The Evaluation Scheme

pj,b1 pj,b2 pj,b3 pj,b4 pj,b5pj,a1
pj,a2

pj,a3
pj,a4

pj,a5

Fig. 3. Evaluation of a half-move

Suppose that the opponent is playing black, then
the evaluation score for a black stone or a half-move
is given by

E = di

4∑

j=1

(
5∏

k=1

pj,ak

5∏

k=1

pj,bk
).

E is the evaluation score of the half-move, reflect-
ing the influence it has.i is the number of directions
that have no opponent stones, anddi is the weighted
value in that respect. The valuej corresponds to the
index of directions to be considered, so there are 4
directions (1 horizontal, 1 vertical, and 2 diagonal).
pj,ak

and pj,bk
, where1 ≤ k ≤ 5, are the states of

the points, which correspond to the points marked
in Figure 3 on each respective line.

The values ofpj,ak
andpj,bk

are determined in an
orderly decreasing fashion from near to far, i.e. from
pj,a1

to pj,a5
and frompj,b1 to pj,b5. If the point is an

empty point, the valueǫ is given, and if the point
is occupied by a black stone, then a corresponding

weightwk is given. The values ofwk decrease with
increasingk. Once the border or a white stone is
encountered at a certaink, the remaining values
wk, wk+1, ..., w5 are set to1.

Note that the values on the same line are com-
bined by using multiplication and the four directions
are combined by using addition. This reflects the
fact that connectivity has higher priority over direc-
tional liberty. Although in some cases, directional
liberty may have higher priority, especially in earlier
stage of the game, these cases can be addressed by
applying the degree parameterdi.

A fundamental relation needs to be preserved:
a half-move which contains occupied stones in its
influence area should not be overpassed by a half-
move which only has empty points in its influence
area. Please see Figure 4 for a depiction. This
concern may be crucial since empty points also have
a weight.

A simple solution would be to let a portion of
the weight of a stone be larger than the value of a
line that contains only empty points. Therefore, the
relation

ǫ10
≤ wl

must be held, wherel ≤ n ≤ 5. wn is the weight
that is equal to the value of the line with only empty
points.

We decided that the weight of an empty point
ǫ = 2, then we use it as a base to determine the
values ofwk. From experiments and experiences,
we determined thatn = 3, andw1 = 212, w2 = 211,
w3 = 210, w4 = 29, w5 = 28.

The values of degree weights are determined and
tuned purely from experiments, which ared1 = 1.0,
d2 = 1.00000181862, d3 = 1.00000363725, d4 =
1.00000726562. The values are fairly small, due to
the exponential figures of the empty point weight
and stone weights, and due to their nature of being
mostly adjustments for some positions.

An example is shown in Figure 5, the evaluation
value of triangled marked stone is determined by

E = d3 × [(ǫ× ǫ× 1× 1× 1× ǫ×w2 ×w3 × ǫ× ǫ)

+(ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ)

+(ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ)



Fig. 4. Evaluation of the triangle position in the bottom should be
higher than that in the top.

+(ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ × ǫ)]

= 1.00000363725× [((1 × 1 × 1 × 2 × 2)

×(2 × 211
× 210

× 2 × 2)) + 210 + 210 + 210].

There is one opponent stone in the horizontal direc-
tion, thus the degree parameterd3 is applied. Apart
from the horizontal direction, there are no stones in
the vertical and diagonal directions, therefore their

Fig. 5. Example of evaluation

values are the product of 10 empty point weightsǫ,
that is210. The value determined by the horizontal
direction is thus(1 × 1 × 1 × 2 × 2) × (2 × 211 ×

210 × 2 × 2).

C. Comparison to Current Evaluation Techniques

The evaluation schemes used in many programs
are mostly pattern-based, for different configura-
tions of stones on a line, a score is assigned[7] [8].
Then the scores of the four directions are combined
(mostly by addition) to make up the evaluation
score.

For example, if black places a stone at the triangle
positions in the patterns A, B, and C in Figure 6,
the patterns they create are all usually classified as
a Live4 pattern, and its main characteristic is that
white needs two stones to defend the threat. Hence,
the half-moves at the triangle positions have the
same value in most of current program’s evalua-
tions.

But with our proposed evaluation scheme, the
three half-moves have different scores. Pattern A
has the highest score, pattern B is the next, and
pattern C is the lowest. If the half-moves have been
played, they would create the same amount of threat.
But due to the different number of empty points
on the examined directions, the evaluation values



A

B

C

Fig. 6. Comparison of different evaluation scheme

vary since empty points also have a weight. And
this reflects the fact that although they have the
same tactical meaning (threats), they are distinct in
strategic context, namely liberty or space.

Therefore, the proposed evaluation scheme is
much more delicate, and may distinguish the strate-
gic importance of the same pattern. It is more strate-
gically sensitive than the traditional approaches, but
retains the same tactical sensitivity at the same time.

The new scheme is also easy to be adapted
to other k-in-a-row games, while the traditional
methods may need more game-specific heuristics.

III. A D EFENSIVE STRATEGY FOR CONNECT6

We will introduce our defensive startegy which
utilizes the evaluation scheme presented in the pre-
vious section, and present our experimental results.

A. The Defensive Strategy

We will make an assumption that the opponent
has a purpose with every moves. If the opponent’s
intention is to make some abstract connections to
other stones to produce an attacking pattern, it
would be best to cut off these connections as soon
as possible. That is by “following” the opponent’s
move to wherever he goes, and cut off poten-
tially dangerous connections, one can minimize the

chance that the opponent can make an attack. Of
course, if the opponent’s purpose is to defend, we
may waste some stones on unnecessary defense if
we follow this strategy. But then again, our purpose
is to make a solid defense, thus the waste of stones
is tolerable.

So we only consider the half-moves (or points)
that are in the5× 5 square with the last two stones
that the opponent played in the center as candidate
half-moves. Therefore, at most 48 points or half-
moves are considered. Figure 7 shows a position
with white to move, and candidate half-moves are
marked by filled squares.

1
2

2
3
3

4

4
5

5

Fig. 7. Candidate half-moves (white to move)

The defensive strategy consists of two phases.
First, it generates a half-move list and sorts the
entries according to the values which are given
by the evaluation scheme proposed earlier. Then it
plays the half-move with the highest value, and do
the same for the second half-move.

The overview of the proposed strategy is given
in Figure 8. Note that it is only a simple greedy
method based on the proposed evaluation, and no
search technique of any kind is applied.

B. Experimental Results

To test how effective our defensive strategy is,
we use it to play against two famous Connect6



Fig. 8. Flowchart of a defensive strategy

programs:
• NCTU6: NCTU6 is a program developed by

the Internet Application Laboratory led by Pro-
fessor I-Chen Wu at the National Chiao Tung
University. It won a gold medal in the 11th
Computer Olympiad and another gold medal
in the 13th Computer Olympiad. The version
we did our experiments on is the 2006 public
release version 1.0, with playing strength set to
level 3 (the maximum strength is level 5).

• X6: X6 was developed by Shih-Yuan Liou
and Professor Shi-Jim Yen at the Artificial
Intelligence Lab. of the National Dong Hwa
University. It won a silver medal in the 11th
Computer Olympiad and a gold medal in the
12th Computer Olympiad. Experiments are
conducted with version 1.4.0f, with playing
strength set to 9 (Kill-Defend Search depth was
set to 11, and 100 seconds to timeout)

To get the best performance possible of each
program, we thought it would be better to run
the programs on their original, native environments.
However, the machines used are basically with sim-

ilar computation power in order to avoid the unfair
competition. Our program was run on a machine
with AMD64 3000+ and 1GB RAM under Ubuntu
Linux 9.04, kernel version 2.26.1. The opponent
programs were run on a machine with Intel Core2
Duo 1.66GHz and 1 GB RAM under Windows XP
Professional Service Pack 2. Ten games are played
with each program. Our program plays black in
the first 5 games and plays white in the last 5
games. The results are listed in Table I and II. In the
tables, D, W, and L, means we draw, win and lose,
respectively. Game length is the number of moves
that are played. Although there are still empty points
available on the board, we declare the game drawn
around move 120, since the space left on the board
is insufficient for either side to get a six.

TABLE I
RESULTS OF OUR DEFENSIVE STRATEGY AGAINSTNCTU6

(LEVEL3)

Game 1 2 3 4 5 6 7 8 9 10
Result D D D D D D D D D D
Game Length 121 120 119 124 120 120 123 121 120 123

TABLE II
RESULTS OF OUR DEFENSIVE STRATEGY AGAINSTX6

Game 1 2 3 4 5 6 7 8 9 10
Result L D D D L L D D D L
Game length 31 121 123 131 47 18 118 128 120 34

We can see that our program can draw perfectly
against NCTU6 (level3). Our program can draw
60% of the games against X6 in its full power
without using any kind of search, showing that our
defensive strategy is very effective. However, it still
loses 40% of the games, so there is still room for
further improvement.

IV. COMBINING WITH THREAT-SPACE SEARCH

In order to complement the weakness of the
proposed defensive startegy, threat-space search is
applied as a verifier to check whether the decided
defensive move is valid. If not, alternative moves,
such as the second best move and so on, are tried
until an effective move is found or a certain number
of alternative moves is reached. This combination
is proved to be able to effectively improve the
performance of the defensive strategy.



A. Threat-space Search

Threat-space search was first proposed by
Allis[2], and it was used as an evaluation function
accompanying proof number search to solve Go-
Moku. The main idea of threat-space search is
similar to that of quiescence search, in which only
forced moves are extended and explored.

In Connect6, if a player plays a move which
threatens a connect six on the next move, then this
move is called a threat move. For example, in Figure
9, the black player played the 2 stones marked with
a, and is threatening to win on the next move by
playingb1 b2, b2 b3, or b3 b4. Therefore, the move is
a threat move, and then the opponent has to defend
against the threat, otherwise he will lose the game.

a ab2b1 b3 b4

Fig. 9. Example of threat move

There are different types of threats which are
mainly classified by the number of stones needed
for the defender to resolve the threat. Hence a single
threat is a threat that the defender can resolve it
by using one stone, and two threats requires two
stones. Since a player can only place two stones on
a single move, the defender cannot defend against
three or more threats. In some positions, one can
play a series of threats that leads to three or more
threats, and thus win the game. Threat-space search
is a search algorithm that only explores threat moves
with the goal of finding such a series. If such a series
is found, one can claim victory.

Although the branching factor is significantly
lower than the usual uniform search, it is still unde-
sirable to explore every possible defensive moves.
Therefore, a way to simplify and lower the com-
plexity of threat-space search is not to consider the
defensive moves separately, but to consider them all
at the once.

Conservative defense is to play all defensive
moves at the same time. An example is shown in
Figure 10. The black stones form a Live4 pattern,
and it only needs two stones to defend from the
threat, a combination of stone a and stone b, or two
stone b.

Conservative defense effectively transforms
threat-space search into a single agent search.

ba b a

Fig. 10. Conservative defense

Since for every threat pattern, all possible defensive
moves are played at the same time, therefore a
pattern combined with its respective defensive
moves can be combined into a single pre-defined
pattern.

However, by applying conservative defense, the
defense side is presumed to play all possible de-
fenses at the same time, and thus more than two
stones could be placed on each move. In Figure 10,
the white’s conservative defense plays four stones.
Therefore, the set of solutions found by the threat-
space search that applied conservative defense can
only be a subset of the set of true solutions, since
the extra defense stones can cause an early search
failure.

In some variations, the forcing series consists of
the class of two threats mixed with the class of one
theat. But we only consider the series that contains
two or more threats for the sake of simplicity. Hence
the move generation procedure only generates the
moves that can create two or more threats.

A pattern table is applied in our implementation
of threat-space search in order to save computing
time. Each entry in the table contains a key and
the number of threats. The defensive moves are not
saved in the table, and are computed during run-
time. All possible configurations of stones on a line
of length 11 are pre-processed, and the numbers of
threats of these patterns are stored.

Full hashing is used, the hash function maps each
configuration into a base-3 number ranging from0
to 311 − 1 acting as a hash key. The weights of the
corresponding positions on the line are shown in
Figure 11.

30 31 32 33 34 35 36 37 38 39 310

Fig. 11. Positional weights of hash function

If a point is empty, its value is0. If a point has
a white stone, its value is1, and if a point has
a black stone, its value is2. The point value is
multiplied by its respective positional weight and



then all weighted values are summed up to get
the hash key. Borders are treated as the opponent’s
stones.

30 31 32 33 34 35 36 37 38 39 310

2 0 0 2 2 0 0 1 0 0 0
Fig. 12. Example of hash key

An example is given in Figure 12. The positional
weights are given above the pattern, and the respec-
tive weights of the stones or empty point are shown
below. Hence the hash key is calculated as follows:

HashKey = 2 × 30 + 2 × 33 + 2 × 34 + 1 × 37.

The pattern table is applied to retrieve the number
of threats a stone can create in one direction. Since
two stones are played in a single move, possible
errors may occur when the two stones are placed
on a single line, for they both may “contribute”
to the same threat pattern. Thus the threat may be
erroneously counted twice.

B

a b

A

a b

Fig. 13. Errors when two stones align

An example is pattern A in Figure 13, for the
stones a and b they both retrieve a threat count
of 1, therefore a move consists of stones a and b

will be wrongly interpreted as a move that creates
two threats if we only simply add up the numbers
of threats. Pattern B is another example, which the
pattern will be interpreted as a four threats.

A simple scheme may resolve the problem:

1) If both stones are not on the same line, simply
add the two numbers of threats up.

2) If both stones are on the same line, and there
are opposing stones between them, add the
two numbers of threats together.

3) If both stones are on the same line, but
without opposing stones between them, then

a) take only half of their threat sum into
account, if their distance is less than or
equal to 6.

b) subtract one from the sum of their
threats, if their distance is between 7 and
11, inclusive.

c) take the sum of their threats, if their
distance is 12 or more.

If both stones are not on the same line or there
are opposing stones between them, the threats they
create are independent, hence the sum of their
threats are the threats created by this full move.
The correctness of the sum of threats will only be
affected if it will lead to a wrong interpretation of
one threat and two threats. If the sum of the threats
is greater than or equal to 3, like pattern B in Figure
13, it won’t matter if it is wrong, since this kind
of threat will win the game. Therefore, we only
need to deal with the patterns which the sum of
the threats is 2, because if it is wrongly computed
as a two threats, and in reality it is a single threat,
the opponent actually won’t be forced to move in
defense, and thus it may mislead the search.

Patterns A, B, and C in Figure 14 are examples
of the above 3 cases (a), (b), and (c). Suppose the
move consists of the stones a and b. In pattern A,
the distance between a and b is 2, which is less
than 6, and from the pattern table, both of them
have two threats. By the correction scheme, only
half of their threat sum is set to be the pattern’s
threat number, that is 2. For pattern B, the distance
between a and b is 9, which is between 7 and 11,
and from the table we can get that both of them
are single threat, thus the sum of threats is 2. By
the correction scheme, we need to subtract 1 from



A

a b

B

a b

C

a b

Fig. 14. Example patterns for the correction scheme

the sum, and thus the pattern’s threat number is 1.
Finally, the distance between a and b in pattern C
is 12, and their individual numbers of threats are 2,
making the threat sum 4. By the correction scheme,
the threat sum is the pattern’s threat number, which
is 4.

B. Combining with the Defensive Strategy

There is still a certain percentage of the positions
that the static defensive strategy proposed in the
previous section will fail. No matter how fine the
parameters are tuned, due to inaccuracies in the
model or any other reason, these kinds of positions
may always exist.

Another drawback of only applying the defensive
strategy is that, unless the opponent blunders badly,
one can never win a game, even though there may
exist a winning move.

Therefore, to address these problems, the combi-
nation of the defensive strategy and a threat-space
search is proposed as a solution. Please see Figure
15 for a depiction.

A defensive move is always derived according
to the defensive strategy, and it is verified by the
threat-space search. If the verification fails, and the
opponent has an immediate threat to win, another
defensive move is chosen and verified again until it

Fig. 15. Defensive strategy combined with threat-space search

can defend the opponent’s threat or the number of
alternative moves exceeds a threshold value. If no
effective defensive move can be found, then the last
defensive move is set to be the move decided by the
defensive strategy.

Finally an offensive threat-space search is to be
carried out. If there is a winning move, then the
winning move is played, else the defensive move
is played. Note that we still don’t attempt to create
any attacking opportunities or winning threats.

The only situation to attack is that a winning se-
quence is found by the threat-space search, whereas
victory is sure to come. The threat-space search
mostly acts as a verifier to make up for the weakness
of the static defensive strategy.

The defensive moves are ordered in decreasing
order according to the scores given by the evaluation
scheme given in the previous section, and at most
50 defensive moves are considered.

Of course this is not an optimal arrangement of
the two modules, since it would be better to do
the winning-attack search first. But before start-
ing the search for a winning attack sequence, a
check is needed to be performed first to make sure



that the opponent doesn’t have a winning threat
in the current position. This essentially splits the
defensive part of the architecture into two parts,
with the attacking module in the middle, and thus
produces some complications. Since our purpose is
to experiment the validity of the proposed strategy,
and to verify the performance enhancement when
it is combined with a threat-space search, we will
avoid such complications and stick with this simple
architecture shown in Figure 15.

C. Experimental Results

Using the ideas mentioned in this section, we
developed a program to play against the following
two programs:

• X6: The program was developed by Shih-
Yuan Liou and Professor Shi-Jim Yen. It was
introduced in the previous section. Experiments
are conducted with version 1.4.0f, with playing
strength set to 9 (Kill-Defend Search depth was
set to 11, and 100 seconds to timeout)

• MeinStein: The program was written by Theo
van der Storm. Mr. van der Storm passed
away in January 2009, and it was subsequently
maintained by Jan Krabbenbos. It won a silver
medal in the 12th Computer Olympiad, and
another in the 14th Computer Olympiad. After
the 14th Computer Olympiad, the source code
was released to the public domain in memory
of Mr. van der Storm. The program was written
in Java, and incorporated techniques such as
αβ-search and quiescence search.

Same reason as the previous experiment, we run
the programs on its native enviroment. Our program
was run on a machine with AMD64 3000+ and
1GB of RAM under Ubuntu Linux 9.04, kernel
version 2.26.1. The opponent programs were run on
a machine with Intel Core2 Duo 1.66GHz and 1 GB
RAM under Windows XP Professional Service Pack
2. Ten games were played with X6, 5 with black
and 5 with white. Ten games were played against
MeinStein also, but against five different settings,
with both colors against each setting.

The results are listed in Table III and IV, where
the Re-search entry is the number of defensive
moves in the game that fail to defend and need
to do another full defensive search. The maximum
number of alternative defensive moves tried by the

full defensive search is 50. The alternative defensive
move list is sorted according to the evaluation
score given by the evaluation scheme presented
previously. In the result entry, D, W, and L, means
we draw, win and lose, respectively.

TABLE III
RESULTS OF OUR DEFENSIVE STRATEGY COMBINED WITH

THREAT-SPACE SEARCH AGAINSTX6

Game 1 2 3 4 5 6 7 8 9 10
Result D D D D D D D D D D
Re-Search 0 0 0 1 0 0 0 1 2 0
Game Length 121 119 123 121 119 123 124 126 124 120

TABLE IV
RESULTS OF OUR DEFENSIVE STRATEGY COMBINED WITH

THREAT-SPACE SEARCH AGAINSTMEINSTEIN

Game 1 2 3 4 5 6 7 8 9 10
Result W L W L L W W W L W
search depth 5 5 4 4 6 6 5 5 5 5
quiescence 1 1 0 0 1 1 0 0 1 1
cutoff time 70 70 70 70 70 70 70 70 80 80
Re-Search 3 1 6 1 1 2 2 3 1 3
Game Length 52 14 51 58 16 63 81 54 16 54

It can be observed that our program can now
perfectly draw against X6. In Table III, only three
out of ten games needs to do a re-search.

In Table IV, the search depth row specifies the
αβ-search depth, the quiescence specifies the depth
of quiscience search, and the measure of cutoff
time is in seconds of MeinStein. Our program won
60% of the games, while MeinStein only won 40%,
showing that our program is slightly superior. Note
that almost every game needs a re-search.

Therefore, from these two experiments, it can be
seen that our defensive strategy can be effectively
enhanced by combining with threat-space search,
and this combination is able to compete with today’s
top programs.

V. CONCLUSION

The Computer Olympiad is a multi-game event,
and all the participants are computer programs. The
Olympiad was proposed by David Levy, and he also
organised the first Olympiad in London in 1989.
Connect6 became a tournament item in 2006. The
14th Computer Olympiad was held in Pamplona,
Spain, May 2009. In the Connect6 tournament each



program must complete its moves for one game in
30 minutes.

TABLE V
14TH COMPUTEROLYMPIAD CONNECT6 TOURNAMENT RESULTS

Standing Program
1 Bit
2 MeinStein
3 Bit2
4 Kagami
5 Kavalan
6 Nomi6

Kagami, developed by the author, is a program
based on the proposed defensive strategy. Threat-
space search and a simple null-move scheme are
also integrated. Kagami entered the 14th Olympiad
with the purpose of testing the effectiveness of these
techniques in tournament situations.

As shown in Table V, six programs attended
the tournament of Connect6 and Kagami finished
fourth. Kagami is significantly faster than most of
the other programs, and even manages to draw
against the silver medalist MeinStein and scores a
win from the bronze medalist Bit2.

Connect6 is a relatively new game, and there
is still a lot to be investigated and discovered. It
has a huge complexity comparable to Go, making
it interesting and challenging. Although techniques
inspired from other games such as Go-Moku, or
some standard techniques such asαβ-search work
well in Connect6, there is still a large room for in-
novation and improvement especially in the realms
of strategy.

The proposed evaluation scheme is much more
strategically sensitive compared to traditional eval-
uation methods, therefore is able to classify the
value of a move into more detailed hierarchies. It
is also general enough to extend to other k-in-a-
row games. The defensive strategy based on the new
evaluation scheme uses only a greedy algorithm, and
can achieve admirable results against formidable
opponents. Combining the defensive strategy with
threat-space search can effectively complement its
weakness, and is able to compete with today’s top
Connect6 programs.

VI. Acknowledgements

This research was supported in part by a
grant NSC97-2221-E-003-008 from National Sci-

ence Council, Taiwan, R.O.C.

REFERENCES

[1] L.V. Allis and P.N.A. Schoo, ”Qubic solved again,” Heruistic
Programming in Artificial Intelligence 3: The Third Computer
Olympiad, pages 192-204, 1992.

[2] L.V. Allis, ”Searching for solutions in games and artificial
intelligence,” PhD thesis, University of Limburg, Maastricht,
1994.

[3] L.V. Allis, H.J. van den Herik, and M.P.H Hutjens, ”Go-moku
solved by new search techniques,” Computational Intelligence,
12:7-23, 1996.

[4] E.R. Berlekamp, J.H. Conway, and R.K. Guy, ”Winning ways
for your mathematical plays, Volume 2,” Academic Press, 1982.

[5] S.W. Golomb and A. W. Hales, ”Hypercube tic-tac-toe,” More
Games of No Chance, 42:167-180, 2002.

[6] A.W. Hales and R.I. Jewett, ”Regularity and positional games,”
Transactions of the American Mathematical Society, 106:222-
229, 1963.

[7] D.-Y. Huang, ”The study of artificial intelligence programming
for gobang-like games,” Masters thesis, National Chiao Tung
University, June 2005.

[8] S.-Y. Liou, ”Design and implementation of computer connective
6 program X6,” Masters thesis, National Dong Hwa University,
July 2006.

[9] J. McCarthy, ”Chess as the drosophila of A.I.,” Computers, Chess
and Cognition, pages 227-237, 1990.

[10] J.W.H.M. Uiterwijk and H.J. van den Herik, ”The advantage of
the initiative,” Information Sciences, 122(1):43-58, 2000.

[11] H.J. van den Herik, J.W.H.M. Uiterwijk, and J.V. Rijswijck.
”Games solved: Now and in the future,” Artificial Intelligence,
134:277-311, 2002.

[12] I-C. Wu and D.-Y. Huang, ”A new family of k-in-a-row games,”
In the 11th Advances in Computer Games Conference (ACG11),
Taipei, Taiwan, September 2005.

[13] T.G.L. Zetters. ”Problem S.10 proposed by R.K. Guy and J.L.
Selfridge,” Amer. Math. Monthly, 86, solution 87(1980):575-
576, 1979.


