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Abstract—Deeply pipelined architecture uses the dynamic branch 

predictor to enhance the performance. The dynamic branch predictor 
of the traditional scheme is exercised every cycle and then causes 
many power consumptions. For this reason, we intended to eliminate 
unnecessary lookups for dynamic branch predictor. In this paper, we 
proposed a scheme to dynamically collecting non-branch instructions 
between adjacent branch instructions during execution stage. We save 
the power by using the number we collected to filter the unnecessary 
lookups. Simulation results show that the dynamic branch predictor 
power is reduced by 63.79% and 76.58% in average for SPECint2000 
and SPECfp2000 respectively with negligible performance loss. 
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I. INTRODUCTION 
When designing the high-end processor, many designers use 

the dynamic branch predictor to improve ILP 
(Instruction-level Parallelism). Dynamic branch predictor uses 
cache-like BTB (branch target buffer) to store branch and 
target address, then using the predict bit of the direction 
predictor to decide the branch taken or not. Furthermore, the 
dynamic branch predictor can reduce the penalty of control 
hazard. 

After simulating it shows only 13% and 8% of instructions 
are branch instructions in SPECint2000 and SPECfp2000 
respectively. The conventional dynamic branch predictor is 
exercised every cycle. Lookup the branch target buffer is the 
main power consumption of the dynamic branch predictor, if 
we lookup BTB in every cycle then the power consumption 
will become very considerable. Consequently, we try to 
eliminate unnecessary lookups that will save the power. 

The rest of this paper is organized as follows: Section II 
gives some related works about dynamic branch predictor. 
Section III describes the simulation environment and 
benchmarks and section IV proposes our scheme of 
dynamically collecting non-branch instructions, section V 
summarizes the paper. 

II. RELATED WORK 
In recently years, there are two ways to lower power 

consumption of dynamic branch predictor. One is a software 
profiling technique, which extracts the control-flow 
information during compile/link time. The other way uses 

extra hardware to dynamic filter unnecessary lookups. 
Petrov and Orailoglu [1] proposed an application 

customizable branch target buffer (ACBTB), which is a 
software profiling technique. The proposed technique utilizes 
application-specific information regarding the control-flow 
structure of the program’s major loops. Such information is 
used to completely eliminate the power hungry branch target 
buffer (BTB) lookups which normally occur at every 
execution cycle. Shuai Wang, Jie Hu and Sotirios G. Ziavras [2] 
proposed a filtering scheme to reduce the access to the BTB to 
achieve a significant dynamic energy in the BTB while 
maintaining the performance. They also studied the leakage 
behavior and its control in their BTB Access Filtering (BAF) 
design. Sung Woo Chung and Sung Bae Park [3] propose a 
low power branch predictor, which is based on the gshare 
predictor, by accessing the BTB only when the prediction 
from the PHT is taken. To enable this, the PHT is accessed one 
cycle earlier to prevent the additional delay. As a side effect, 
two predictions from the PHT are obtained at one access to the 
PHT, which leads to more power reduction. The proposed 
branch predictor reduces the power consumption, not 
requiring any additional storage arrays, not incurring 
additional delay (except just one MUX delay) and never 
harming accuracy. Authors in [4] introduce Branchless Cycle 
Prediction (BLCP) who uses a simple efficient structure to 
predict cycles where there is no branch instruction among 
those fetched, at least one cycle in advance. The proposed 
avoids accessing BTB during such cycles. 

III. SIMULATION ENVIRONMENT 
Before proposing our novel architecture, we describe the 

simulation environment and the benchmarks we use in this 
section. For the simulation, we used the SimpleScalar [5] 3.0d 
tool set simulator integrating with Wattch [6] version 1.02. 
Wattch augments the SimpleScalar cycle-accurate simulator 
(sim-outorder) with cycle-by-cycle tracking of power 
dissipation by estimating unit capacitances and activity factors. 
The Wattch is an architectural simulator that estimates CPU 
power consumption. The power estimates are based on a suite 
of parameterizable power models for different hardware 
structures and on per-cycle resource usage counts generated 
through cycle-level simulation. This paper uses the baseline 
configuration as shown in Table 1, which resembles, as much 
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as possible, the configuration of an Alpha 21264 [7] processor. 
 

TABLE 1 
Simulated Processor Configuration 

Processor Core 
Instruction window 
Fetch queue size 
Decode width 
Issue width 
Commit width 
Function units 

64 RUU; 32 LSQ 
4 Instructions 
4 Instructions per cycle 
4 Instructions per cycle 
4 instructions per cycle 
4 Int ALU 
1 Int Mult/Div 
1 FP ALU 
1 FP Mult/Div 

Memory Hierarchy 

L1 I-cache size 
L1 D-cache size 
L2 I-cache size 
L2 Unity-cache size 
I/D-TLB 

64KB, 2-way, 32B blocks, LRU
64KB, 2-way, 32B blocks, LRU
64KB, 2-way, 32B blocks, LRU
2MB, 4-way, 32B blocks, LRU 
128-entry, LRU 

Dynamic Branch Prediction 

Direction predictor 
BTB 
Return address stack 

Bimod 2K table 
1024-entry, 2-way 
32-entry 

Penalty 

L1 hit 
L2 hit 
Branch mis-pred 
Memory access  
TLB miss 

1 cycle 
12 cycles 
1 cycle 
108 cycles 
30 cycles 

 

IV. DYNAMICALLY COLLECTING NON-BRANCH INSTRUCTIONS 
In this section we propose a scheme to dynamically 

collecting non-branch instructions. As results, the number of 
the dynamic branch predictor’s lookups is reduced. We collect 
the number of non-branch instructions between adjacent 
branch instructions and then update it to the corresponding 
entry of branch instruction from the BTB. When branch 
instruction is executed, the number of non-branch instructions 
is read out from the BTB. After that, the numbers of upcoming 
non-branch instructions are available, which will help to 
determine accessing the dynamic branch predictor or not. In 
our study, we intend to develop a way to reduce unnecessary 
dynamic branch predictor lookups. Accessing the dynamic 
branch predictor only depends on the number of non-branch 
instructions between adjacent branch instructions we collected 
during the execution stage. 

Figure 1 shows block diagram of dynamically collecting 
non-branch instructions which is attached to the typical 
pipelined architecture. The non-branch instructions between 
the branch instruction and its subsequent branch instruction 
are collected by attaching a simply counter during execution 
stage. After that, the number of non-branch instructions 
collected for the correspondent BTB’s entry of branch 
instruction is updated. At instruction fetch stage, the number 
of non-branch instructions from BTB is read out and updated 
to Seq_bc, which is used to determine accessing the dynamic 
branch predictor or not. When fetching non-branch instruction 
at the same time Seq_bc will be decreased by one and will not 

access the dynamic branch predictor. If Seq_bc is equaled to 
zero that means the next fetched instruction is a branch 
instruction and should be accessed the dynamic branch 
predictor. 

 

 
Figure 1. Dynamically collecting non-branch instructions architecture 

 
In this section, we describe flow of dynamically collecting 

non-branch instructions. At first, we simply add two columns 
in BTB entry as shown in Figure 2. Inst_count records the 
number of non-branch instructions we collected and Modify 
records status that the counter should enable or not. The 
default number of Inst_count is zero and the default status of  
Modify is valid. Modify is valid if dynamic collection of 
non-branch instructions is not finish, otherwise, Modify is 
invalid. Different from the traditional scheme, we obtain not 
only the target address from BTB, but also the Inst_count. 
After getting the Inst_count, we will stop accessing the 
dynamic branch predictor. 

 

 
Figure 2. Proposed New BTB 

 
 Figure 3 shows the flowchart of dynamically collecting 

non-branch instructions during execution stage. There is an 
extra register named Prev_branch to record the branch 
instruction that is executed and a simply counter to count 
non-branch instructions between adjacent branch instructions. 
If a branch instruction is encountered in execution stage then 
Prev_branch is checked for null or not. When Prev_branch is 
null, the present branch instruction is updated as Prev_branch 
and reset the counter. Otherwise, when Prev_branch is in the 
BTB and Modify of the corresponding branch entry is valid, 
the counter is copied to Inst_count of corresponding BTB 
entry, reset the counter and invalidate Modify. Besides, if the 
instruction executed is not a branch instruction then the 
counter should be increased. 

 

2

steven76317
矩形

steven76317
矩形



 
Figure 3. The flowchart of dynamically collecting non-branch 

instructions 

V. SIMULATION RESULT 
This section describes the results of our proposed scheme 

by simulation. The programs from the SPECcpu2000 suite and 
SimpleScalar v3.0 tool set are used to simulate our scheme. 
Figure 4 shows the percentage reduction in dynamic branch 
instruction lookups for the proposed scheme, the dynamically 
collecting non-branch instructions, with respect to the 
Alpha-21264 architecture for each selected SPECint2000 
benchmarks. Our proposed scheme can reduce the number of 
dynamic branch predictor lookups in average for SPECint2000 
is 88.17%. Figure 5 shows the percentage reduction in power 
consumption of dynamic branch predictor for the proposed 
scheme. The average power reduction for SPECint2000 is 
63.79%. 

 

 
Figure 4. The percentage reduction of branch lookup in SPECint2000 

 

 
Figure 5. The percentage reduction of branch power in SPECint2000 

 

 Figure 6 shows the percentage reduction of branch 
lookup for proposed scheme in SPECfp2000. The proposed 
scheme can reduce the number of the dynamic branch 
predictor lookup in average for SPECfp2000 is 93.03%. 
Figure 7 shows the average branch power reduction for 
SPECfp2000 is 76.58%. 

 

 
Figure 6. The percentage reduction of branch lookup in SPECfp2000 

 

 
Figure 7. The percentage reduction of branch power in SPECfp2000 

 
The metric used to evaluate performance is cycle per 

instruction (CPI). The performance penalty is 1 cycles for a 
miss-predicted branch in our proposed scheme. Figure 8 and 
Figure 9 show the performance for SPECint2000 and 
SPECfp2000 respectively. The performance of traditional 
branch lookup scheme for SPECint2000 in average is 2.0489 
and our proposed is 2.0498. Besides, the CPI of traditional in 
average for SPECfp2000 is 1.2125 and our proposed is 
1.2205. 
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Figure 8. The CPI of different schemes in SPECint2000 

 

 
Figure 9. The CPI of different schemes in SPECfp2000 

VI. CONCLUSION 
In the paper, we proposed a scheme to dynamically collect 

non-branch instructions which can eliminate unnecessary 
dynamic branch predictor lookup. Traditional scheme differ 
from our proposed scheme is that traditional scheme accesses 
dynamic branch predictor every cycle. Our scheme filters 
unnecessary dynamic branch predictor lookup by the number 
of non-branch instructions that we collected during execution 
stage. We simply add two columns in BTB entry. The first 
column is Inst_count which is used to record the number of 
non-branch instructions between the branch instruction and the 
subsequent branch instruction. The second column is Modify 
which is used to determine to enable the counter, which counts 
the number of non-branch instructions executed. The 
experimental results show the percentage reduction in 
dynamic branch predictor lookup for our scheme in average 
for SPECint2000 and SPECfp2000 are 88.17% and 93.03% 
respectively. The dynamic branch predictor power is reduced 
by 63.79% and 76.58% in average for SPECint2000 and 
SPECfp2000 respectively. 
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