
Reducing Dynamic Branch Predictor Lookups by
Dynamically Collecting Non-branch Instructions

Guan Cheng Fu Jong Jiann Shieh

Department of Computer Science and Engineering
Tatung University

g9606022@ms.ttu.edu.tw shieh@ttu.edu.tw

Abstract—Deeply pipelined architecture uses the dynamic branch

predictor to enhance the performance. The dynamic branch predictor
of the traditional scheme is exercised every cycle and then causes
many power consumptions. For this reason, we intended to eliminate
unnecessary lookups for dynamic branch predictor. In this paper, we
proposed a scheme to dynamically collecting non-branch instructions
between adjacent branch instructions during execution stage. We save
the power by using the number we collected to filter the unnecessary
lookups. Simulation results show that the dynamic branch predictor
power is reduced by 63.79% and 76.58% in average for SPECint2000
and SPECfp2000 respectively with negligible performance loss.

Keywords—dynamic branch predictor, dynamically
collecting non-branch instructions, power consumption.

I. INTRODUCTION
When designing the high-end processor, many designers use

the dynamic branch predictor to improve ILP
(Instruction-level Parallelism). Dynamic branch predictor uses
cache-like BTB (branch target buffer) to store branch and
target address, then using the predict bit of the direction
predictor to decide the branch taken or not. Furthermore, the
dynamic branch predictor can reduce the penalty of control
hazard.

After simulating it shows only 13% and 8% of instructions
are branch instructions in SPECint2000 and SPECfp2000
respectively. The conventional dynamic branch predictor is
exercised every cycle. Lookup the branch target buffer is the
main power consumption of the dynamic branch predictor, if
we lookup BTB in every cycle then the power consumption
will become very considerable. Consequently, we try to
eliminate unnecessary lookups that will save the power.

The rest of this paper is organized as follows: Section II
gives some related works about dynamic branch predictor.
Section III describes the simulation environment and
benchmarks and section IV proposes our scheme of
dynamically collecting non-branch instructions, section V
summarizes the paper.

II. RELATED WORK
In recently years, there are two ways to lower power

consumption of dynamic branch predictor. One is a software
profiling technique, which extracts the control-flow
information during compile/link time. The other way uses

extra hardware to dynamic filter unnecessary lookups.
Petrov and Orailoglu [1] proposed an application

customizable branch target buffer (ACBTB), which is a
software profiling technique. The proposed technique utilizes
application-specific information regarding the control-flow
structure of the program’s major loops. Such information is
used to completely eliminate the power hungry branch target
buffer (BTB) lookups which normally occur at every
execution cycle. Shuai Wang, Jie Hu and Sotirios G. Ziavras [2]
proposed a filtering scheme to reduce the access to the BTB to
achieve a significant dynamic energy in the BTB while
maintaining the performance. They also studied the leakage
behavior and its control in their BTB Access Filtering (BAF)
design. Sung Woo Chung and Sung Bae Park [3] propose a
low power branch predictor, which is based on the gshare
predictor, by accessing the BTB only when the prediction
from the PHT is taken. To enable this, the PHT is accessed one
cycle earlier to prevent the additional delay. As a side effect,
two predictions from the PHT are obtained at one access to the
PHT, which leads to more power reduction. The proposed
branch predictor reduces the power consumption, not
requiring any additional storage arrays, not incurring
additional delay (except just one MUX delay) and never
harming accuracy. Authors in [4] introduce Branchless Cycle
Prediction (BLCP) who uses a simple efficient structure to
predict cycles where there is no branch instruction among
those fetched, at least one cycle in advance. The proposed
avoids accessing BTB during such cycles.

III. SIMULATION ENVIRONMENT
Before proposing our novel architecture, we describe the

simulation environment and the benchmarks we use in this
section. For the simulation, we used the SimpleScalar [5] 3.0d
tool set simulator integrating with Wattch [6] version 1.02.
Wattch augments the SimpleScalar cycle-accurate simulator
(sim-outorder) with cycle-by-cycle tracking of power
dissipation by estimating unit capacitances and activity factors.
The Wattch is an architectural simulator that estimates CPU
power consumption. The power estimates are based on a suite
of parameterizable power models for different hardware
structures and on per-cycle resource usage counts generated
through cycle-level simulation. This paper uses the baseline
configuration as shown in Table 1, which resembles, as much

1

steven76317
矩形

steven76317
矩形

as possible, the configuration of an Alpha 21264 [7] processor.

TABLE 1
Simulated Processor Configuration

Processor Core
Instruction window
Fetch queue size
Decode width
Issue width
Commit width
Function units

64 RUU; 32 LSQ
4 Instructions
4 Instructions per cycle
4 Instructions per cycle
4 instructions per cycle
4 Int ALU
1 Int Mult/Div
1 FP ALU
1 FP Mult/Div

Memory Hierarchy

L1 I-cache size
L1 D-cache size
L2 I-cache size
L2 Unity-cache size
I/D-TLB

64KB, 2-way, 32B blocks, LRU
64KB, 2-way, 32B blocks, LRU
64KB, 2-way, 32B blocks, LRU
2MB, 4-way, 32B blocks, LRU
128-entry, LRU

Dynamic Branch Prediction

Direction predictor
BTB
Return address stack

Bimod 2K table
1024-entry, 2-way
32-entry

Penalty

L1 hit
L2 hit
Branch mis-pred
Memory access
TLB miss

1 cycle
12 cycles
1 cycle
108 cycles
30 cycles

IV. DYNAMICALLY COLLECTING NON-BRANCH INSTRUCTIONS
In this section we propose a scheme to dynamically

collecting non-branch instructions. As results, the number of
the dynamic branch predictor’s lookups is reduced. We collect
the number of non-branch instructions between adjacent
branch instructions and then update it to the corresponding
entry of branch instruction from the BTB. When branch
instruction is executed, the number of non-branch instructions
is read out from the BTB. After that, the numbers of upcoming
non-branch instructions are available, which will help to
determine accessing the dynamic branch predictor or not. In
our study, we intend to develop a way to reduce unnecessary
dynamic branch predictor lookups. Accessing the dynamic
branch predictor only depends on the number of non-branch
instructions between adjacent branch instructions we collected
during the execution stage.

Figure 1 shows block diagram of dynamically collecting
non-branch instructions which is attached to the typical
pipelined architecture. The non-branch instructions between
the branch instruction and its subsequent branch instruction
are collected by attaching a simply counter during execution
stage. After that, the number of non-branch instructions
collected for the correspondent BTB’s entry of branch
instruction is updated. At instruction fetch stage, the number
of non-branch instructions from BTB is read out and updated
to Seq_bc, which is used to determine accessing the dynamic
branch predictor or not. When fetching non-branch instruction
at the same time Seq_bc will be decreased by one and will not

access the dynamic branch predictor. If Seq_bc is equaled to
zero that means the next fetched instruction is a branch
instruction and should be accessed the dynamic branch
predictor.

Figure 1. Dynamically collecting non-branch instructions architecture

In this section, we describe flow of dynamically collecting

non-branch instructions. At first, we simply add two columns
in BTB entry as shown in Figure 2. Inst_count records the
number of non-branch instructions we collected and Modify
records status that the counter should enable or not. The
default number of Inst_count is zero and the default status of
Modify is valid. Modify is valid if dynamic collection of
non-branch instructions is not finish, otherwise, Modify is
invalid. Different from the traditional scheme, we obtain not
only the target address from BTB, but also the Inst_count.
After getting the Inst_count, we will stop accessing the
dynamic branch predictor.

Figure 2. Proposed New BTB

 Figure 3 shows the flowchart of dynamically collecting

non-branch instructions during execution stage. There is an
extra register named Prev_branch to record the branch
instruction that is executed and a simply counter to count
non-branch instructions between adjacent branch instructions.
If a branch instruction is encountered in execution stage then
Prev_branch is checked for null or not. When Prev_branch is
null, the present branch instruction is updated as Prev_branch
and reset the counter. Otherwise, when Prev_branch is in the
BTB and Modify of the corresponding branch entry is valid,
the counter is copied to Inst_count of corresponding BTB
entry, reset the counter and invalidate Modify. Besides, if the
instruction executed is not a branch instruction then the
counter should be increased.

2

steven76317
矩形

steven76317
矩形

Figure 3. The flowchart of dynamically collecting non-branch

instructions

V. SIMULATION RESULT
This section describes the results of our proposed scheme

by simulation. The programs from the SPECcpu2000 suite and
SimpleScalar v3.0 tool set are used to simulate our scheme.
Figure 4 shows the percentage reduction in dynamic branch
instruction lookups for the proposed scheme, the dynamically
collecting non-branch instructions, with respect to the
Alpha-21264 architecture for each selected SPECint2000
benchmarks. Our proposed scheme can reduce the number of
dynamic branch predictor lookups in average for SPECint2000
is 88.17%. Figure 5 shows the percentage reduction in power
consumption of dynamic branch predictor for the proposed
scheme. The average power reduction for SPECint2000 is
63.79%.

Figure 4. The percentage reduction of branch lookup in SPECint2000

Figure 5. The percentage reduction of branch power in SPECint2000

 Figure 6 shows the percentage reduction of branch
lookup for proposed scheme in SPECfp2000. The proposed
scheme can reduce the number of the dynamic branch
predictor lookup in average for SPECfp2000 is 93.03%.
Figure 7 shows the average branch power reduction for
SPECfp2000 is 76.58%.

Figure 6. The percentage reduction of branch lookup in SPECfp2000

Figure 7. The percentage reduction of branch power in SPECfp2000

The metric used to evaluate performance is cycle per

instruction (CPI). The performance penalty is 1 cycles for a
miss-predicted branch in our proposed scheme. Figure 8 and
Figure 9 show the performance for SPECint2000 and
SPECfp2000 respectively. The performance of traditional
branch lookup scheme for SPECint2000 in average is 2.0489
and our proposed is 2.0498. Besides, the CPI of traditional in
average for SPECfp2000 is 1.2125 and our proposed is
1.2205.

3

steven76317
矩形

steven76317
矩形

Figure 8. The CPI of different schemes in SPECint2000

Figure 9. The CPI of different schemes in SPECfp2000

VI. CONCLUSION
In the paper, we proposed a scheme to dynamically collect

non-branch instructions which can eliminate unnecessary
dynamic branch predictor lookup. Traditional scheme differ
from our proposed scheme is that traditional scheme accesses
dynamic branch predictor every cycle. Our scheme filters
unnecessary dynamic branch predictor lookup by the number
of non-branch instructions that we collected during execution
stage. We simply add two columns in BTB entry. The first
column is Inst_count which is used to record the number of
non-branch instructions between the branch instruction and the
subsequent branch instruction. The second column is Modify
which is used to determine to enable the counter, which counts
the number of non-branch instructions executed. The
experimental results show the percentage reduction in
dynamic branch predictor lookup for our scheme in average
for SPECint2000 and SPECfp2000 are 88.17% and 93.03%
respectively. The dynamic branch predictor power is reduced
by 63.79% and 76.58% in average for SPECint2000 and
SPECfp2000 respectively.

ACKNOLODGMENT

This project is supported by Tatung Company (Taiwan) under
contract: B98-I07-070

REFERENCES
[1] Petrov, P., Orailoglu, A., “Low-power Branch Target

Buffer for Application-Specific Embedded Processors,”
IEE Proceedings on Computers and Digital Techniques,
vol. 152, no. 4, pp. 482 – 488, September 2003.

[2] Shuai Wang, Jie Hu, Sotirios G. Ziavras., “BTB Access
Filtering: A Low Energy and High Performance
Design,” ISVLSI 2008: 81-86.

[3] Sung Woo Chung, Sung-Bae Park, “A Low Power
Branch Predictor to Selectively Access the BTB,”
Asia-Pacific Computer Systems Architecture
Conference, pp 374-384, September 2004.

[4] Deris, K.J., Baniasadi, A., “Branchless Cycle Prediction
for Embedded Processors,” Proceedings of the 2006
ACM symposium on Applied computing, pp. 928 – 932,
April 2006.

[5] Burger, D.C., Austin, T.M., “The SimpleScalar tool set,
version 2.0,” Computer
Architecture News, vol. 25, no. 3, pp. 13 – 25, June
1997.

[6] Brooks, D., Tiwari, V., Martonosi, M., “Wattch: a
framework for architectural-level power analysis and
optimizations,” Proceedings of the 27th International
Symposium on Computer Architecture, pp. 83 – 94, June
2000.

[7] Kessler, R.E., McLellan, E.J., Webb, D.A., “The Alpha
21264 Microprocessor Architecture,” Proceedings 1998
International Conference on Computer Design, pp. 90 –
95, October 1998.

4

steven76317
矩形

steven76317
矩形

