hERE\FAEEEH R

ERTHzmEMEFITH

An Interleaving Transformation for Optimizing Reductions

REHA
Jan-Jan Wu
5} B2 AR B

Institute of Information Science
Academia Sinica

WE
At 30 3% 38 — T #4638 JR 3t S (reduction) AT 2 7
ERAHRBEYR. BTEECARERAMTRERSD
W T HEE B BREH P ZPATR. AR EUE
ZETARE LRI E BB RRELT ®.

Abstract
In this paper, we present a general compilation ap-
proach, interleaving transformation, for parallelizing
reductions in loops. This optimization exploits paral-
lelism embodied in reduction loops through combina-
tion of date dependence analysis and region analysis.
We will show how this optimization extracts partial
parallelism from reduction loops which contain data
dependences. Experimental results on the Connec-
tion Machines CM-5 and the nCUBE2 are reported.

Keywords: reduction,. parallelizing compiler opti-

mization

1 Introduction

A reduction occurs when a location is updated on
each loop iteration with the result of a commutative
and associative operation applied to its previous con-
tents and some data value. The simplest example
is SUM, defined by SUM(X) = Y 5y X (). Strict
interpretation of explicit loops for reductions such as

DO I=i,n
sum = sum + X(I)
END DO

presents a problem to compilers, because depen-
dences inherent in the straightforward implementa-
tion prevent parallelization of the loop. However, a
loop containing a reduction may be safely parallelized
since the ordering of the commutative updates need
not be preserved. For example, to compute SUM of n
values using p processors, one may divide the n val-
ues into p chunks, assign one chunk to a processor,
and let every processor computes locally the sum of

E-52

the values assigned to it, independent of other proces-
sors, and then, at the end, combine the partial results
produced by these processors.

Parallelization of reductions require language con-
structs or compiler techniques that can help break
data dependences in reductions. One obvious com-
pilation approach is pattern recognition. Either the
source language includes explicit reduction operators
(e.g. the SUM operator in High Performance Fortran),
or certain specific loops are recognized as equivalent
to known reductions (e.g. the loop for SUM reduc-
tion as described above). Once such patterns are rec-
ognized, hand optimized code for the reductions are
emitted in the code generation phase.

Previous work on pattern recognition for reductions
had been reported in the Parafrase system [4], the
Eave [1] system, and the Fortran D system [7]. Re-
don and Feautrier proposed an algebraic specification
method for recurrences detection [6]. Pinter and Pin-
ter proposed a matching method based on Program
Dependence Graphs [5]. Fisher and Ghuloum re-
ported a method for extracting recurrences from loop
structures that contain conditional statements (3].

All these existing work only parallelize reduction
loops that contain no stores that can overlap any
loads within the loop (i.e. loops that only contain de-
pendences caused by the reduction statement). For
instance, the SUM loop given above can be paral-
lelized straightforwardly by existing techniques. We
call this class of reductions basic reductions. Not all
reductions are basic, however. Consider the loop nest
in Program 1, which solves a triangular linear system:

A reduction B(J)=B(J)-L(J,I)*x(I) is carried
over the outer loop indexed by I. Two kinds of data
dependences exist in the outer loop: a loop-carried
dependence caused by the reduction statement, and
a loop-carried dependence caused by computing the
value of x(I), whose value depends on the value of
array B computed in previous iterations. Existing
techniques fail to parallelize this reduction due to the
second kind of dependence.

PEREN\TAFREHERES

Program 1

REAL L(n,n), B(n), z(n)
PDI=1,n
x(1) = B(I) / L(I,D)
DDJ=1I+1, n
B(J) = B(J) - L(J,I) * x(I)
END DO
END DO

In this paper, we present a more general approach
that is able to parallelize a broader class of reduc-
tion loops. The basic idea in this approach is to ex-
ploit partial parallelism embodied in reduction loops
through combination of deta dependence analysis and
region analysis. Data dependence analysis identifies
loop structures that contain reduction operations and
the condition that can trigger this optimizing trans-
formation. Region analysis extracts partial paral-
lelism by separating reduction iterations into a se-
quential region and an order-insensitive region. Par-
allelism is achieved by interleaving reduction iter-
ations in the order-insensitive region onto multiple
processors. We will use the triangular linear-system
solver as a running example to present the sequence
of transformations that lead to an optimized paral-
lel implementation. Experiments demonstrating the
effectiveness of this optimization were conducted on
the Connection Machines CM-5 and the nCUBE2.

2 A Motivating Example

We use the lower triangular solver L*x=B as shown by
Program 1 to motivate the optimizations. For the
purpose of exposition, we expand array B with an ad-
ditional time index. Let b(J,I) denote the reduction
result at time step 7. Initially, V.J,b(J,0) = B(J), and
b(J,1)=b(J,I-1)-L(J,I)*x(I).

2.1 Straightforward Implementations

We assume SPMD (Single Program Multiple Data)
model for parallel implementation. One obvious par-
allelization strategy for Program 1 is to distribute ar-
ray X and array L at the first dimension. Since the
loops iterate over a triangular domain, cyclic data
distribution is a reasonable choice for load balanc-
ing. Figure 1(a) shows the program running on each
processor, where each processor is assigned n/p rows
of array L and n/p elements of arrays B and X. In-
dex T denotes the local index on each processor, and
global I denotes the global index converted from a
local index. This approach achieves parallelism, how-
ever, at the expense of communication overhead for

E-53

Ol p2 p3

4 ' 1
'

p293,P00! P2 4 P01 p2p3) pd pl p2pd
T [T

data dependence diceation e
‘brozdeasting directson ‘ commurucaton diechon —om
no broadead aseded

{u) distribution & the firs dimension
{shadad area indicales amay X)

REAL L(n/p,n), B(n/p), x(n/p)
DO I = 1,n/p
global I = Ixp+my_pid
x(I)=B(I}/L(I,global_I)

(b} distnbution & the second dimeaxon
no opuMIZalon of feducuons

DDI=1,n/p
global I = Ixp+my_pid

DO J = I+1, n/p
B(J) = B(I)-L(J,global_I)#*x(I)

D0 J = global I+i, n
B(J) = B(J)-L(J,I)#x(I)

END DO J END DO J
END DO I send B(global I+1l:n) to right
END DO I

Figure 1: Straightforward Parallel Implementations
of the Triangular Solver

broadcasting data elements of X in each outer loop
iteration. Parallelization of reductions is not possi-
ble since all the outerloop iterations are assigned to
a single processor.

An alternative approach is to distribute L at the
second dimension. The reduction terms are now dis-
tributed among multiple processors. Without paral-
lelization, the computation for reductions is sequen-
tialized and communications between adjacent pro-
cessors are required for each outer loop iteration, as
shown in Figure 1(b).

2.2 Optimized Implementations

Performance of the program in Figure 1(b) can be
further improved by interleaving the reduction terms
as shown in Figure 2(a). For each outer iteration,
the reductions in the gray area can be computed in
parallel. The partial results must be combined before
entering next outer loop iteration. Communication
can be further reduced by combing the partial results
in the dark gray area only, and postpone the others
to the next outer loop iterations, as shown in Fig-
ure 2(b). '

This example gives intuition of interleaved reduc-
tions. Formalization of the transformation follows.
We first define the input loop forms to the trans-
former. We then describe the associated analysis
technique and the program transformations.

REAL L(n,n/p), B(n), x(n/p)

recv B(global_I:n) from left
broadcast z(I) to all processors z(I1)=B(global_I)/L(global _I,I)

PEOCRERCTE
M]]

M Lyt .
S c0) 23108 237017 3;,001)

. o 4
0123301 23,0123,;0123

thEERE

frosessns
4 3 ¢

i 2l

']
BOBIB2B3 ' '
]

BeB-B0-BI-D2-B)

"]
80B1 B2BY H '
1

Ba8-B0-B1-B2-B3

ous n the gray are: od i tothe gray 2d
combined ot the ead of the computation only the partla) results in the derkes gray ares erc combised of the o
REAL L(n,n/p), B(n), x(n/p) REAL L(n,n/p), B(a), z(n/p)
DB I=1, n/p C D0 I=1, afp

global I = Ivp + my_pid
11! sequential between processor
recv B(global_I:I#p) from left
2(I)=B(global _I)/L(global I,I)
DO J = global I+1, I#p
B(J) = B(I-L(J,I)=x(I)
END DO J °
send B(global I+1:I#p) to righ
{41! parallel between processors

global I = I#«pimy_pid
11! sequential between processors
recv Bglobal I:I#p) from left
z(I)=B{global _I)/L{global_I,I)
DO J = global_I+i, I=p
B(J) = B(-LW,1)=*x(1)
END DO J
send B{global _I+i:I+p) to right
111 parallel between processors

DO J = Ip+i, n
B(J) = B(J)-L(J,I)*x (1)
END DO J
{11 combine partial results in
1t the gray area
global _sum(B(I*p+1:n),1:p)
END DO I

DO J = Isp+i, n
B(J) = B(H-L(QJ,1)*x(I)
END DO J
111 combine partial results in
11! the dark gray area only

END DO I

Figure 2: Optimized Parallel Implementations of the
Triangular Solver

3 Input Loop Forms

The inputs to the optimizing transformer are a class
of data-parallel loops which can be formalized as -
erative spatial loop nests.

Iterative Spatial Loops

A iterative spatial loop nest [2) consists of, zero or
more levels of iterative loops (or temporal loop) fol-
lowed by zero or more levels of dependent spatial
loops, and then followed by one or more levels of par-
allel spatial loops, or simply perallel loops, as shown
in Loop Nest 1. :

Once data are partitioned, spatial loop nests also
need to be partitioned. A spatial loop is partitioned
by splitting the loop into a processor loop and a local
memory loop. The index in a processor loop gives the
ID of the processor which computes the associated
local memory loop.

Consider cyclic partitioning. A dependent spatial
loop (DO.S loop) is split into a pair of local memory
loop (DO.V for DO.S, or DOALL_V for DOALL.S) denot-
ing the wrap-around layers in cyclic distribution and
processor loop (DO.P or DOALL.P) denoting the active
processors within a particular layer indexed by the
DO_V/DOALLV loop variable,

E-54

global_sum(B(I#p+1:Ixp+p),1:p)
further simplified to be (/; — 1) mod p, I3).

NREEERERER

Loop Nest I (Iterative Spatial Loop MNest)

% # «iterative loops » &=
DOT (K = a3, b1,¢1) {

DOT (Kt = ar, b, e1) {
= = xdependent spatial loope & wu
D0.S (I1 = 21, ¥1,21) {

D08 (Im = Zm, ¥my Zm) {
% % wparallel loops « w*
DOALLS (Fm41 == Tma1) ¥matl Fmat1) {

DOALL.S (Im-(-n =ZTmtnyYmin yvzm+n) {

Ay, e Iman) = 7[B(IL + €14 veon Inoten + €man)]l }}}1}

Loop Nest 1 and Loop Nest 2 are the itera-
tive spatial loop nest and partitioned loop nest for
Program 1, respectively. The original arrays b, L, x
are given new names b, L, % in the transformed loop.
Let p be the number of processors and V; the size
of local arrays. Index I is transformed to a pair of
indices (I1,I>) denoting processors and local mem-
ory loops. The expression I — 1 is transformed to
((g7* (11, I2) = 1) mod p, (97" ([, I2) — 1)/p), which is

Loop.Nest 1

p0.S (I =1,7){
=(Iy= (1,1 -1) / L(I,1)
DOALLS (J = I + 1,7) {
b(J,) =b(J,] —1) = L(J,) »a(I) } }

Loop Nest 2

DOV (I2=0,V4 —1){
DOP (I =0,p—1){
I=1Irx% p+A11
$(I1,I2) = b(I, (J1 = 1) mod p, I2)
L(lijltIZ)
DOALLY (J = I,n — 1) {
b(J, 1, I2) = b(J, (11 — 1) mod p, I2)

_L(‘]iIlgIQ)*i(II312) } } }

4 Transformation

Next we present the transformation that automates
interleaving of reductions. We first describe the rep-
resentation for data dependence, we then describe re-
gion analysis for extracting parallelism in reduction
loops, Next, we present the transformation proce-
dure.

4.1 Data Dependence Representation

Let d be the level of spatial loops in an iterative spa-
tial loop nest. We use a vector § = (@,...,04) to
represent a flow dependence in the loop nest. The
vector element a; contains the direction and distance

PERENTAEZE

of a flow dependence at the dimension corresponding
to the ith loop. We divide the dependence distance
into four classes:

o ¢ (constant) : the dependence crosses a constant
number c of iterations.

e v (variable) : the dependence distance is not a
constant,

e 7 (reduction) : the dependence is artificial,
caused by side-effecting the same data elements
in reduction. In this work, we restrict reduction
dependence distance to be 1.

e [z :y] (interval) : the dependence distance is not
a constant, but can be represented as an interval
in either asscending order (z < y) or descending
order (z > y). This kind of dependence distance
may occur in a loop whose range is an affine func-
tion of an outer loop variable.

For example, the following loop contains two de-
pendences.

p0S (I =1,m){
z(I) = a(l)
POALLS (J =T+ 1,n) {
a(J)=e(J)=-=z(l) } }
51 = (0, -7),82 = ([-1: n], -1)

4.2 Region Analysis

a2
LI T S S
FROCRIIOn 0) 2 3'0 0 2 300 L2 310 8 2 3

[S Y :

U TR T T T
01231230 123018 22
. .

CONCULB D

Y v v
{a) order-insensitive rogion in previous layer

' . v
(b) order-insersitive reglon in cusreat Iayer

] o 4 o 4 2 4 3
0323'0 132301230123
y v

2 A T T |
012301 2 301230123
1 T T

‘
]
1
)

11
.
‘
'
]
'
‘
1
]
I

PBINBE LB N =0

1w

(5]
]
15

GEORSBY®NowsEwRw=O

v T ’ . v
(c) soquential reglon in current loyer (d) four-section reglons for inteslosving reductions

Figure 3: Region Analysis for Parallelizing Reduction
in the Lower Triangular Solver

Figure 3 gives graphical intuition for partial paral-
lelization of reductions, using the triangular solver as
an example. We use the term “order-insensitive re-
gion” for the iterations in which the reduction terms

E-55

FrEREE

can be summed up in any order. Such region can

be identified straightforwardly using traditional data
dependence analysis techniques. For example, in
Loop Nest 1 the order-insensitive region at iter-
ation I can be denoted by the Cartesian product
interval(J+1,n) x interval(l,), corresponding to
the DOALL_S(J) loop iterations and the D0_S(I) loop
iterations respectively.

Figure 3 shows the order-insensitive regions be-
tween adjacent layers in the partitioned loop nest
(Loop Nest 2). Figure 3(a) shows the order-
insensitive region in layer I, = 1. Figure 3(b) shows
the order-insensitive region in layer I, = 2. Figure
3(c) shows the sequential region where the reduction
terms have to be summed up sequentially due to data
dependence. Overlapping Figure 3(a),(b) and (c) re-
sults in Figure 3(d). Parallelism can be increased by
distributing the reduction terms in region L (parallel-
update region) over P processors and concurrently ac-
cumulating these reduction terms into those in re-
gion P. Region C (global-reduction region) contains
the order-insensitive iterations whose results need be
combined together in layer I> = 1 using a global re-
duction operation, so that the reduction result can
be propagated to processor 0 before the computation
for the sequential region S in layer I = 2 can start.
Detailed algorithm follows.

Algorithm region-analysis

input: dependence [z : y], loop range [Low : Upp),
number of processors p. ‘

output: sequential region S, global-reduction region
C, parallel-update region L.

Case (1) z < 0, the sequential region S = [Low :
Low}, the global-reduction region C = [Low + 1 :
Low + 1], and the parallel-update region L = [Low +
2 : Upp).

Case (2) £ > 0, S = [Low : Low + r‘“—;f”]], C =
[Low + [E0] 4+ 1 : Low + [0] + 1], and L =
[Low + fg%'ll'l +1,Upp).

4.3 Transformation Procedure

We assume one level of DO_L and DO_P loops. For sim-
plicity of presentation, in Procedure interleaved-
reduction we assume loop ranges are in increasing
order. ‘

Procedure interleaved-reduction

Input: a partitioned loop nest and a set of dependence
vectors 1,...,04. Let §;(k) denote the kth element of
é;.

TERENTAFEZEHERES

. If Vi € [1..d] such that §;(k) = 0 or —r, then this
is a simple case where reduction can be inter-
leaved straightforwardly: Replace the DO_P loop
by a DOALL_P loop with the same range, replace
reduction statements in the loop body by local
memory updates, and insert a global reduction
operation after the DOALL.P loop, then exit.

. If 3i € [1..d] such that §;(k) # 0 or —r and
Vi # k,6:(j) =0, or —¢, or v, then exit, because
no parallelism can be extracted due to data de-
pendence.

. An input loop nest that leads to this step sug-
gests that data dependence, thought exist, is not
parallel with the kth dimension, and therefore
partial interleaving of reduction is possible. So,
now there exist a j such that 6;(j) = [z : y]. Let
J be the loop variable for the loop that carries
this dependence, a be the coefficient of its loop
range expression, p be the number of processors
at the reduction dimension, and L be the loop
variable for the local memory loop that carries
the reduction. Strip-mine the J loop into two
(indexed by J; = L,ns — 1 where ns is the num-
ber of strips, and J, = 0,a*p— 1) with strip size
a x p so that all strips except the first one have
the same size.

. Call region_analysis(d;(j),Joop-range-of(J),p)
to decide the sequential region, parallel-update
region and global reduction region.

. Split the range of the J loop into three cor-
responding to the sequential, global reduction,
and parallel-update regions, and replicate the
loop body. Move the global reduction loop and
the parallel-update loop outside the sequential
processor loop DOP, enclose them with a new
DOALL_P loop that has the same range as the DO_P

loop. Replace the reduction statements enclosed |

by the new DOALL_P loop by local memory up-
dates. Insert a global reduction operation at the
end of the global reduction loop.

Example Strip-mining the DOALL_V loop in Loop
Nest 2 results in Loop Nest 3. The dependence
vectors are 1 = (0,—r) and &, = ([~1 : n],-1),
therefore the sequential region includes loop range
J1 = I, I, the global reduction region includes loop
range J; = I, + 1,1, + 1, and the parallel update re-
gion includes loop range J; = I, + 2,ns — 1. Loop
Mest 4 shows the result program after the transfor-
mations for interleaved reduction.

E-56

Loop Nest 3

DOV (Jg = 0, v — 1) {
0 (I3 =0,p - 1) {
(1.) =b(Igep+ 17, (I3 = 1) KD p, I3 + (I - 1) DIV p) /
(Ip e p+1Iy,11,12)
DOALLY (Jy = Ip, J2) {
DOALLY (Jg = I1,p = 1) {
b(Jyep+Ja Dy, I2) = *
B(Jy =p+J2,(Jy — 1) M0 p, I3 4 (1] ~ 1) DIV p)—
L{Jy e p+J2, 01, 03) v &(I1, Ip) 3}
DOALLY (J) = o+ 1,ns - 1) {
DOALLY (Jg = 0,p — 1) {
dJyep+Jo, Iy I2) =
b(Jy +p 4+ Jo, (J3 — 1) HOD p, g + (f] = 1) DIV p)=

L(Jy = p+J2, 11, 02) » 8(I, I2) }Y o}

Loop Nest 4

0oV (I =0, v = 1) {
DOP (Iy =0,p-1){
&Iy, Ia) = b(Ipg «p+ Ty, (I3 — 1) HOD p, Ip + (Fy — 1) DIV p) /
L{ig e p+1y,17,19)
= ¢ esequential rogion » v e
DOALLY (J) = Ip, I2) {
DOALL.Y (Jp = Iy, p = 1) {
bJpep+ 2, Dy, I2)=
B(Jy e p+Jg, (I = 1) HOD p, Ip + (I — 1) DIV p)—
L(Jy e p+ I3, 11, I2) » 8(11, Ig) } Yy}
DOALLP (3 = 0,p - 1) {
combining region » s=
DOALLY (J1 = Tp +1,T0 + 1) {
DOALL.V (Jg = 0,p — 1) {
b((Ig+1)ep+Jp,0q,12) =
b((Jg +1)ep+Jo,(Jy — 1) HOD p, T + (I3 — 1) DIV p)—
L((I2 +1) s p+ Jg, I3, I2) = &(1y, Ig) b
£lobal sum operation
DOALL.Y (Jg = O,p — 1)

{
B((Ig 4+ 1)« p+ I, 11, T2} =sw(b((Ip + 1) s p+Up,0:p~1,12)) } }

* & »locel update region « me
DOALLLY (Jq = Jg + 2,n8 - 1) {
DOALL.Y (Jo = 0,p ~ 1) {
B(Jyep+Jo,J1. I2) =b(Jy e p+ g, Iy, I3 1)
= L(Iy e p+ U2, 11,12) » 81y, I2) 1}

5 Experimental Study

We evaluate the effectiveness of this optimization by
conducting experiments on the Connection Machines
CM-5 located in the University of Minnesota and the
nCUBE2 located in the Institute of Information Sci-
ence, Academia Sinica. Two benchmark programs
were implemented: a lower triangular solver, and a
LU solver.

Table 1 and Table 2 show the effectiveness and
scaled speedup of interleaved reduction optimization
on the lower triangular solver. The sequential times
are given as a basis for comparison. The unoptimized
version implemented the two nested loops given in
Program 1 using cyclic distribution.

The speedup of the optimized version against the
unoptimized version increase as the problem size in-
creases. When per-processor problem size is fixed,
the speedup factor decreases a little bit when num-
ber of processors increases. This is because the extra
overhead in global reduction operation increases with
the number of processors.

Table 3 compares the performance of the LU solver
on 32-node CM-5. The LU solver solves a lower
triangular system and an upper triangular system.
The CM-Fortran version implemented the traingular

TERENATAEZEGEESS

solvers using nested loops as shown in Program 1
and was compiled by the CM-Fortran compiler 2.1.2
with the -O -vu option. The CMSSL LU solver is a
hand-crafted, micro-coded library routine by Think-
ing Machines. The optimized version (with inter-
leaved reductions transformation) outperformed the
CM-Fortran compiler by two orders of magnitude,
and achieved more than 50% performance of the
CMSSL routine.

unopt

Problem size seq opt ﬁ
128 x 128 0.01 0.06 0.05 0.25
256 x 256 0.04 0.15 0.08 0.51
512 x 512 '0.16 0.41 0.12 1.32

1k %X 1k 0.64 1.44 0.24 2.68
2k x 2k 2.56 5.69 0.47 5.39
4k x 4k 10.26 21.90 0.93 11.01

Table 1: Execution time in seconds for a parallel tri-
angular solver on 32-processor CM-5, double preci-
sion

nproc seq unopt opt
32 10.26 21.90 0.93
64 20.76 44.77 1.99
128 42.98 91.78 4.40
256 85.16 188.33 9.87
512 173.32 | 891.23 | 22.15

Table 2: Execution time in seconds for a parallel
triangular solver on CM-5, with fixed per-processor
problem size (512k), double precision

Problem size | CMF opt | CMSSL [(23

opt CHSSL
128 x 128 1.48 0.11 0.05 13.45 2.20
256 x 256 4.99 0.17 0.08 29.35 2.12
512 x 512 20.04 0.25 0.14 143.14 | 1.78
1k x 1k 82.57 0.48 0.25 172.02 | 1.92
2k % 2k 334.27 | 0.93 0.48 359.43 | 1.93
4k x 4k - 1.96 0.99 - 1.97

Table 3: Execution time in seconds for LU solver on
32-processor CM-5, double precision

Table 4 shows the execution time of the lower tri-
angular solver on 32-node nCUBE2. Consistent with
the results on the CM-5, the speedup factors on the
nCUBE2 also increases with the problem size.

The results of the lower triangular solver and the
LU solver demonstrate that interleaved reduction
can improve program performance significantly, es-
pecially for large problem sizes. On machines with
fast hardware support for global reductions, such as
the CM-5, this optimization also scales up reasonably,
though not perfectly, to large machine sizes.

E-57

Problem size | seq | unopt | opt 4:%2
256 x 256 0.08 0.31 0.09 0.89
512 x 512 0.34 1.10 0.17 2.00

1k x 1k - 1.35 4,13 0.35 3.86
2k x 2k 5.60 16.10 0.83 6.75

Table 4: Execution time in seconds for a parallel tri-
angular solver on 32-node nCUBEZ2, double precision

6 Conclusion

In this paper, we have presented an interleaving
transformation for optimizing reductions on mas-
sively parallel machines. The optimization exploits
relatively fine-grain parallelism that is suitable for
most massively parallel computation platforms. Our
experiences with an LU solver on the Connection Ma-
chine CM-5 give us confidence that such automatic
transformation can achieve significant performance
improvement over straightforward implementations.

References

[1] P. Bose. Interactive program improvement via
eave. In Proceedings of the International Confer-
ence on Supercomputing, 1988.

[2] Marina Chen and Yu Hu. Optimizations for Com-
piling Iterative Spatial Loops to Massively Paral-
lel Machines. In Proceedings of the &th Workshop
on Languages and Compilers for Parallel Com-

puting, New Haven, CT, 1992.

[3] A. L. Fisher and A. M. Ghuloum. Parallelizing
complex scans and reductions. In Proceedings of
the ACM SIGPLAN’9) Conference on Program-

ming Language Design and Implementation, 1994,

[4] B. Leasure. The parafrase project’s fortran an-
alyzer. Technical Report 85-504, Dept. Com-
puter Science, University of Illinois at Urbana-
Champaign, 1985.

[5] S. S. Pinter and R. Y. Pinter. Program opti-
mization and parallelization using idioms. In Pro-
ceedings of Principles of Programming Languages,
1990.

[6] X. Roden and P. Feautrier. Detection of recur-
rences in sequential programs with loops. In Lec-
ture Notes in Computer Science, vol. 694, 1993.

[7] Chau-Wen Tseng. An Optimizing Fortran D
Compilers for MIMD Distributed-Memory Ma-
chines. PhD thesis, Rice University, 1993,

