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Abstract―In this paper, two kinds of evolutionary 
computations including a genetic algorithm (GA) and a 
particle swarm optimization (PSO) are used to train the 
novel Wilcoxon neural networks (WNNs) for function 
approximation with outliers.  Unlike the traditional 
artificial neural networks (ANNs), the objective function 
used in the proposed WNNs is the Wilcoxon norm instead 
of the total sum of squared errors, i.e., 2 -norm.  The 
advantage of using the Wilcoxon norm is to reduce the 
influence of outliers on overall neural network training.  
Moreover, to overcome the drawback due to the 
back-propagation learning algorithm, we utilize the 
population-based optimization methods containing GA 
and PSO algorithms to find the suitable weights of WNNs.  
Finally, some numerical examples, as compared with 
traditional ANNs, will be provided to verify the robustness 
against outliers by the proposed methods. 
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Index Terms―artificial neural networks (ANNs), 
Wilcoxon neural networks (WNNs), particle swarm 
optimization (PSO), genetic algorithms (GAs). 

I. INTRODUCTION 

It is well known that neural networks have 
successfully been applied in many branches of 
science and engineering.  The typical architecture 
of ANNs consists of several layers, i.e., the input 
layer, one or two hidden layers, and output layer.  
Each layer includes several neurons, which are 
usually connected with ones located in another 
layers by weights.  In the back-propagation 
algorithm [1, 2], the error signal is the feedback 
layer-by-layer to the input layer to update the 
connection weights such that the given objective 
function is minimized.  However, the serious 
drawback of this kind of algorithm is that the 
solved solution is easy to be trapped at the local 
minimum around initial values and difficult to 
escape from there.  To accelerate the convergence 
of the algorithm, many new approaches are 

presented, such as by adding momentum terms to 
the updating law [3], or using the adaptive learning 
rate according to any appropriate step size selection 
rules, e.g., line minimization, limited line 
minimization, Armijo, Goldstein, Wolfe, or 
diminishing step size rules [4].  

The genetic algorithm, initially developed by 
John Holland [5], is a biologically motivated search 
technique mimicking natural selection and natural 
genetics.  It is a general search method in between 
the exhaustive search and traditional search.  
When the fitness landscape of the problem is 
unclear or riddled with many local optima, the 
genetic algorithm usually has good searching 
capability.  The GA starts with a population of 
possible solutions, called chromosomes, to the 
problem.  A prescribed fitness function is firstly 
defined for the problem, which evaluates the fitness 
or goodness of each chromosome.  Then 
chromosomes with better fitness are selected for 
reproduction.  The subsequent crossover and 
mutation operations are performed onto the 
population in order to generate a new generation of 
possible solutions.  Such a process is repeated 
until some stopping criterion is met.  In recent 
years, the related researches about GA have been 
presented and successfully applied in a variety of 
science and engineering fields [6-10]. 

Another evolutionary algorithm frequently used 
is the PSO [11-15].  It is an optimization 
algorithm having origins from evolutionary 
computation together with the social psychology 
principle.  Essentially, PSO is dependent on 
stochastic processes and also uses the concept of 
fitness as well as GAs.  In addition, it provides a 
mechanism that individuals in the swarm exchange 



and communicate information one another, which 
is similar to the social behavior of insects and 
human beings.  Because of mimicking the social 
sharing of information, PSO directs the individuals 
to search the optimal solution more efficiently [12, 
13].  Another important feature of PSO is that the 
paradigm requires only primitive mathematical 
operations which can easily be implemented to 
computer programs.  Therefore, PSO has been 
attracted to many real-world applications such as 
the analysis of human tremor, the reactive power 
and voltage control, the state-of-charge estimator 
for a battery pack, the ingredient mix optimization, 
milling optimization, and improvised music 
composition [16, 17].  Many of them have been 
shown that PSO techniques can perform well.  To 
combine PSO algorithm with neural network, some 
efforts have been made recently. In [11], the author 
proposed an evolutionary system for evolving 
artificial neural networks, which is based on the 
PSO algorithm.  A hybrid of GA and PSO was 
used for recurrent networks design problems in 
[15]. 

Robust and non-parametric smoothing is an 
important idea in statistics that aims to 
simultaneously estimate and model the underlying 
structure for given data.  The annealing robust 
back-propagation learning algorithm was proposed 
to deal with the modeling problem under the 
existence of outliers in [18].  Based on fuzzy 
neural network structures, a robust learning 
algorithm was developed to reduce the outlier 
effects [19, 20].  In addition, the weighted error 
back-propagation algorithm was proposed to 
improve the resistance of multi-layer forward 
networks training to outliers in [21].  The 
simulation results of the above-mentioned papers 
completely demonstrate their satisfactory abilities 
on dealing with outliers.  One principal method 
belonging to this category is the Wilcoxon 
approach, which is usually robust against outliers.  
The concept of Wilcoxon norm and linear 
Wilcoxon regressors are presented in Hogg [22].  
This motivates us to include the Wilcoxon norm 
concept to the neural networks.  The combination 
is called the Wilcoxon neural networks (WNNs) 
and this class of learning machines was briefly 
described in [23].  The contribution of this paper 

is to apply evolutionary computations of PSO and 
GA, respectively, as training algorithms for WNNs, 
and some simulation results, as compared with with 
ANNs using the traditional back-propagation and 
adjustable Armijo learning rate algorithms, 
respectively, are proposed to show the better 
robustness against outliers. 

II. NEURAL NETWORKS 
A. Artificial neural networks 

ANNs are a biologically motivated learning 
machine mimicking the structure and behavior of 
biological neurons and nervous system.  The 
input-output relationship in each neuron can be 
described by the following equations  
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where  is the input to the neuron and  is the 
weight with respect to , 
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ix θ  is called a threshold, 
n is the number of inputs, and  is referred 
to as a nonlinear transfer function and is only used 
in hidden layers in this study.  When the transfer 
function is used in the output layer, a linear 
function, 

(netf )

( ) netnetf = , is chosen.  For training 
ANNs, a performance index or an object function 
must be defined previously and will be minimized 
by means of updating weights and biases.  Usually, 
a total sum of squared errors is defined as an 
objective function and is given by 

(∑∑
= =

−=
l

q

p

k
qkqktotal ydE

1 1

2

2
1: ) , (2) 

where  is the number of training data, l p  is 
output number of neural networks,  is the kth 
desired output of the qth training data.  The 
objective function of (2) belongs to the 
corresponding  norm.  This kind of objective 
function is not a good robustness indictor for 
outliers.  In the following, the concept of 
Wilcoxon norm [22] is first introduced and we use 
it as an objective function in training networks for 
solving outliers problem. 
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B. Wilcoxon neural networks 



To define the Wilcoxon norm of a vector, we first 
need a score function.  A score function is a 
function ( ) [ ] ℜ→1,0:uϕ  which is non-decreasing 
such that 
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Usually, the score function is standardized so that 
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The score associated with the score function ϕ  is 
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It can be shown that the following function is a 
pseudo-norm (semi-norm) on : lℜ
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W

v  defined in (3) 
the Wilcoxon norm.   

There are one input layer with  nodes, one 
hidden layer with  nodes, and one output 
layer with p nodes.  We also have p bias terms at 
the output nodes.   
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Let  denote the connection weight from ith 
input node to the input of the jth hidden node.  

Then the input  and output  of the jth 
hidden node are given by, respectively, 
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where  is the activation function of the jth 
hidden node. 

hjf

Let  denote the connection weight from the 
output of the jth hidden node to the input of the kth 
output node.  Then the input  and output  
of the kth output node are given by, respectively, 
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where  is the activation function of the kth 
output node.  The final output  of the network 
is given by  

okf
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where  is the bias. kb

For training WNNs, in this study the Wilcoxon 
norm of the total residuals is taken as an object 
function, which is given by  
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( )Here qkR ρ  denotes the rank of the residual qkρ  

among k1ρ , …, lkρ , ( ) ( )klk ≤ρ ρ≤ ...1

k1

 are the 
ordered values of ρ , …, lkρ , and 
( ) ( )[ ]1: += liia ϕ  is a score function with 
( ) ( )5.012: −= uuϕ .  The bias term , kb pk ∈ , 

is given by the median of the residuals at the kth 
output node, i.e., 

{ }qkqklqk tdmedb −=
≤≤1

. 

Base on the proposed WNNs, the weights of ji  
and kj  here need to be adjusted for minimizing 
the total residuals (6) according to certain 
evolutionary algorithms including PSO and GA 
approaches, respectively.  For convenience, we 
further let 

v
w

Θ  represent a parameter vector which 
contains all adjustable weights  and  in 
WNNs.   
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III. GAS AND PSO A.3  Mutation 
A. Basic concepts of GAs 

The GAs begin with generating a population that 
contains a number of random chromosomes.  Each 
chromosome of the population is to represent a set 
of possible solution to optimization problem.  In 
the view of using GAs to WNNs training problem, 
the chromosome here is referred to as the 
adjustable parameter vector Θ  of WNNs.  The 
population is evolved to generate a better offspring 
according to the size of Wilcoxon norm (6) by 
means of using genetic operations.  To constrain 
the search interval, a lower bound and upper bound 
for each gene in the chromosome is given by  
and  during evolutionary procedure.  If any 
resulting gene is outside the defined interval, then 
the original remains.  In addition, let  be 
population size, i.e., number of chromosomes in the 
population, l be the number of genes in a 
chromosome,  and  be the crossover and 
mutation probabilities, respectively.  The variables 
will be used in the genetic operations. 

mink

maxk

N

cp mp

The number of executing mutation is given by 
( ) lNNp gm ×−× .  In every mutation, we first 

randomly select a gene of the chromosome from 
gNN −  chromosomes and this gene is then 

replaced by a random number from the search 
interval between  and .   mink maxk

The procedure that have run the above selection, 
crossover, and mutation is called a generation.  
The algorithm stops when the desired value of 
Wilcoxon norm is satisfied or pre-specified number 
of generations is achieved.  The overall design 
steps for training WNNs based on using a GAs can 
be summarized as follows. 
Step 1. Create a population with  chromosomes 

randomly.   
N

Step 2. Evaluate the value of Wilcoxon norm of (6) 
for each chromosome.  

Step 3. If the pre-specified number of generations 
G is reached or there is any chromosome 
with Wilcoxon norm value less then ε , 
then stop. A.1 Selection 

We first need to evaluate the corresponding 
Wilcoxon norm for each chromosome.  The  
highly fit chromosomes are directly kept in the next 
generation.  The rest 

gN

gNN −  chromosomes are 
then taken into the mating pool to be crossed.  
This completes the selection operation.   

Step 4. Perform three genetic operations: selection, 
crossover, and mutation, respectively.  If 
any of the resulting genes during operations 
is outside the interval , then the 
original one is retained. 

[ maxmin , kk ]

Step 5. Go back to Step 2. 
A.2 Crossover 

In the mating pool, all of chromosomes are 
randomly divided into many pairs. Each pair, i.e., 

 and , proceeds to cross.  Moreover, let 
 be a random number selected from 
dΘ

c
mΘ

[ ]1,0 .  If 
, then the following crossover operation for 

 and  are performed:  
cpc ≤

dΘ mΘ

( )dmmb Θ−Θ×−Θ=Θ β , 
( dmds Θ−Θ×+Θ=Θ )β , (7) 

else , , db ΘΘ = ms ΘΘ =  
where  and  are the offspring 
chromosomes, 

bΘ sΘ
]1[ ,0∈β  is random numbers.   

B. Basic concepts of PSO 
PSO is another population-based algorithm for 

searching global optimum.  The original idea 
behind PSO is to simulate a simplified social 
behavior.  It ties to artificial life, like bird flocking 
or fish schooling, and some common features of 
evolutionary computation such as fitness evaluation.  
For example, PSO is like GAs in which the 
population is initialized with random candidate 
solutions.  The adjustments toward the best 
individual and the best swarm experiences are 
basically similar to the crossover operation in GAs.  
Conversely, the difference between PSO and GAs 
is that each potential solution, called individual or 
particle, is “flying” through hyperspace with a 



velocity.  Moreover, the particles and the swarm in 
the PSO have the capacity of memory, which does 
not exist in the population of the GAs.  

Let  and  denote the jth 
dimensional value of the vector of position and 
velocity of ith particle in the swarm, respectively, at 
step k.  The PSO updating rules can be expressed 
as 
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Step 4. Update the swarm best position  if the 
fitness of the new best position is better 
than that of the previous one.  

#Θ

Step 5. For each particle, update the velocity and 
the position according (8) and (9).  As well 
as GAs, if any resulting position during 
operations is outside the set interval 
[ ]maxmin , kk , then the original one is 
retained. 

Step 6. Go back to Step 2. 

IV. SIMULATION RESULTION 

) , (9) In this section, we will compare the performance 
of ANNs and WNNs using various updating rules 
for an illustrative nonlinear regression problem 
with testing conditions.  The updating rules for 
ANNs are the traditional back-propagation 
algorithm and the back-propagation algorithm with 
Armijo rule [4], respectively.  Moreover, for 
training WNNs, the GAs and PSO algorithms 
introduced above are employed.  In order for 
“fair” comparisons, the simulation machines will 
use the same set of parameters.  For example, for 
ANNs and WNNs, there are one input neuron, two 
hidden layers with five and ten neurons, 
respectively, and one output neuron.  The 
activation function used in the hidden nodes is the 
bipolar sigmoidal function, and the activation 
function of the output node is the linear function 
with unit slope.  Besides, for GAs and PSO 
algorithms, we use the same search space and 
population size (swarm size).  The software to 
implement the above numerical algorithms is the 
Visual C++ 6.0 running on Microsoft Windows XP, 
Pentium IV 2.4 GHz platform. 

where w is the inertia weight which controls the 
effect of the preceding velocity at  on the 
present one,  denotes the best position of ith 
particle up to step  and  denotes the best 
position of the whole swarm up to step 

1−k
*
iΘ

1−k #Θ
1−k , 1ϕ  

and 2ϕ  are random numbers selected from [ ]1,0 , 
and  and  are the positive numbers and 
represent the individuality and swarm coefficients, 
respectively. 

1c 2c

The PSO algorithm is first to give the swarm size 
and the position and velocity of each particle are 
initialized randomly.  Each particle moves 
according to Eqs. (8) and (9), and the fitness 
function of (6) is then calculated.  Meanwhile, the 
best positions of each particle and the swarm are 
recorded.  Finally, if the stopping criterion is 
satisfied, the best position of the swarm is the final 
solution.  The main features of PSO algorithm can 
be outlined as follows. 
Step 1. Give the swarm size N and initialize the 

position and the velocity of each particle 
randomly. 

The true function that will be learned is given by 
the following complex function 

( ) ( ) ( ) ( )xxxxy πππ 3cos22sin5.0sin ++= , Step 2. For each particle i, compute the 
corresponding fitness value of  and 
update the individual best position  if 
better fitness is generated. 

iΘ
*
iΘ

[ ]1,1−∈x .  

The parameters used in GAs and PSO algorithms 
are set to , 20=N 00015=G , 
[ ] [ ]10,10, maxmin −=kk , , 2=gN 8.0=cP , 

005.0=mP .0, 45=w , and 221 == cc .  In the 
simulations, there are fifty training data uniformly 
generated from the true functions and in which 

Step 3. If the pre-specified number of generations 
G is reached or the fitness value of the best 
particle  in the swarm is less then #Θ ε , 
then stop. 



there are three, five, and eight training samples 
intentionally replaced by artificial outliers.  
Figures 1(a)(b)(c) show the simulation results by 
ANNs with the back-propagation algorithm and 
back-propagation algorithm with Armijo rule for 
three, five, and eight artificial outliers, respectively.   
The simulation results by WNNs with GAs and 
PSO algorithms are then displayed in Figures 
2(a)(b)(c).  From these figures, it can easily be 
seen that WNNs perform with GAs and PSO 
algorithms better than ANNs with the 
back-propagation algorithm and Armijo rules for 
different outliers.  The predictive results by 
WNNs with GAs and PSO algorithms are almost 
indistinguishable from the true function, and are all 
robust against outliers. 

V. CONCLUSION 
In this paper, we have successfully applied GAs 

and PSO algorithms to train the the Wilcoxon 
neural networks.  These population-based 
optimization methods have many advantages over 
the traditional back-propagation learning algorithm, 
for example, easy to escape from the local 
minimum around initial values and more efficient 
to solve the optimal solution for complex functions.  
The main difference between WNNs and ANNs is 
the use of the Wilcoxon norm to replace the general 
the total sum of squared errors.  To deal with 
function approximations with outliers, this change 
can efficiently reduce the effect of outliers.  From 
simulation results including three, five, and eight 
artificial outliers for complex function 
approximations, it is concluded that WNNs with 
GAs and PSO algorithms proposed in this paper 
have good robustness against outliers than ANNs 
with the traditional back-propagation algorithms 
and Armijo rules. 
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Figure 1(c). Simulation results with eight outliers 
for ANNs.   
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Figure 2(a). Simulation results with three outliers 

for WNNs.   
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Figure 2(b). Simulation results with five outliers for 

WNNs.   
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Figure 2(c). Simulation results with eight outliers 

for WNNs.   
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