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Abstract—Compared to the verification of a conven-
tional embedded system, that of a dynamically partially re-
configurable system is more complex and difficult because
the requirements for partial reconfiguration changes with
the time and environment. Thus, a complete and efficient
verification mechanism is urgently required. Different
from the non-exhaustive simulation-based verification used
in most UML-based design flow for dynamically partially
reconfigurable systems, we propose a model-based veri-
fication and estimation framework (MOVE) that covers
the function-oriented platform independent verification
and the physical-aware platform specific verification based
on the model-driven architecture (MDA) design. User-
specified UML models are first exhaustively verified us-
ing model checking and then integrated into a UML-
based hardware/software co-design platform (UCoP) for
physical-aware verification and estimation at a high ab-
straction level. Our experiments also demonstrate that the
state-space-explosion problem does not occur when model
checking reconfigurable systems using MOVE. Further-
more, we can have more accurate time measurements using
UCoP which can be used to validate system correctness and
performance at the system level compared to the existing
synthesis-based and lower-bound estimation methods.

Index Terms—UML, model checking, system verifica-
tion, performance estimation, reconfigurable systems

I. INTRODUCTION

FPGA devices, such as Xilinx Virtex II/II Pro,
Virtex 4 and Virtex 5, can be partially reconfigured
at run-time, which means that one part of the
FPGA can be reconfigured, while other parts remain
operational without being affected by reconfigura-
tion. Using the partial reconfiguration technique,
multiple combinations of hardware functions can
be accommodated on an FPGA at different time
points. A hardware/software embedded system re-

alized with such an FPGA device is called a Dy-
namically Partially Reconfigurable System (DPRS),
which enables more applications to be accelerated
in hardware, and thus reduces the overall system
execution time [17]. Due to the more flexible and
scalable hardware capabilities, the development and
validation of a DPRS becomes more complex than
that of a common embedded system.

For the functional design of a DPRS, the Unified
Modeling Language (UML) [1], an industry de-
facto standard, has been used for modeling and
development [14], [16]. Through system modeling,
the functional interactions between the system and
the applications can be easily described and ana-
lyzed. Most of these works are simulation-based
and focus only on the functional code generation
without any design-space exploration. However, the
simulation-based methods cannot guarantee that all
system behaviors are tested and corrected, which
results in significantly more iterations for rectifying
the system design. Further, most UML-based design
methodologies use time estimates for simulating the
functional interactions between applications and a
system. As a result, the physical design correct-
ness can be verified and estimated only after the
UML models are synthesized into concrete sys-
tem designs. To provide an efficient verification
and accurate estimation mechanism, we propose
a MOdel-based Verification and Estimation frame-
work (MOVE) for dynamically partially reconfig-
urable systems as illustrated in Figure 1. Based on
the Model-Driven Architecture (MDA) based UML
design flow [1], MOVE supports both Platform In-
dependent Verification (PIV) and Platform Specific
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Verification (PSV).
In PIV, we apply model checking [6] which

allows exhaustive exploration of the DPRS state
space to efficiently and completely verify the DPRS
functionalities that change with time and environ-
ment. Thus, the problems of only being able to sim-
ulate partial system behaviors using the simulation-
based methods, i.e non-exhaustive verification, can
be solved. Furthermore, all reconfigurable hardware
functions for the same partially reconfigurable re-
gion on an FPGA have the same interactive inter-
faces, which shows that the complexity of a DPRS
architecture design is dependent on the number of
partially reconfigurable regions and not on that of
reconfigurable hardware functions. As a result, even
though the number of reconfigurable hardware func-
tions increases, the state-space explosion problem 1

[6] does not occur in the validation of a DPRS when
model checking is used. In PSV, a UML-based hard-
ware/software Co-design Platform (UCoP) [5], [10]
is proposed to support physical-aware verification
and estimation of reconfigurable systems. During
the simulation of UML models, the software models
can directly communicate with the hardware designs
in FPGA, thus the gap between models and actual
implementations is effectively bridged in UCoP. As
a result, designers can accurately validate system
correctness and performance at a high abstraction
level.

Different from most UML-based verification and
estimation methods [14], [16], given the UML mod-
els of a DPRS, MOVE supports PIV through func-

1The state space of a system becomes very large, or even infinite.
Thus, it is impossible to explore the entire system behaviors.

tional verification using model checking and PSV
through physical-aware verification using UCoP.
Due to the two-phase verification process, MOVE
significantly reduces DPRS development efforts.
The rest of the article is organized as follows:
Section II discusses the related UML-based design
methodologies for DPRS and the existing DPRS
verification and estimation methods. Section III
introduces the basic system components and the
design constraints in a DPRS. The methodology
adapted in the MOVE framework is described in
Section IV, while the detailed design of MOVE is
introduced in Section V. Section VI presents our ex-
perimental results and analysis. Finally, conclusions
are described in Section VII.

II. RELATED WORK

Compared to a conventional embedded system,
a DPRS manages not only traditional software
applications and hardware devices, but also re-
configurable hardware functions. In a DPRS, the
hardware/software functional combination can be
dynamically adapted to fit run-time system require-
ments. As a result, the design of a DPRS is much
more complicated than that of a conventional em-
bedded system. To efficiently analyze system behav-
iors, some research works include high-level UML
modeling for the system development. Beierlein et
al. [16] proposed a complete UML-based design
methodology for reconfigurable architectures, which
started with UML models and ended with the
final implementation and deployment. It included
a model compiler for reconfigurable architectures
to create executable applications from system-level
specifications. Schattkowsky et al. [14] also pro-
posed a model-based approach for executable UML
to close the gap between the system specification
and its model-based execution on reconfigurable
hardware. The UML specifications can be compiled
to binary representations that were directly executed
on their proposed abstract machine platform. Simi-
lar to the development of a conventional embedded
system, the simulation-based method is widely used
for the DPRS verification, in which random patterns
are used to test the system functional correctness.

Brito et al. [4] proposed a SystemC-based
methodology for modeling and simulating a DPRS.



The system specifications were refined to the Reg-
ister Transfer Level (RTL) SystemC for verifica-
tion. The specific operations for dynamic partial
reconfiguration were implemented in the SystemC
kernel, and thus the behaviors in a DPRS were
directly simulated using SystemC. However, the
problems of only being able to simulate partial
system behaviors, i.e non-exhaustive verification,
still exists in the SystemC-based method [4], which
can incur much more design iterations for rectifying
and validating a system design. Instead of system
verification using only simulation, an integrated
design and verification methodology called Sym-
bad [3] was proposed for reconfigurable systems.
A reconfigurable system was first described using
SystemC and then abstracted for formal verification.
However, the SystemC descriptions used for model
checking are not intuitively translated because they
are based on different design points of view, and
thus more design efforts are needed for model
translation. Furthermore, the partial reconfiguration
technology was not supported in their methodology.

Besides the functional verification of a DPRS, a
commonly used synthesis-based estimation method
[11] was proposed to evaluate the values of non-
functional parameters of a DPRS. The configuration
time was evaluated based on the size of the syn-
thesized hardware function in terms of the FPGA
resource usages, while the hardware execution time
was evaluated based on the hardware simulation
and the synthesis results. A lower-bound estimation
method [15] was also proposed to evaluate the
hardware execution time, where the time necessary
to transfer sequences of 32-bit values was measured
for obtaining the lower bound on data transfers
and then used to estimate system performance.
The estimated results using the synthesis-based and
lower-bound methods were very close to the actual
measured ones; however, the time under-estimation
or over-estimation could still cause a very serious
problem, especially when hard real-time constraints
are violated.

In contrast to the existing UML-based method-
ologies [14], [16] for the DPRS verification us-
ing simulation, MOVE provides a more complete
and efficient UML-based validation mechanism that
supports platform independent verification (PIV)
and platform specific verification (PSV). Instead of

Software
Software Applications

Software

Application

System Manager

System

Management

C fi ti

HW/SW Communication Interface

HW C i ti

Management

Configuration

Controller

HW Communication

Architecture

P ti ll R fi bl St ti F ti l

Hardware

Configuration
Partially Reconfigurable

Regions

Static Functional

Blocks

f g

Fig. 2. DPRS Architecture

the non-exhaustive and time consuming simulation-
based method, such as using SystemC [4], model
checking is applied in PIV for providing exhaustive
validation of a DPRS. Different from the com-
plex translation between SystemC languages and
the formal models in Symbad [3], in MOVE, the
translation of model-based UML state machine dia-
grams into Extended Timed Automata (ETA), which
are used for describing system behaviors in model
checking, is more intuitive and straightforward.
Compared to the inaccurate synthesis-based [11]
and lower-bound [15] methods for DPRS time esti-
mations, a UML-based hardware/software co-design
platform (UCoP) is used in PSV for supporting the
direct interactions between the UML models and
a real DPRS hardware/software architecture, and
thus accurate verification and estimations can be
achieved at the system level.

III. DYNAMICALLY PARTIALLY
RECONFIGURABLE SYSTEM

Before introducing the MOdel-based Verifica-
tion and Estimation (MOVE) framework, we first
describe the design of a Dynamically Partially
Reconfigurable System (DPRS), which is a hard-
ware/software embedded system capable of recon-
figuring new hardware functions into the system at
run-time. According to the DPRS architecture de-
sign as shown in Figure 2, we can classify the DPRS
components into three main categories, including
hardware configuration, system management, and
software application.

The hardware configuration category contains all
the static and reconfigurable hardware components.



The reconfigurable area in an FPGA consists of
several slots called Partially Reconfigurable Regions
(PRRs), which can be reconfigured into different
hardware functions at run-time. The static area in
an FPGA includes the static functional blocks that
cannot be reconfigured at run-time, a hardware com-
munication architecture that connects all hardware
components in an FPGA, and a configuration con-
troller, such as Internal Configuration Access Port
(ICAP) or SelectMap, that is embedded in the FPGA
for configuring the partial bitstreams into PRRs. The
system management components are responsible for
managing the control and data transfers between
hardware and software in a DPRS. It mainly in-
cludes a system manager and a hardware/software
communication interface which includes the device
drivers for hardware and system communication
devices, such as Peripheral Component Interconnect
(PCI). The software application category includes
all user-specified application functions.

When we design a DPRS, there are mainly two
physical constraints imposed by the partial recon-
figuration technology as described in the following.

• Mutual exclusion: (1) only one hardware func-
tion can be configured at a time into a PRR; (2)
only one PRR can be reconfigured at a time.

• Invariable access: the software applications
cannot interact with a PRR when it is being
reconfigured.

IV. METHODOLOGY IN MOVE
A typical Model-Driven Architecture (MDA)-

based UML design flow can be divided into the
platform independent phase and the platform spe-
cific phase. In the platform independent phase, the
UML models are used to analyze the functional
interactions among system components without the
platform-related features, such as the hardware con-
figuration time and execution time. In the plat-
form specific phase, the platform-related features
are integrated into the UML models for synthesizing
the final concrete system design. Similar to the
conventional embedded system development, the
simulation-based verification and estimation is usu-
ally used in the related UML-based DPRS method-
ologies [14], [16]. However, the simulation-based
methods being non-exhaustive can verify only part
of the functional behaviors in a system, with rough

estimates of the time delays incurred by configu-
ration and execution. As a result, much more de-
sign iterations between UML modeling and system
implementation are required, which significantly
increase the DPRS development time and efforts.

Based on the typical DPRS design as described
in Section III, the UML models of MOVE are
classified into three categories of functional UML
models [10], namely hardware configuration mod-
els, system management models, and software ap-
plication models. They are used to model the func-
tional behaviors of a DPRS without the platform-
related information, such as hardware configuration
and execution time. A DPRS is first specified by
customizing the three categories of functional UML
models, high-level functional analysis can be thus
performed in MOVE. To meet the characteristics of
the MDA-based UML design flow, MOVE supports
the two-phase verification process for a DPRS, in-
cluding the function-oriented platform independent
verification and the physical-aware platform specific
verification, instead of system verification using
only simulation. In the following subsections, the
detailed information for each verification phase is
illustrated.

A. Platform Independent Verification
The platform independent verification (PIV) fo-

cuses on verifying the functional interactions among
DPRS components, without the platform-related in-
formation. In PIV, we adopt model checking [6]
as the verification method for exhaustively validat-
ing the DPRS functional behaviors. However, the
UML state machine diagrams cannot be accepted
as system model input by most model checkers,
which can accept only flat automata model. Thus,
the state concurrency and hierarchy in the UML
state machine diagrams must be transformed into
semantically equivalent constructs in ETA. A flat-
tening scheme [12] is applied in PIV as follows.

1) Concurrency: Each AND state in a UML
state machine diagram is transformed into an
equivalent set of concurrent ETA, and concur-
rency is thus preserved. Transitions entering
or exiting an AND state must be synchro-
nized so that all initial or history states in
an AND state are entered simultaneously or
all active states left simultaneously. In the



model translation process, a new initial mode
was introduced into each component ETA and
incoming and outgoing transitions could thus
be synchronized.

2) Hierarchy: An OR state represents a lower
hierarchy level in the UML state machine
diagram. In the model translation process, this
hierarchy is flattened out by embedding the
lower hierarchy level of the UML state ma-
chine diagram into the higher hierarchy level.
Thus, the incoming and outgoing transitions
of an OR state must be preserved, so the
hierarchy semantics was preserved through
flattening.

Besides applying the flattening scheme for model
translation, we classify the transitions in the UML
state machine diagrams into two types, namely
reconfiguration and general. Reconfiguration tran-
sitions are triggered due to the partial reconfig-
uration requirements, and general transitions are
the other remaining transitions. To model real-time
system behaviors, transitions in ETA have associ-
ated urgency types, including lazy and eager. Lazy
transitions need not be taken even if their triggers
are satisfied, while eager transitions are triggered
as soon as possible. The model translation process
specific for DPRS is described as follows.

• If the type of a transition in the UML state
machine diagram is reconfiguration, the trig-
gering condition of the corresponding transition
in ETA is defined as True for direct triggering;
otherwise, the triggering event of a transition
in the UML state machine diagram is mapped
to the triggering condition of the corresponding
transition in ETA. By making the reconfigura-
tion transitions non-deterministic, all possible
functional combinations of a DPRS are veri-
fied.

• If the type of a transition in the UML state
machine diagram is reconfiguration, the corre-
sponding transition in ETA is associated with
the eager urgency type, so that real-time recon-
figuration is correctly modeled.

When all the state machine diagrams of functional
UML models are translated into ETA, the global
state graph obtained by merging all ETA is then
model checking. The properties are specified using

Computation Tree Logic (CTL) [7]. Model checking
can show if a DPRS satisfies a CTL property or
violates it by giving a counterexample. CTL proper-
ties, such as EF , AF , AG, AU , can all be defined
[7], and the use of the CTL properties is briefly
described as follows, where p and q are atomic
observations.

• Path qualifier: A, for all paths; E, for some
paths.

• Temporal operators: Xp, p holds next time;
Fp, p eventually holds in the future; Gp, p
always holds in the future; pUq, p holds until
q holds.

In contrast to the conventional simulation-based
verification, we apply model checking to exhaus-
tively verify all possible system functional inter-
actions among DPRS components. We extend the
UML state machine diagrams and ETA for support-
ing the semantics of the DPRS design, and propose
a model translation approach to transform the UML
state machine diagrams into ETA. To efficiently
verify the real-time features for a DPRS, MOVE
leverages the urgency semantics of state transitions
and the CTL properties.

B. Platform Specific Verification
The platform specific verification (PSV) focuses

on verifying the system correctness and perfor-
mance associated with the information of a target
platform. In PSV, a UML-based hardware/software
co-design platform (UCoP) [5] as shown in Figure 3
is proposed to support for UML models to directly
interact with real hardware functions that are con-
figured at run-time into an FPGA. The functional
UML models are integrated with platform APIs,
software executables, and hardware bitstreams into
the interactive UML models. During the simulation
of UML models, the interactive UML models can
directly communicate with the hardware functions
in FPGA, thus the gap between models and actual
implementations is effectively bridged in UCoP.
Therefore, the accurate time measurements can be
performed and used at the system level, instead of
only simulating the functional interactions between
applications and a DPRS.

To ease the integration of user-designed hardware
functions into the UCoP, a partially reconfigurable
hardware task template (PR template) is proposed,
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which connects the user functions with the hard-
ware communication architecture. To use a newly
developed hardware function in UCoP, a designer
has to simply integrate the new hardware function
with the PR template because it provides a com-
mon communication interface between the hardware
function and the rest of the system. The PR template
implements only 32-bit wide signals for all kinds
of data transfers. It consists of eight 32-bit input
data signals, one 32-bit input control signal, four
32-bit output data signals, and one 32-bit output
control signal. The PR template also contains an
optional Data Transformation Component (DTC)
for unpacking incoming data and packing outgoing
data based on the I/O registers sizes in the hardware
functions.

For implementing the dynamically partially re-
configurable hardware architecture of DPRNSS, the
Early Access Partial Reconfiguration (EA PR) flow
[17] from Xilinx is adopted. Xilinx bus macros are
inserted between each PRR and the static area. After
generating the netlists for the static area and for all
PRMs, a part of the EA PR flow is followed to
generate a full bitstream for the static area and a
partial bitstream for each PRM. Blank bitstreams
are also generated for all PRRs, which can be used
to reset the PRRs. As shown in Figure 4, the PR
implementation flow consists of four phases, namely
budgeting, static logic implementation, PR block
implementation, and assemble.

A DPRS hardware architecture consists of a
static area and a reconfigurable area. In the EA
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PR flow, the design of the static area must follow
the first two phases, namely budgeting and static
logic implementation. The static area design can
be reused across different applications, and is thus
integrated into UCoP such that users can reuse it
as required in different applications. As for as the
design of new hardware functions is concerned, we
need to perform only the last two phases of the PR
implementation flow, namely PR block implemen-
tation and assemble phases. Corresponding partial
bitstreams can thus be generated for each hardware
function, without going through all the four phases.
Furthermore, the necessary commands for generat-
ing partial bitstreams are integrated by UCoP into a
script file. Thus, users only need to integrate their
new hardware design with the PR template, syn-
thesize it, and run the script, without explicitly and
manually going through the last two phases of the
PR implementation flow step-by-step. Using UCoP,
users inexperienced in the partial reconfiguration
technique can still easily enhance their IP designs
with the capability for partial reconfiguration and
integrate them into a DPRS. UCoP thus significantly
reduces the PSV efforts.
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V. MODEL-BASED VERIFICATION AND
ESTIMATION FRAMEWORK

The component-based architecture of MOVE, as
illustrated in Figure 5, consists of three parts,
namely a UML modeler, a platform independent
verifier, and a platform specific verifier. Based on
the three categories of functional UML models,
including hardware configuration, system manage-
ment, software application models, MOVE provides
a basic framework for designers to model their
DPRS design as shown in Figure 6.

The SystemManager class manages all con-
trol and data transfers in a DPRS, while
ConfigManager class manages all FPGA con-
figuration. The Interactor class is responsi-
ble for providing the interactive interface between
software applications and hardware functions. The
ReconfigHW and StaticHW classes are respon-
sible for configuring the functions of PRRs and
static area, respectively, in an FPGA. Besides mod-
eling the functional relationships in a DPRS using
the class diagram, MOVE also provides the ba-
sic frameworks for the state machine diagrams to
model the detailed operations for each class except
for ReconfigHW and StaticHW classes because
they model passive components containing pointers
to the bitstreams that are saved in memory. To
translate the UML state machines into ETA, an
XMI exporter is used to export the functional UML
models in the XML-based Metadata Interchange

(XMI) format.

MOVE integrates the State Graph Manipulator
(SGM) [8], [9], which is continuingly developed
and maintained by our laboratory, into the platform
independent verifier. SGM supports CTL model
checking, transition urgency types, and dead state
checking. The platform independent verifier also
includes a model translator to translate the UML
models in the XMI file into the corresponding ETA
for SGM. The physical architecture constraints for
partial reconfiguration, including mutual exclusion
and invariable access, as illustrated in Section III,
and user-given properties are specified as CTL
properties for model checking. When all properties
are validated and all functional errors are corrected
by analyzing the counterexamples, the functional
UML models are then input to the platform specific
verifier.

MOVE adopts UCoP, which can directly interact
with the real DPRS architecture at a high abstraction
level, as the platform specific verifier. UCoP was
implemented on a reference board, that is, the
XtremeDSP Development Kit-II [13] from Nallat-
ech. The software applications run on a micropro-
cessor. The Field Upgradeable Systems Environment
(FUSE) APIs and the PCI driver are provided by
the XtremeDSP Development Kit-II to facilitate the
FPGA reconfiguration and communication over the
PCI bus. Instead of doing this per application, UCoP
integrates them directly into the software code gen-
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erator, so that the gap between application models
and system architecture constraints is effectively
bridged.

All reconfigurable hardware functions are inte-
grated with the PR template and then the corre-
sponding bitstreams are generated. The bitstreams
are associated with the hardware configuration mod-
els, while software applications are implemented in
the software application models. Furthermore, the
FUSE APIs and the PCI driver are integrated into
the system management models. Due to such an
integration, the interactive UML models can directly
interact with the real DPRS hardware architecture,
and thus the accurate verification and estimation can
be achieved at the system level.

VI. EXPERIMENTS

To illustrate how MOVE can be applied to a real
system, we use a Dynamically Partially Reconfig-
urable Network Security System (DPRNSS) as our
example. As shown in Figure 7, DPRNSS consists
of five system devices, including a microprocessor,
an FPGA, a network interface, a hardware/software
communication interface, and an off-chip mem-
ory. For the dynamically partial reconfiguration of
cryptographic and hash hardware functions, some
PRRs are implemented on the FPGA. All partial
bitstreams for cryptographic and hash hardware
designs are saved in the off-chip memory.

DPRNSS contains the basic controllers, including
a configuration manager, a system manager, an
interactor as described in the basic framework of
MOVE of Figure 6, and a negotiator to negotiate
with a receiver to use the same cryptographic and
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hash algorithm for data transfers in the network. The
software application is a network multimedia appli-
cation, which receives in real-time 128× 128 pixel
images from a camera. The received images are
transferred to the cryptographic and hash hardware
functions for data processing, and then sent to a
receiver on the network. To validate DPRNSS using
MOVE, the negotiator and the network multimedia
application are modeled and then integrated with the
software application models in MOVE.

In this experiment, we adopt the Rhapsody mod-
eling tool [2] that has the powerful capability for
code generation in C, C++, Java, and Ada, as the
UML modeler. Furthermore, we use the XMI toolkit
in Rhapsody to export the functional UML models
in the XMI format.

A. PIV using SGM

After successfully modeling DPRNSS by the
functional UML models, the model translator is
used to transform the UML state machine diagrams
into ETA. Here, we use SGM, which runs on
an Intel Pentium 4 CPU 3.00GHz with 8 GB
RAM, to verify the following physical architecture
constraints for partial reconfiguration described in
Section III.

Mutual exclusion:

Only one hash or cryptographic hardware
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function can be reconfigured at a time. The CTL
properties are specified as follows:

“AG(mode(SystemManager)=CryptConfig →
evHash= 0)”
“AG(mode(SystemManager)=HashConfig →
evCrypt= 0)”

Invariable access:

While one hash or cryptographic hardware
function is being reconfigured, the software
applications cannot interact with it. The CTL
property is specified as follows:

“AG(mode(ConfigManager)=PartialReconfiguration
→!{mode (SystemManager)=DataProcessing})”

We verify DPRNSS from 1 to 9 PRRs for con-
figuring the cryptographic and hash hardware func-
tions, which shows that DPRNSS becomes more
and more flexible to adapt its functionalities at run-
time. Figure 8 shows the numbers of ETA modes
and transitions of the global DPRS timed automaton
and the memory usage by SGM. We verify the func-
tional interactions between DPRNSS components
without clock variables as shown in Figure 8(a),
where we can observe that the numbers of ETA
modes and transitions increase linearly when the
number of PRRs increases, and the memory usage
increases significantly when the number of PRRs
becomes more than 6.

Because the requirements for partial reconfigura-
tion change over time and due to the environment
conditions, the temporal feature is considered in

our second experiment. The microprocessor and the
FPGA have different frequencies in DPRNSS, and
thus we assign two different clock variables to the
software applications and the hardware functions
as shown in Figure 8(b). We can observe that
the memory usage increase exponentially when the
number of PRRs increases. However, the numbers
of ETA modes and transitions still increase linearly
when the number of PRRs increases.

In a DPRS, the configuration controller usually
has an independent frequency different from the
microprocessor and the FPGA to configure the bit-
streams. Thus, we assign the third clock variable to
the operations for partial reconfiguration as shown
in Figure 8(c), where we can observe that the
exponential increase of the memory usage becomes
more significant than that as shown in Figure 8(b).
Though the memory usage increases exponentially
when the numbers of clock variables and PRRs
increase, the numbers of ETA modes and transi-
tions still increase linearly. This is because of the
inherent characteristics of reconfigurable systems,
whose complexity is dependent on the number of
PRRs, instead of functions. As a result, the state-
space explosion problem [6] does not occur in the
validation of such a DPRS using SGM. However, to
validate such timing requirements, simulation needs
much more exhaustive testbench or test vectors.
This usually causes much more iterations for rec-
tifying and validating a DPRS design, especially
after the system has been implemented. Therefore,
MOVE integrates SGM in PIV for providing effi-
cient and exhaustive functional verification, instead
of simulation-based methods, and our experiments



have demonstrated that the state-space explosion
problem does not occur in MOVE.

B. PSV using UCoP

Two PRRs, namely PRR1 and PRR2, are im-
plemented on a Xilinx Virtex-II XC2V3000 FPGA
with 14,336 slices. All cryptographic and hash hard-
ware functions are integrated with the PR template
for generating the corresponding partial bitstreams,
which are then incorporated with the hardware
configuration models of MOVE. Here, the crypto-
graphic hardware functions, including RSA, Data
Encryption Standard (DES), 3DES, and Advanced
Encryption Standard (AES), can be configured into
PRR2, while the hash hardware functions, including
CRC32, CRC64, and CRC128, can be configured
into PRR1. As a result, through the animation mode
of Rhapsody, the functional interactions among the
interactive UML models and the real DPRS hard-
ware architecture can be, step by step, dynamically
traced in the sequence diagrams and the state ma-
chine diagrams. Thus, the accurate verification and
estimation can be achieved at the high abstraction
level.

1) Resource Usage and Configuration Time: As
shown in Table I, the resource overheads incurred
by the PR template for all the hardware functions
are less than one percentage of the available FPGA
resources, which are almost negligible. The config-
uration time for each hardware function is shown
in the fifth column of Table I. We can observe that
the configuration times for the hardware functions
configured in PRR1 are approximately the same
and that for the hardware functions configured in
PRR2 are also approximately the same. Note that
the reconfiguration time is directly proportionate
to the bitstream size, which in turn is directly
proportionate to the size of the PRR.

Using the synthesis-based estimation method
[11], the configuration time of the AES hardware
function is estimated to be 16 times that of the
RSA function because the FPGA resource usage
of the AES hardware function is 16 times that
of the RSA hardware function as given in Table
I. However, it gives accurate results only if the
underlying model is 1-dimensional or 2-dimensional
[11]. It does not work with the existing modular-
design based method promoted by the Xilinx tools,

TABLE I
CONFIGURATION TIME AND RESOURCE USAGE

Region HW Slice Time
Function Count Overhead (ms)
CRC32 97 (0.6%) 86 (0.6%) 93

PRR1 CRC64 166 (1.1%) 88 (0.6%) 94
CRC128 281 (1.9%) 64 (0.5%) 94

RSA 503 (3.5%) 122 (0.8%) 766
PRR2 DES 3,472 (24.2%) 137 (0.9%) 859

3DES 3,657 (25.5%) 33 (0.2%) 844
AES 8,268 (57.6%) 43 (0.3%) 843

%: the utility rate in terms of all available slices; Overhead: PR
template overheads compared to original hardware design

such as PlanAhead. In fact, the AES and RSA
hardware functions use the same PRR, thus their ac-
tual configuration times are similar. The synthesis-
based estimation method [11] cannot guarantee the
timing correctness and the performance of a system
until the final system is created. In contrast, using
MOVE the real reconfiguration time is incurred so
the users can more accurately analyze the system
performance even before the final system is imple-
mented.

2) Execution Time Analysis: In this experiment,
we focus on comparing the execution time esti-
mation for each cryptographic and hash hardware
functions using MOVE and that using the lower-
bound [15] and the synthesis-based [11] estimation
methods, without the stream buffering technology,
to fit the requirements for real-time image transfer.

To analyze the execution process for each hard-
ware function in DPRNSS, the execution time for
each hardware function needs to be defined first.
Given input data of Din-bits, output data of Dout-
bits, data size of Dpci-bits for each data transfer
iteration over the PCI bus, data write and data
read transfer time of δwr and δrd microseconds,
respectively, for each iteration over the PCI bus,
initialization time of Tpci microseconds for starting
data transfer over the PCI bus, pure execution time
of Te microseconds for a hardware function in
MOVE, the total latency is Ttotal. As shown in
Equation (1), the measured total latency includes
not only the pure execution time (Te) of a processing
iteration for a hardware function, but also the time
overheads of data transfers over the PCI bus. As
shown in the fourth and fifth columns of Table II,
the estimated total latencies for a 128 × 128 pixel
image cryptographic and hash operation using the



84.59

60.785

Fig. 9. Total Latencies using MOVE and Lower-bound Estimation

lower-bound estimation method [15] are compared
with that using MOVE. The results of the lower-
bound estimation method [15] have inaccuracies
ranging from −28.1% (RSA encryption) to 47.5%
(CRC128).

Ttotal = Tpci + (
⌈

Din

Dpci

⌉
× δwr) + Te + (

⌈
Dout

Dpci

⌉
× δrd)

(1)
Figure 9 shows the total latencies in seconds

for fifty 128 × 128 pixel image cryptographic and
hash operation using MOVE and the lower-bound
estimation method [15]. In a networked multimedia
application using the RSA encryption with a Qual-
ity of Service (QoS) for 50 image frames per 80
seconds, the results based on the lower-bound es-
timation method indicates that the RSA encryption
for 50 images needs 60.785 seconds, that is, the QoS
can be achieved; however, as measured by MOVE
(the RSA encryption for 50 images needs 84.59
seconds), the QoS cannot be achieved in reality.

To measure the pure execution time for a hard-
ware function without considering data write and
data read transfer time over the PCI bus, we can use
Equation 2, which is modified from Equation 1. As
shown in the sixth and seventh columns of Table
II, the estimated execution time for a 128 × 128
pixel image cryptographic and hash operation using
the synthesis-based estimation method are compared
with that using MOVE. The results of the synthesis-
based estimation method [11] have inaccuracies
ranging from −43.4% (DES encryption) to 18.4%
(RSA encryption).

16.302

13.763

Fig. 10. Execution Time using MOVE and Synthesis-based Estima-
tion

Te =

Ttotal − (Tpci + (
⌈

Din

Dpci

⌉
× δwr) + (

⌈
Dout

Dpci

⌉
× δrd))

(2)
Figure 10 shows the execution time in seconds for

fifty 128× 128 pixel image cryptographic and hash
operation using MOVE and the synthesis-based esti-
mation method [11]. In a networked multimedia ap-
plication using the RSA encryption with a QoS for
50 image frames per 15 seconds, the design results
based on the synthesis-based estimation method
shows that the RSA encryption for 50 images needs
16.302 seconds, that is, the QoS cannot be achieved;
however, in reality it can as measured in MOVE
(the RSA encryption for 50 images needs 13.763
seconds). The time inaccuracy could cause a very
serious problem, especially when hard real-time
constraints are violated. Compared to the inaccurate
lower-bound and synthesis-based estimation meth-
ods, MOVE provides the exact measured timing
results. Our experiments also demonstrate that the
use of MOVE for PSV is very helpful to designers
for verifying and estimating system correctness and
performance at the system level.

VII. CONCLUSIONS

Compared to the non-exhaustive and time-
consuming simulation-based verification and es-
timation used in the related UML-based DPRS
methodologies, based on the MDA-based UML de-
sign flow, both the function-oriented PIV and the
physical-aware PSV are supported in MOVE. The
user-specific functional UML models of a DPRS are



TABLE II
TIME COMPARISON FOR EACH HARDWARE FUNCTION

Region Hardware Type Total Latency (ms) Execution Time (ms)
Function Lower-bound MOVE Synthesis-based MOVE
CRC32 Hash 652.1 624.5 98.3 106.7

PRR1 CRC64 Hash 416.2 424.3 49.1 53.7
CRC128 Hash 397.3 275.1 24.6 26.7

RSA Encrypt 1,215.7 1,691.8 326.0 275.3
Decrypt 1,215.7 1,645.9 326.0 294.9

DES Encrypt 924.1 816.1 56.5 99.9
Decrypt 924.1 811.4 56.5 91.8

PRR2 3DES Encrypt 1,274.7 1,377.8 56.8 99.9
Decrypt 1,274.7 1,372.6 56.5 99.1

AES Encrypt 826.6 863.2 25.0 31.5
Decrypt 826.6 857.8 25.0 34.4

exhaustively verified using model checking, and are
then integrated into the interactive UML models of
UCoP for the accurate verification and estimation
at a high abstraction level. Our experiments also
demonstrate that the space-explosion problem does
not occur in PIV and the accurate verification and
estimation can be achieved in PSV compared to
the existing synthesis-based and lower-bound esti-
mation methods. Thus, MOVE can provide a very
complete and efficient verification mechanism for
users to validate their DPRS, which significantly
reduces the DPRS development efforts.
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