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Abstract―Floating-point matrix multiplications are 

widely used in many complex scientific computations. To 
accelerate such enormous computing, a large number of 
researches are investigating a more efficient floating-point 
matrix multiplier. Matrix multiplication consists of many 
multiplications and accumulations. Both of them sum up 
two vectors to one in the final stage. By using a CLA could 
achieve the final addition. The CLA is faster than a 
traditional CPA in computation time. However, it still 
consumes much time and many hardware costs. This work 
proposes an efficient design of a floating-point matrix 
multiplier. In the process of accumulating products, we 
reserve the two vectors generated from multiplication 
arithmetic and take advantage of CSAs to accumulate 
products. Finally, the carry and sum vectors generated 
from CSAs will be summed through a CLA. Thus one 
result of matrix multiplication is obtained. On the other 
hand, this design of floating-point matrix multiplier also 
includes the scalable concept. The multiplier and adder 
are divided into two modules. According to the demands 
on delay and cost, a developer can make a decision and 
accomplish an optimized design of a floating-point matrix 
multiplier. 

Index Terms―Matrix multiplication; floating-point 
number; floating-point arithmetic; merged arithmetic; 
partial product matrix reduction. 

I. INTRODUCTION 

Since many scientific applications involve 
performing complex floating-point computations, a 
large number of researches on improving the 
performance of floating-point operations have been 
proposed [2], [7], [15]. The amount of 
representable bits of a floating-point number is 
finite. Fast rounding operation is necessary to deal 
with redundant bits generated in floating-point 
operations [12], [13], [14]. Furthermore, the matrix 
multiplication is widely used within these scientific 

computations. The basis of matrix multiplication, 
inner product, consists of multiplication and 
accumulation. Thus the execution time of 
multiplication and addition is concerned. 

In 1969, Strassen proposed an algorithm 
computing the inner product of two square matrices 
of order n, and the time complexity is 
approximately O(n2.8), in contrast that the 
traditional one takes O(n3) [16]. Nowadays, there 
are more and more components can be made on a 
smaller chip. People intend to resolve the matrix 
multiplication in multiple processors. In [9], Huang 
and Duh proposed architecture with n2 PEs 
(Processing Element) to compute the matrix 
multiplication ordered by n. The time delay for data 
transfer does not exist since it using data sharing on 
the bus. As a result, the computational complexity 
is O(n) on their proposed structure. 

Recently, there are many scientists improving the 
floating-point matrix multiplication implementation 
on FPGA devices [3], [4], [10], [11], [18], [19]. 
Some of them perform floating-point matrix 
multiplication with a linear array of processing 
elements. They partition the matrix into sub-blocks 
and compute the block matrix multiplication in 
order to exploit data reusability. Dividing 
floating-point multiplier and floating-point adder 
into multiple pipeline stages is also a common 
approach for improving the performance [6]. 

Swartzlander introduced a concept called 
“Merged Arithmetic” to resolve the inner product 
problem in an efficient way [8], [17]. It reduces the 
hardware cost and the computation time of the 
implementation which performs matrix 
multiplications. The complexity of merged two’s 
complement multiplier-adders is analyzed [5]. Also, 
it reveals that merged arithmetic is suitable for 
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portable and low-power designs such as wireless 
communications. 

In 1985, IEEE published the standard 754 [1]. It 
provides a standard for binary floating-point 
number format. The standard includes different 
lengths of format. This work designs a 
floating-point matrix multiplier for 64-bit double 
precision format. Nonetheless, the design can 
transform to other formats easily. 

The double precision is composed of three parts, 
sign part, exponent part and fraction part, as shown 
in Fig. 1. The sign bit represents the sign of the 
floating-point number. Zero represents positive, 
otherwise negative. The exponent part consists of 
11 bits. It is biased by 2t1, where t is the number 
of bits in the exponent part. Thus the bias in double 
precision is 1023. This operation leads to every 
exponent number unsigned. That’s result from 2’s 
complement representation is harder to be 
compared than unsigned numbers. There are 52 bits 
in fraction part. The floating-point format uses 
scientific representation. Since there is always a 
one preceding the binary point, it only reserves the 
fraction part of the binary number while storing. 

1 bit 11 bits 52 bits

sign exponent mantissa

 
Fig. 1. The IEEE Standard 754 double precision. 

In 2007, Bensaali proposed a design of 
floating-point matrix multiplier on FPGA [4]. The 
proposed design includes a floating-point multiplier 
and adder. It is used as a basis component of a 
floating-point matrix multiplier for 3D affine 
transformations. The Multiply Accumulate unit 
(MAC unit) in its floating-point matrix multiplier 
consists of one floating-point multiplier, one 
floating-point adder and a register for storing 
intermediate results temporarily. The MAC 
illustration is shown in Fig. 2. 

The floating-point multiplier consumes two 
floating-point numbers. It generates 1-vector 
product. Next, it sends the result to the 
floating-point adder. In the process of computing 
the product, the final addition has 2n1 wide 
dimension, where n is the length of the two input 
vectors. The floating-point adder also consumes 
two floating-point numbers. Another input comes 
from the register. Note that the register initializes to 
zero. The adder sums up the two inputs, then 
generates a sum. This addition operation is 2n1 
wide as well, since rounding operation considers 

the round bit, guard bit and sticky bits following 
the representable numbers. Afterward the sum 
would be stored into the register as an intermediate 
result. When this MAC computes one entry result 
of a matrix multiplication, it repeats multiplication 
and accumulation. This means that summing up 
two vectors into one vector occurs many times in 
such computations. Unfortunately, there still does 
not have any good way to achieve a 
very-high-speed two-input adder. 



+

FA FB

Load C

Store C

 
Fig. 2. The MAC in the matrix multiplier 

proposed by Bensaali. 

According to [17], multiple multiplications could 
be summed quickly through “Merged Arithmetic.” 
The whole accumulations of products could be 
regarded as a computing operation. In the process 
of accumulation, the intermediate results are 
always two vectors, and so are the products. As a 
result, CSAs can achieve all the additions in the 
intermediate process except the final addition. Then 
a higher performance is achievable. 

This paper introduces an efficient floating-point 
matrix multiplier by reserving the intermediate 
result as two vectors. The two vectors are summed 
in the end. The multiplier and adder of the matrix 
multiplier are modular. With duplicate multipliers 
and adders, faster floating-point matrix multiplier 
can be achieved. The results show that this work 
presents a more efficient floating-point matrix 
multiplier than traditional solution. In the simplest 
design of a floating-point matrix multiplier, the 
delay and delaycost improve 48.2% and 34.4%, 
respectively. 

II. BACKGROUND 

Traditionally, the standard matrix multiplication 
can be defined as follows: 

 

 Ci,j = 
k=0

P1

(Ai,kBk,j) (1) 
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where A, B and C are MP, PN and MN 
matrices, respectively, and 0i<M, 0j<N. Equation 
(1) can be achieved by a straightforward algorithm 
and the pseudo code of the algorithm is shown in 
Fig. 3. 

However, parallel processing can be considered 
in matrix multiplication. If there are i×j processors, 
each of them computes one entry of C. The 
algorithm would be reduced into the inner loop k  
with the initialization in Fig. 3. 

For i =0 to M1 Do 
   For j =0 to N1Do 

Ci,j = 0 
    For k =0 to P1 Do 
     Ci,j = Ci,j+Ai,k×Bk,j 
    End of k loop 
   End of j loop 

End of i loop 
Fig. 3. A straightforward algorithm for matrix 

multiplication. 

Sometimes the number of processors is minor to 
the dimension of the matrix. Block matrix 
multiplication is used. Dividing the matrices into 
several sections and handling the sections step by 
step can be implemented easily. In this way, no 
matter how large the dimension is, fixed amount of 
processors always can finish the matrix 
multiplication. 

For floating-point operations, the three parts of 
the floating-point number need to be computed. 
Suppose X is a floating-point number, SX, eX and 
MX are its sign, exponent and mantissa respectively. 
While two floating-point numbers; a and b; are 
added, note that Sab, ea+b and Ma+b are the three 
parts of the result. The multiplication is noted as 
the same way. 

III. MAIN RESULT 

In [8] and [17], merged arithmetic has been 
proposed to speed up the inner product with lower 
gate counts and reduction stages. In [4], the 
proposed floating-point multiplier and 
floating-point adder inside the floating-point matrix 
multiplier still follow the conventional designs. 
This work propose an efficient design of 
floating-point matrix multiplier based on the 
concept of merged arithmetic. The floating-point 
multiplier and adder are both modular. The 
developer can decide the optimized design on 

demands by various combinations of multipliers 
and adders. 

A. System Structure 

Here first shows a simplest design of 
floating-point matrix multiplier for presenting our 
work. This design contains a modular floating-point 
multiplier, a modular floating-point adder, a 
register for storing intermediate results and a CLA 
for final addition. The macro block diagram is 
shown in Fig. 4. Then the feature of scalable can be 
described. 

 

register

CLA

 
Fig. 4. Macro block diagram. 

In Fig. 4, the arrows between the blocks are 
dataflow. The outer block represents a MAC which 
computes accumulation of productions. Thus a 
sequence of floating-point numbers is inputted to 
the outer block in order, pair by pair. It outputs 
result of one inner product. The multiplier block is 
in charge of generating two-vector partial products 
of floating-point multiplications. The adder block 
adds the inputted mantissa vectors up, reduces them 
into two vectors and outputs them. The register 
only provides storage space without computational 
function. The CLA sums up the two inputted 
vectors into one vector. 

Fig. 5 presents a 44 matrix multiplication 
example for explaining its working processes. The 
algorithm for computing one entry is shown in Fig. 
6. With duplicate designing blocks or repeating its 
working process, the entire matrix multiplication 
can be achieved. 
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Fig. 5. A 44 matrix multiplication. 

Ctemp = 0 //initialization 
For k = 1 to 4 Do 

  Ctemp = Ctemp + Ai,kBk,j 
End of k loop 

Fig. 6. The algorithm for computation one 
element of a 44 matrix multiplication. 
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Note that i, j and k are the row number and the 
column number of Ci,j, and the number of terms in 
each inner product, respectively. Ctemp is the 
register in Fig. 4. The multiplication and addition 
arithmetic symbols in Fig. 6 represent the 
floating-point multiplier and adder blocks in Fig. 4, 
respectively. 

Suppose C1,1 is going to be computed. The 
symbol i and j are both one. First, the data in 
register is initialized to zero. Then it starts to repeat 
the loop. The operands of first multiplication, A1,1 
and B1,1 are then loaded into the multiplier. Since 
the multiplier does not accomplish final two-vector 
addition, the two vectors are sent to the adder as 
one of the operands. In other words, each operand 
of the adder has two-vector partial mantissas. 
Another operand of the adder is from register. The 
following step is using CSAs to reducing four 
vector inputs to two vectors. Significantly, there are 
two complement bits additionally besides the four 
vectors. We discuss these complement bits later. 
After the reduction the adder outputs two vectors 
and stores back to the register with the exponent. 
The second multiplication starts while the 
multiplier can be used, and it repeats the same 
processes three times in the above. When the last 
product vectors have been added, the result of 
addition will be transferred to the CLA block. This 
block sums up two vectors and gives the final result. 
Then one result of the matrix C is calculated. No 
matter how big the size of dimension of the matrix 
is, this simplest floating-point matrix multiplier 
could complete the task. 

The exponent data flow shown in Fig. 7 is an 
important issue. First, when the addition operation 
is undergoing, the greater exponent between eAB 
and eCtemp will be the exponent of the addition 
result, noted by e' I1 . However, the addition 
operation may result in overflow. If overflow 
occurs, the exponent should increase by one; 
otherwise zero. The increment is denoted by e' I2. 
The addition result is the value of Ctemp. Clearly, the 
exponent of Ctemp consists of two exponent vectors, 
e' I1 and e' I2, and both of them will be stored into 
the register. Before the adder adds MAB and Ctemp, 
the difference between eAB and eCtemp needs to be 
calculated. Here uses eAB to minus eCtemp. The 
exponent vectors loaded from the register are eI1 
and eI2. Hence, the equation to find the difference d 
is demonstrated as (2). 

 

 d = eA + eB  eI1  eI2 (2) 

 

1Ie

2Ie



A,B

registerDifference
Computing

Exponents 
of A,B

Exponents 
of Ctemp

Addition Unit Right shift or not ?
No, 0  bias

Yes, 1  bias

 
Fig. 7. The data flow of the exponents. 

Equation (2) contains three addition operations. 
If the addition operations are solely implemented 
by CLA, the difference computation will be on the 
critical path of the whole design. When the two 
vectors of MAB are generated, d is still under 
computing. The shifting operation of the adder can 
not start immediately. To solve this bottleneck, we 
take advantage of CSA again. Reducing four 
vectors to two could be resolved by CSA easily. 
The CLA only is used in the final step. This 
solution helps the shifting operation can work at 
once when the two vectors of MAB are generated. 
Thus the delay decreases. 

Fig. 8 is the detail block diagram of the simplest 
design. On the upper left corner is the register 
which stores the intermediate result Ctemp and its 
two exponent vectors. On the upper right corner 
section circled by red lines is the proposed 
multiplier and the other area is the proposed adder. 
The final two vectors addition CLA block only 
concerns in the last stage, so that it is not drawn on. 

Partial Products Generation

Mantissas

Partial Products Reduction (CSA)

Shifter (two vectors)

Comparison Block

MAMB

Exponents

eA eB

Ctemp Register 
(two vectors & its exponent)

Intermediate 
Result

Shifter (two vectors)

if 1’s complement

differences

CSA (6 to 2)

Leading one (zero) detector

Shifter

New 
Intermediate 
Result

Exponent 
Computation

Parallel Shifter

eI1 eI2

Leading one signal

SBSA +

eI1，eI2

eA，eB

d11

Complement Bits
0

1Ie 2Ie

 
Fig. 8. Block diagram of our design. 

The multiplier only generates the partial products 
and reduces them into two vectors plus a 2’s 
complement handling operation. Since the mantissa 
of MAMB does not have sign but Ctemp has, MAB 
must transform to 2’s complement for easy 
computation. The process of 2’s complement has 
two steps. First is to transform to 1’s complement. 
Second is to add one at the least significant bit of 
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the vector. The addition operation costs lots of time, 
so we leave it to the reduction stage in the proposed 
adder. Notably, MAB has two vectors, so we 
directly add one at the second least significant bit. 
The output of SASB decides whether it is negative. 
While it is one, then the 1’s complement operation 
will be executed and the complement bit is one. To 
summarize the multiplier, it consumes MA and MB, 
and outputs a two-vector product plus a 
complement bit signal. 

The register stores the intermediate results 
including Ctemp and its two exponent vectors, eI1 
and eI2. The proposed adder is in charge of 
computing exponents and addition of two 
two-vector inputs. 

B. Comparison block 

The adder and multiplier can process in parallel. 
When the two floating-point is loaded into this 
simple design, the comparison block starts to 
calculate the difference since it only needs the 
exponents. In Fig. 9, the calculation for 
eA+eBeI1eI2 is to append each vector a sign bit, 
then to make eI1 and eI2 1’s complement. The four 
vectors will be reduced by CSA. This reduction 
uses a trick that the least significant column is 
reduced to one bit. This can be done at the second 
reduction stage by using a FA at the least 
significant column since there is no carry from 
lower column. As a result, when the four vectors 
are reduced, there is only one bit at the least 
significant column. Two ones are then filled into 
the last column to accomplish the 2’s complement 
transformations of eI1 and eI2. The least significant 
bit of the addition CLA can be implemented by a 
FA, thus three bits at the least significant column 
can be added. 

Difference = eAeBeI1eI2

…
…
…
…

…
…
…

…
…

…
… 1

12-bit CLA

Cin

1
1

Bit 11
0
0

Bit 11 Bit 11

1

Sign

Stage 1 Stage 2

FA

eA
eB
eI1
eI2

 
Fig. 9. An illustration for computing the 

difference. 

In Fig. 10, this comparison block would send 
two differences to the parallel shifter, one for Ctemp 
and another for MAB. There is always at least one 
difference is zero cause we use the sign of the 
difference, denoted by d11, to do the AND logic. 
The difference is sent directly to the shifter for 

Ctemp, and the inverted difference is sent to MAB 
shifter. On the other hands, this comparison block 
also sends the greater group, eA+eB or eI1+eI2, to the 
exponent computation block according to the sign 
bit of the difference. 

12-bit CLA

Reduce 4 to 2 vectors

Cin=1

d0~d10d11

d0~d10

(d0~d10)

AND

AND
Shift amount for MAMB

Shift amount for IR

Greater exponent
eI1，eI2eA，eB d11

 
Fig. 10. Dispatching the difference. 

C. Parallel shifters 

As the MAB arrives, the Ctemp and differences are 
all ready. The parallel shifters start immediately. 
The shifters are implemented based on multiplexers. 
Each bit of the difference controls a level of shifter. 
The bit b controls one time 2b-bit shift, where b is 
the bit number. The difference has 11 bits. Since the 
length of the inputs is not more than 107 bits, only 
bits 0 to 6 of the difference are needed to control 
the right shifts. If any one of the bits after 7 is not 
zero, the right shifts must more than 127 bits, then 
these bits are combined to pull down the data to 
zero. Each stage of right shift for each bit is 
implemented by a 2 to 1 multiplexer. The parallel 
shifters’ illustrations are shown in Fig. 11. Since the 
MAB shifter receives the inverted difference, we 
must shift one more bit to complete the 2’s 
complement. Thus the shifter for MAB has some 
different at shift stage seven. The d11 is used to 
control if shifts one more bit. 

Bit 6

…

…

Bit 5

…

…

Bit 1

…

…

…

…

…

OR

OR

Bit 10
Bit 9
Bit 8
Bit 7

NOR

…

AND

…

Bit 0

Carry 
and sum 
vectors

Multiplexer-Based Barrel Shifter 
for MAMB

difference

…

d11

 
Fig. 11. One of parallel shifters. 
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D. CSA block 

This block mainly reduces the four shifted 
vectors to two. Due to the 2’s complement 
representation transformation, the four shifted 
vectors should plus two complement bits at the 
second least significant column. Thus there are four 
bits in each column except the second least 
significant column has six. Since this proposed 
adder is designed for modularization, it also can 
connect to two proposed multipliers. Therefore the 
complement bits are two. However, in this 
modularized design, the intermediate results in 
register are already in 2’s complement 
representation. One of the complement bit is 
always zero, and another one depends on the signal 
transmitted by the forward multiplier. Nonetheless, 
no matter the number of uncertain complement bits 
is, the number of reduction stages is three. 

E. Normalization 

This process includes two blocks, one is leading 
one (zero) detector, and another one is a shifter 
which right shifts one bit or zero. The detector 
checks two vectors whether any one of them 
overflows. While the overflow occurs, both of them 
right shift one bit and the detector sends one bit 
signal to the exponent computation block. The 
signal is called NS signal. One represents there has 
no shift; otherwise the two vectors right shift. 

F. Exponent computation 

This block receives the two exponents of the 
greater exponent group from the comparison block, 
V1 and V2, which are eA and eB or eI1 and eI2.Then it 
computes V1+V21023 as new eI1 denoted by e' I1. It 
also receives the NS signal to computes the new eI2 
denoted by e' I2. Because e' I2 just has two different 
values like NS does, it is very easy to computes e' I2 
by only a simple logic layout. 

The above example in Fig. 5 is resolved by a 
simplest design. When a developer has more 
demand on less delay, there are other ways to 
implement a faster floating-point matrix multiplier. 
It is shown in Fig. 12. 


+


+

register

CLA

 
Fig. 12. The design consuming two pairs of 

multiplications. 

The design in Fig. 12 uses two multipliers, two 

adders, one register and a final addition CLA. It 
can multiply two pairs of floating-point numbers at 
one time, so that the four multiplications and 
accumulations of one element computation could 
be done in two steps. Then repeat these 
computation 16 times, the whole matrix 
multiplication is done. The third design in Fig. 13 is 
that uses four multipliers, three adders and a final 
addition CLA. Apparently it can resolve one 
element in one step. If the demand is the fastest 
speed, just duplicate this design 16 times. Each 
copy computes a specific element of the matrix. 
Thus a very high speed is gained. 


+



+ CLA


+

  
Fig. 13. The design consuming four pairs of 

multiplications. 

IV. COMPARISONS 

To estimate our design, a widely accepted 
approach is described in the following. This 
method takes any monotonic gate (e.g. AND, NOR, 
etc.) has one gate delay and cost excluding the 
XOR gate which has two gate delays and costs. 

Fig. 14 reveals the delay and cost of each block 
in our simplest design. The delay and cost of each 
block are shown by its side. Since e' I1 and e' I2 are 
computed in different processes, the delay and cost 
are described separately. The critical path of this 
design is from partial products generation block to 
overflow shifter block. Totally the sum of delay 
through this path is 74 and cost of whole diagram is 
39127. 
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Exponents
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Exponent 
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Parallel Shifter

eI1 eI2

Leading one signal

SBSA +

eI1，eI2

eA，eB

d11

Complement Bits
0

1
2809
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18488

17
1324212

2
424

1811

2
2

3
5
3
631

30
359

4
1170

1
1

23
185

1Ie 2Ie

 
Fig. 14. Delay and cost of each block diagram. 

We separate a floating-point matrix multiplier 
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into four parts, the multiplier, the adder, the register, 
and the final addition CLA. Then compare these 
units with those in [4]. Note that in [4], there is no 
final addition CLA, because both of multiplier and 
adder in Bensaali’s have a CLA. The rounding 
process is skipped in both works. Since rounding is 
after the CLA addition, skipping rounding makes 
Bensaali’s work better. On the other hands, there is 
only one CLA in the final addition in our work, so 
that rounding speed has no noticeable effect. 

Table 1 is the delay and cost of each unit of a 
matrix multiplier for our and Bensaali’s work. The 
major difference between ours and Bensaali’s is 
that the proposed design has a CLA for final 
addition while Bensaali’s has one CLA in each 
multiplier and adder so that our multiplier and 
adder have shorter delay than Bensaali’s. 

Table 1 Delay and Cost of Each Component Unit. 
 Ours Bensaali et al.
 Delay Cost Delay Cost

Multiplication Unit 39 21723 71 22488
Addition Unit 35 16234 79 8734

Register 4 1170 4 320 
CLA (Final Addition) 32 767   

The comparison is under three different designs. 
All of these designs are used to resolve one element 
of an 88 matrix multiplication. The three designs 
are drawn in Fig. 15, Fig. 16 and Fig. 17. They 
have different delay and cost. The first one is the 
simplest design as the above example. The second 
has 8 multipliers and 7 adders plus a final addition 
CLA. It makes an effort to accomplish the 
computation as fast as possible. The last one 
attempts to find the balance between delay and cost 
with 4 multipliers, 4 adders, 1 register and a final 
addition CLA. The comparing result is showed in 
Table 2. 

 
Fig. 15. The first comparison. 

Table 2 Comparison with Bensaali’s under the 

Three Structures. 
 Ours Bensaali et al. 
 Delay Cost DelayCost Delay Cost DelayCost

First 379 39,894 15,119,826 731 31,542 23,057,202

Second 236 288,189 68,012,604 308 241,042 74,240,936

Third 275 153,765 42,285,375 391 125,208 48,956,328

 
Fig. 16. The second comparison. 

 
Fig. 17. The third comparison 

Apparently, in these three designs, our costs are 
higher than Bensaali’s as shown in Table 3. The 
main reason is that we always reserve two vectors 
in the intermediate processes. Since shift operation 
could not be avoided, shifting two vectors spends 
more cost. Nonetheless, each delay (delay  cost) 
in three designs are decreased. For both of ours and 
Bensaali’s, the first design uses less cost and 
highest delay. The fastest speed could be achieved 
by second design with mass cost. 

In the following, Table 3 is the improvement of 
our work comparing with Bensaali’s. 

Table 3 Improvement Compared with Bensaali’s. 
 Improvement (%) 
 Delay Cost DelayCost

First 48.2 26.5 34.4 
Second 23.4 19.6 8.4 
Third 29.7 22.8 13.6 

The result shows that with cost increasing 19%~ 
26%, the computation time could improve 
23%~48%. In the first design, our work gains the 
most desirable improvement. Although the cost 
increases, we still achieve higher performance and 
better delay  cost. 

V. CONCLUSION 

Floating-point matrix multiplication is widely 
used in several scientific computations. In general, 
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a parallel processing architecture is often adopted 
for speeding up the matrix multiplication. Many 
efforts are done to achieve high performance or 
implement on FPGAs. This work proposes a design 
of floating-point matrix multiplier. The delay of the 
multiply unit and addition unit in this work are 39 
and 35, respectively. In contrast, those in Bensaali’s 
are 71 and 79. Thus the delay improvement in the 
multiply unit and addition unit are 45.1% and 
55.7%. In the simplest design of a floating-point 
matrix multiplier, the delay and delaycost improve 
48.2% and 34.4%, respectively. As a result, 
eliminating the usage of CLA in the critical path 
except the final addition makes a floating-point 
matrix multiplier perform better. The multiplier and 
adder of the floating-point matrix multiplier are 
modular so that the matrix multiplier is scalable by 
arranging them with duplicate modules. Complex 
combinations lead to cost increasing but less delay. 
Depending on the demands of delay and cost, users 
can decide an optimized design of a floating-point 
matrix multiplier by evaluating carefully. The speed 
improved by using CSA to sum up the intermediate 
result. However, the cost lightly increases. The 
future work is to reduce the cost to achieve a more 
efficient design of a floating-point matrix 
multiplier. 
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