
 1

Optimized Design of a Floating-Point Matrix

Multiplier

Lan-Chau Yang
Department of Computer Science and Information Engineering

National Chi Nan University
Puli, Nantou Hsien, 54561 Taiwan
Email: s96321528@ncnu.edu.tw

Dyi-Rong Duh
Department of Computer Science and Information Engineering

National Chi Nan University
Puli, Nantou Hsien, 54561 Taiwan

Email: drduh@ncnu.edu.tw

Abstract―Floating-point matrix multiplications are

widely used in many complex scientific computations. To
accelerate such enormous computing, a large number of
researches are investigating a more efficient floating-point
matrix multiplier. Matrix multiplication consists of many
multiplications and accumulations. Both of them sum up
two vectors to one in the final stage. By using a CLA could
achieve the final addition. The CLA is faster than a
traditional CPA in computation time. However, it still
consumes much time and many hardware costs. This work
proposes an efficient design of a floating-point matrix
multiplier. In the process of accumulating products, we
reserve the two vectors generated from multiplication
arithmetic and take advantage of CSAs to accumulate
products. Finally, the carry and sum vectors generated
from CSAs will be summed through a CLA. Thus one
result of matrix multiplication is obtained. On the other
hand, this design of floating-point matrix multiplier also
includes the scalable concept. The multiplier and adder
are divided into two modules. According to the demands
on delay and cost, a developer can make a decision and
accomplish an optimized design of a floating-point matrix
multiplier.

Index Terms―Matrix multiplication; floating-point
number; floating-point arithmetic; merged arithmetic;
partial product matrix reduction.

I. INTRODUCTION

Since many scientific applications involve
performing complex floating-point computations, a
large number of researches on improving the
performance of floating-point operations have been
proposed [2], [7], [15]. The amount of
representable bits of a floating-point number is
finite. Fast rounding operation is necessary to deal
with redundant bits generated in floating-point
operations [12], [13], [14]. Furthermore, the matrix
multiplication is widely used within these scientific

computations. The basis of matrix multiplication,
inner product, consists of multiplication and
accumulation. Thus the execution time of
multiplication and addition is concerned.

In 1969, Strassen proposed an algorithm
computing the inner product of two square matrices
of order n, and the time complexity is
approximately O(n2.8), in contrast that the
traditional one takes O(n3) [16]. Nowadays, there
are more and more components can be made on a
smaller chip. People intend to resolve the matrix
multiplication in multiple processors. In [9], Huang
and Duh proposed architecture with n2 PEs
(Processing Element) to compute the matrix
multiplication ordered by n. The time delay for data
transfer does not exist since it using data sharing on
the bus. As a result, the computational complexity
is O(n) on their proposed structure.

Recently, there are many scientists improving the
floating-point matrix multiplication implementation
on FPGA devices [3], [4], [10], [11], [18], [19].
Some of them perform floating-point matrix
multiplication with a linear array of processing
elements. They partition the matrix into sub-blocks
and compute the block matrix multiplication in
order to exploit data reusability. Dividing
floating-point multiplier and floating-point adder
into multiple pipeline stages is also a common
approach for improving the performance [6].

Swartzlander introduced a concept called
“Merged Arithmetic” to resolve the inner product
problem in an efficient way [8], [17]. It reduces the
hardware cost and the computation time of the
implementation which performs matrix
multiplications. The complexity of merged two’s
complement multiplier-adders is analyzed [5]. Also,
it reveals that merged arithmetic is suitable for

 2

portable and low-power designs such as wireless
communications.

In 1985, IEEE published the standard 754 [1]. It
provides a standard for binary floating-point
number format. The standard includes different
lengths of format. This work designs a
floating-point matrix multiplier for 64-bit double
precision format. Nonetheless, the design can
transform to other formats easily.

The double precision is composed of three parts,
sign part, exponent part and fraction part, as shown
in Fig. 1. The sign bit represents the sign of the
floating-point number. Zero represents positive,
otherwise negative. The exponent part consists of
11 bits. It is biased by 2t1, where t is the number
of bits in the exponent part. Thus the bias in double
precision is 1023. This operation leads to every
exponent number unsigned. That’s result from 2’s
complement representation is harder to be
compared than unsigned numbers. There are 52 bits
in fraction part. The floating-point format uses
scientific representation. Since there is always a
one preceding the binary point, it only reserves the
fraction part of the binary number while storing.

1 bit 11 bits 52 bits

sign exponent mantissa

Fig. 1. The IEEE Standard 754 double precision.

In 2007, Bensaali proposed a design of
floating-point matrix multiplier on FPGA [4]. The
proposed design includes a floating-point multiplier
and adder. It is used as a basis component of a
floating-point matrix multiplier for 3D affine
transformations. The Multiply Accumulate unit
(MAC unit) in its floating-point matrix multiplier
consists of one floating-point multiplier, one
floating-point adder and a register for storing
intermediate results temporarily. The MAC
illustration is shown in Fig. 2.

The floating-point multiplier consumes two
floating-point numbers. It generates 1-vector
product. Next, it sends the result to the
floating-point adder. In the process of computing
the product, the final addition has 2n1 wide
dimension, where n is the length of the two input
vectors. The floating-point adder also consumes
two floating-point numbers. Another input comes
from the register. Note that the register initializes to
zero. The adder sums up the two inputs, then
generates a sum. This addition operation is 2n1
wide as well, since rounding operation considers

the round bit, guard bit and sticky bits following
the representable numbers. Afterward the sum
would be stored into the register as an intermediate
result. When this MAC computes one entry result
of a matrix multiplication, it repeats multiplication
and accumulation. This means that summing up
two vectors into one vector occurs many times in
such computations. Unfortunately, there still does
not have any good way to achieve a
very-high-speed two-input adder.



+

FA FB

Load C

Store C

Fig. 2. The MAC in the matrix multiplier

proposed by Bensaali.

According to [17], multiple multiplications could
be summed quickly through “Merged Arithmetic.”
The whole accumulations of products could be
regarded as a computing operation. In the process
of accumulation, the intermediate results are
always two vectors, and so are the products. As a
result, CSAs can achieve all the additions in the
intermediate process except the final addition. Then
a higher performance is achievable.

This paper introduces an efficient floating-point
matrix multiplier by reserving the intermediate
result as two vectors. The two vectors are summed
in the end. The multiplier and adder of the matrix
multiplier are modular. With duplicate multipliers
and adders, faster floating-point matrix multiplier
can be achieved. The results show that this work
presents a more efficient floating-point matrix
multiplier than traditional solution. In the simplest
design of a floating-point matrix multiplier, the
delay and delaycost improve 48.2% and 34.4%,
respectively.

II. BACKGROUND

Traditionally, the standard matrix multiplication
can be defined as follows:

 Ci,j = 
k=0

P1

(Ai,kBk,j) (1)

 3

where A, B and C are MP, PN and MN
matrices, respectively, and 0i<M, 0j<N. Equation
(1) can be achieved by a straightforward algorithm
and the pseudo code of the algorithm is shown in
Fig. 3.

However, parallel processing can be considered
in matrix multiplication. If there are i×j processors,
each of them computes one entry of C. The
algorithm would be reduced into the inner loop k
with the initialization in Fig. 3.

For i =0 to M1 Do
 For j =0 to N1Do

Ci,j = 0
 For k =0 to P1 Do
 Ci,j = Ci,j+Ai,k×Bk,j
 End of k loop
 End of j loop

End of i loop
Fig. 3. A straightforward algorithm for matrix

multiplication.

Sometimes the number of processors is minor to
the dimension of the matrix. Block matrix
multiplication is used. Dividing the matrices into
several sections and handling the sections step by
step can be implemented easily. In this way, no
matter how large the dimension is, fixed amount of
processors always can finish the matrix
multiplication.

For floating-point operations, the three parts of
the floating-point number need to be computed.
Suppose X is a floating-point number, SX, eX and
MX are its sign, exponent and mantissa respectively.
While two floating-point numbers; a and b; are
added, note that Sab, ea+b and Ma+b are the three
parts of the result. The multiplication is noted as
the same way.

III. MAIN RESULT

In [8] and [17], merged arithmetic has been
proposed to speed up the inner product with lower
gate counts and reduction stages. In [4], the
proposed floating-point multiplier and
floating-point adder inside the floating-point matrix
multiplier still follow the conventional designs.
This work propose an efficient design of
floating-point matrix multiplier based on the
concept of merged arithmetic. The floating-point
multiplier and adder are both modular. The
developer can decide the optimized design on

demands by various combinations of multipliers
and adders.

A. System Structure

Here first shows a simplest design of
floating-point matrix multiplier for presenting our
work. This design contains a modular floating-point
multiplier, a modular floating-point adder, a
register for storing intermediate results and a CLA
for final addition. The macro block diagram is
shown in Fig. 4. Then the feature of scalable can be
described.

 

register

CLA

Fig. 4. Macro block diagram.

In Fig. 4, the arrows between the blocks are
dataflow. The outer block represents a MAC which
computes accumulation of productions. Thus a
sequence of floating-point numbers is inputted to
the outer block in order, pair by pair. It outputs
result of one inner product. The multiplier block is
in charge of generating two-vector partial products
of floating-point multiplications. The adder block
adds the inputted mantissa vectors up, reduces them
into two vectors and outputs them. The register
only provides storage space without computational
function. The CLA sums up the two inputted
vectors into one vector.

Fig. 5 presents a 44 matrix multiplication
example for explaining its working processes. The
algorithm for computing one entry is shown in Fig.
6. With duplicate designing blocks or repeating its
working process, the entire matrix multiplication
can be achieved.



























































44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

CCCC

CCCC

CCCC

CCCC

BBBB

BBBB

BBBB

BBBB

AAAA

AAAA

AAAA

AAAA

Fig. 5. A 44 matrix multiplication.

Ctemp = 0 //initialization
For k = 1 to 4 Do

 Ctemp = Ctemp + Ai,kBk,j
End of k loop

Fig. 6. The algorithm for computation one
element of a 44 matrix multiplication.

 4

Note that i, j and k are the row number and the
column number of Ci,j, and the number of terms in
each inner product, respectively. Ctemp is the
register in Fig. 4. The multiplication and addition
arithmetic symbols in Fig. 6 represent the
floating-point multiplier and adder blocks in Fig. 4,
respectively.

Suppose C1,1 is going to be computed. The
symbol i and j are both one. First, the data in
register is initialized to zero. Then it starts to repeat
the loop. The operands of first multiplication, A1,1
and B1,1 are then loaded into the multiplier. Since
the multiplier does not accomplish final two-vector
addition, the two vectors are sent to the adder as
one of the operands. In other words, each operand
of the adder has two-vector partial mantissas.
Another operand of the adder is from register. The
following step is using CSAs to reducing four
vector inputs to two vectors. Significantly, there are
two complement bits additionally besides the four
vectors. We discuss these complement bits later.
After the reduction the adder outputs two vectors
and stores back to the register with the exponent.
The second multiplication starts while the
multiplier can be used, and it repeats the same
processes three times in the above. When the last
product vectors have been added, the result of
addition will be transferred to the CLA block. This
block sums up two vectors and gives the final result.
Then one result of the matrix C is calculated. No
matter how big the size of dimension of the matrix
is, this simplest floating-point matrix multiplier
could complete the task.

The exponent data flow shown in Fig. 7 is an
important issue. First, when the addition operation
is undergoing, the greater exponent between eAB
and eCtemp will be the exponent of the addition
result, noted by e' I1 . However, the addition
operation may result in overflow. If overflow
occurs, the exponent should increase by one;
otherwise zero. The increment is denoted by e' I2.
The addition result is the value of Ctemp. Clearly, the
exponent of Ctemp consists of two exponent vectors,
e' I1 and e' I2, and both of them will be stored into
the register. Before the adder adds MAB and Ctemp,
the difference between eAB and eCtemp needs to be
calculated. Here uses eAB to minus eCtemp. The
exponent vectors loaded from the register are eI1
and eI2. Hence, the equation to find the difference d
is demonstrated as (2).

 d = eA + eB  eI1  eI2 (2)

1Ie

2Ie



A,B

registerDifference
Computing

Exponents
of A,B

Exponents
of Ctemp

Addition Unit Right shift or not ?
No, 0  bias

Yes, 1  bias

Fig. 7. The data flow of the exponents.

Equation (2) contains three addition operations.
If the addition operations are solely implemented
by CLA, the difference computation will be on the
critical path of the whole design. When the two
vectors of MAB are generated, d is still under
computing. The shifting operation of the adder can
not start immediately. To solve this bottleneck, we
take advantage of CSA again. Reducing four
vectors to two could be resolved by CSA easily.
The CLA only is used in the final step. This
solution helps the shifting operation can work at
once when the two vectors of MAB are generated.
Thus the delay decreases.

Fig. 8 is the detail block diagram of the simplest
design. On the upper left corner is the register
which stores the intermediate result Ctemp and its
two exponent vectors. On the upper right corner
section circled by red lines is the proposed
multiplier and the other area is the proposed adder.
The final two vectors addition CLA block only
concerns in the last stage, so that it is not drawn on.

Partial Products Generation

Mantissas

Partial Products Reduction (CSA)

Shifter (two vectors)

Comparison Block

MAMB

Exponents

eA eB

Ctemp Register
(two vectors & its exponent)

Intermediate
Result

Shifter (two vectors)

if 1’s complement

differences

CSA (6 to 2)

Leading one (zero) detector

Shifter

New
Intermediate
Result

Exponent
Computation

Parallel Shifter

eI1 eI2

Leading one signal

SBSA +

eI1，eI2

eA，eB

d11

Complement Bits
0

1Ie 2Ie

Fig. 8. Block diagram of our design.

The multiplier only generates the partial products
and reduces them into two vectors plus a 2’s
complement handling operation. Since the mantissa
of MAMB does not have sign but Ctemp has, MAB
must transform to 2’s complement for easy
computation. The process of 2’s complement has
two steps. First is to transform to 1’s complement.
Second is to add one at the least significant bit of

 5

the vector. The addition operation costs lots of time,
so we leave it to the reduction stage in the proposed
adder. Notably, MAB has two vectors, so we
directly add one at the second least significant bit.
The output of SASB decides whether it is negative.
While it is one, then the 1’s complement operation
will be executed and the complement bit is one. To
summarize the multiplier, it consumes MA and MB,
and outputs a two-vector product plus a
complement bit signal.

The register stores the intermediate results
including Ctemp and its two exponent vectors, eI1
and eI2. The proposed adder is in charge of
computing exponents and addition of two
two-vector inputs.

B. Comparison block

The adder and multiplier can process in parallel.
When the two floating-point is loaded into this
simple design, the comparison block starts to
calculate the difference since it only needs the
exponents. In Fig. 9, the calculation for
eA+eBeI1eI2 is to append each vector a sign bit,
then to make eI1 and eI2 1’s complement. The four
vectors will be reduced by CSA. This reduction
uses a trick that the least significant column is
reduced to one bit. This can be done at the second
reduction stage by using a FA at the least
significant column since there is no carry from
lower column. As a result, when the four vectors
are reduced, there is only one bit at the least
significant column. Two ones are then filled into
the last column to accomplish the 2’s complement
transformations of eI1 and eI2. The least significant
bit of the addition CLA can be implemented by a
FA, thus three bits at the least significant column
can be added.

Difference = eAeBeI1eI2

…
…
…
…

…
…
…

…
…

…
… 1

12-bit CLA

Cin

1
1

Bit 11
0
0

Bit 11 Bit 11

1

Sign

Stage 1 Stage 2

FA

eA
eB
eI1
eI2

Fig. 9. An illustration for computing the

difference.

In Fig. 10, this comparison block would send
two differences to the parallel shifter, one for Ctemp
and another for MAB. There is always at least one
difference is zero cause we use the sign of the
difference, denoted by d11, to do the AND logic.
The difference is sent directly to the shifter for

Ctemp, and the inverted difference is sent to MAB
shifter. On the other hands, this comparison block
also sends the greater group, eA+eB or eI1+eI2, to the
exponent computation block according to the sign
bit of the difference.

12-bit CLA

Reduce 4 to 2 vectors

Cin=1

d0~d10d11

d0~d10

(d0~d10)

AND

AND
Shift amount for MAMB

Shift amount for IR

Greater exponent
eI1，eI2eA，eB d11

Fig. 10. Dispatching the difference.

C. Parallel shifters

As the MAB arrives, the Ctemp and differences are
all ready. The parallel shifters start immediately.
The shifters are implemented based on multiplexers.
Each bit of the difference controls a level of shifter.
The bit b controls one time 2b-bit shift, where b is
the bit number. The difference has 11 bits. Since the
length of the inputs is not more than 107 bits, only
bits 0 to 6 of the difference are needed to control
the right shifts. If any one of the bits after 7 is not
zero, the right shifts must more than 127 bits, then
these bits are combined to pull down the data to
zero. Each stage of right shift for each bit is
implemented by a 2 to 1 multiplexer. The parallel
shifters’ illustrations are shown in Fig. 11. Since the
MAB shifter receives the inverted difference, we
must shift one more bit to complete the 2’s
complement. Thus the shifter for MAB has some
different at shift stage seven. The d11 is used to
control if shifts one more bit.

Bit 6

…

…

Bit 5

…

…

Bit 1

…

…

…

…

…

OR

OR

Bit 10
Bit 9
Bit 8
Bit 7

NOR

…

AND

…

Bit 0

Carry
and sum
vectors

Multiplexer-Based Barrel Shifter
for MAMB

difference

…

d11

Fig. 11. One of parallel shifters.

 6

D. CSA block

This block mainly reduces the four shifted
vectors to two. Due to the 2’s complement
representation transformation, the four shifted
vectors should plus two complement bits at the
second least significant column. Thus there are four
bits in each column except the second least
significant column has six. Since this proposed
adder is designed for modularization, it also can
connect to two proposed multipliers. Therefore the
complement bits are two. However, in this
modularized design, the intermediate results in
register are already in 2’s complement
representation. One of the complement bit is
always zero, and another one depends on the signal
transmitted by the forward multiplier. Nonetheless,
no matter the number of uncertain complement bits
is, the number of reduction stages is three.

E. Normalization

This process includes two blocks, one is leading
one (zero) detector, and another one is a shifter
which right shifts one bit or zero. The detector
checks two vectors whether any one of them
overflows. While the overflow occurs, both of them
right shift one bit and the detector sends one bit
signal to the exponent computation block. The
signal is called NS signal. One represents there has
no shift; otherwise the two vectors right shift.

F. Exponent computation

This block receives the two exponents of the
greater exponent group from the comparison block,
V1 and V2, which are eA and eB or eI1 and eI2.Then it
computes V1+V21023 as new eI1 denoted by e' I1. It
also receives the NS signal to computes the new eI2
denoted by e' I2. Because e' I2 just has two different
values like NS does, it is very easy to computes e' I2
by only a simple logic layout.

The above example in Fig. 5 is resolved by a
simplest design. When a developer has more
demand on less delay, there are other ways to
implement a faster floating-point matrix multiplier.
It is shown in Fig. 12.


+


+

register

CLA

Fig. 12. The design consuming two pairs of

multiplications.

The design in Fig. 12 uses two multipliers, two

adders, one register and a final addition CLA. It
can multiply two pairs of floating-point numbers at
one time, so that the four multiplications and
accumulations of one element computation could
be done in two steps. Then repeat these
computation 16 times, the whole matrix
multiplication is done. The third design in Fig. 13 is
that uses four multipliers, three adders and a final
addition CLA. Apparently it can resolve one
element in one step. If the demand is the fastest
speed, just duplicate this design 16 times. Each
copy computes a specific element of the matrix.
Thus a very high speed is gained.


+



+ CLA


+


Fig. 13. The design consuming four pairs of

multiplications.

IV. COMPARISONS

To estimate our design, a widely accepted
approach is described in the following. This
method takes any monotonic gate (e.g. AND, NOR,
etc.) has one gate delay and cost excluding the
XOR gate which has two gate delays and costs.

Fig. 14 reveals the delay and cost of each block
in our simplest design. The delay and cost of each
block are shown by its side. Since e' I1 and e' I2 are
computed in different processes, the delay and cost
are described separately. The critical path of this
design is from partial products generation block to
overflow shifter block. Totally the sum of delay
through this path is 74 and cost of whole diagram is
39127.

Partial Products Generation

Mantissas

Partial Products Reduction (CSA)

Shifter (two vectors)

Comparison Block

MAMB

Exponents

eA eB

Ctemp Register
(two vectors & its exponent)

Intermediate
Result

Shifter (two vectors)

if 1’s complement

differences

CSA (6 to 2)

Leading one (zero) detector

Shifter

New
Intermediate
Result

Exponent
Computation

Parallel Shifter

eI1 eI2

Leading one signal

SBSA +

eI1，eI2

eA，eB

d11

Complement Bits
0

1
2809

36
18488

17
1324212

2
424

1811

2
2

3
5
3
631

30
359

4
1170

1
1

23
185

1Ie 2Ie

Fig. 14. Delay and cost of each block diagram.

We separate a floating-point matrix multiplier

 7

into four parts, the multiplier, the adder, the register,
and the final addition CLA. Then compare these
units with those in [4]. Note that in [4], there is no
final addition CLA, because both of multiplier and
adder in Bensaali’s have a CLA. The rounding
process is skipped in both works. Since rounding is
after the CLA addition, skipping rounding makes
Bensaali’s work better. On the other hands, there is
only one CLA in the final addition in our work, so
that rounding speed has no noticeable effect.

Table 1 is the delay and cost of each unit of a
matrix multiplier for our and Bensaali’s work. The
major difference between ours and Bensaali’s is
that the proposed design has a CLA for final
addition while Bensaali’s has one CLA in each
multiplier and adder so that our multiplier and
adder have shorter delay than Bensaali’s.

Table 1 Delay and Cost of Each Component Unit.
 Ours Bensaali et al.
 Delay Cost Delay Cost

Multiplication Unit 39 21723 71 22488
Addition Unit 35 16234 79 8734

Register 4 1170 4 320
CLA (Final Addition) 32 767  

The comparison is under three different designs.
All of these designs are used to resolve one element
of an 88 matrix multiplication. The three designs
are drawn in Fig. 15, Fig. 16 and Fig. 17. They
have different delay and cost. The first one is the
simplest design as the above example. The second
has 8 multipliers and 7 adders plus a final addition
CLA. It makes an effort to accomplish the
computation as fast as possible. The last one
attempts to find the balance between delay and cost
with 4 multipliers, 4 adders, 1 register and a final
addition CLA. The comparing result is showed in
Table 2.

Fig. 15. The first comparison.

Table 2 Comparison with Bensaali’s under the

Three Structures.
 Ours Bensaali et al.
 Delay Cost DelayCost Delay Cost DelayCost

First 379 39,894 15,119,826 731 31,542 23,057,202

Second 236 288,189 68,012,604 308 241,042 74,240,936

Third 275 153,765 42,285,375 391 125,208 48,956,328

Fig. 16. The second comparison.

Fig. 17. The third comparison

Apparently, in these three designs, our costs are
higher than Bensaali’s as shown in Table 3. The
main reason is that we always reserve two vectors
in the intermediate processes. Since shift operation
could not be avoided, shifting two vectors spends
more cost. Nonetheless, each delay (delay  cost)
in three designs are decreased. For both of ours and
Bensaali’s, the first design uses less cost and
highest delay. The fastest speed could be achieved
by second design with mass cost.

In the following, Table 3 is the improvement of
our work comparing with Bensaali’s.

Table 3 Improvement Compared with Bensaali’s.
 Improvement (%)
 Delay Cost DelayCost

First 48.2 26.5 34.4
Second 23.4 19.6 8.4
Third 29.7 22.8 13.6

The result shows that with cost increasing 19%~
26%, the computation time could improve
23%~48%. In the first design, our work gains the
most desirable improvement. Although the cost
increases, we still achieve higher performance and
better delay  cost.

V. CONCLUSION

Floating-point matrix multiplication is widely
used in several scientific computations. In general,

 8

a parallel processing architecture is often adopted
for speeding up the matrix multiplication. Many
efforts are done to achieve high performance or
implement on FPGAs. This work proposes a design
of floating-point matrix multiplier. The delay of the
multiply unit and addition unit in this work are 39
and 35, respectively. In contrast, those in Bensaali’s
are 71 and 79. Thus the delay improvement in the
multiply unit and addition unit are 45.1% and
55.7%. In the simplest design of a floating-point
matrix multiplier, the delay and delaycost improve
48.2% and 34.4%, respectively. As a result,
eliminating the usage of CLA in the critical path
except the final addition makes a floating-point
matrix multiplier perform better. The multiplier and
adder of the floating-point matrix multiplier are
modular so that the matrix multiplier is scalable by
arranging them with duplicate modules. Complex
combinations lead to cost increasing but less delay.
Depending on the demands of delay and cost, users
can decide an optimized design of a floating-point
matrix multiplier by evaluating carefully. The speed
improved by using CSA to sum up the intermediate
result. However, the cost lightly increases. The
future work is to reduce the cost to achieve a more
efficient design of a floating-point matrix
multiplier.

ACKNOWLEDGMENT

The authors would like to thank the National
Science Council of the Republic of China, Taiwan
for financially supporting this research under
Contract No. NSC-97-2221-E-260-001-.

REFERENCE

[1] ANSI/IEEE Standard 754-1985: IEEE
Standard for Binary Floating-Point Arithmetic.
Piscataway, NJ: IEEE Press, 1985.

[2] A. Beaumont-Smith, N. Burgess, S. Lefrere,
and C. Lim, “Reduced latency IEEE
floating-point standard adder architectures,”
Proc. 14th IEEE Symp. Computer Arithmetic,
pp. 35-43, 1999.

[3] F. Bensaali, A. Amira, and A. Bouridane,
“Accelerating matrix product on
reconfigurable hardware for image processing
applications,” IEE Proceedings of Circuits,
Devices and Systems, vol. 152, no. 3, pp.
236-246, 2005.

[4] F. Bensaali, A. Amira, and R. Sotudeh,
“Floating-point matrix product on FPGA,”
ACS/IEEE International Conference on
Computer Systems and Applications

(AICCSA'7), pp. 466-473, 2007.

[5] G. Choe and E.E. Swartzlander, Jr., “Merged
Arithmetic for computing wavelet
transforms,” in Proceedings of the 8th Great
Lakes Symposium on VLSI, pp. 196-201,
1998.

[6] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and
G.N. Gaydadjiev, “64-bit floating-point FPGA
matrix multiplication,” Proc.2005
ACM/SIGDA 13th Int. Symp. on FPGA, pp.
86–95, 2005.

[7] H.A.H. Fahmy, A.A. Liddicoat and M. J.
Flynn, “Improving the effectiveness of
floating point arithmetic,” 35th Asiloma
Conference on Signals, Systems and
Computers, Vol 1, pp 875-879, November
2001.

[8] K.A. Feiste and E.E. Swatzlander, Jr.,
“Merged arithmetic revisited,” in Proceedings
of the IEEE Workshop on Signal Processing
Systems, 1997, pp. 212-221.

[9] H.P. Huang and D.R. Duh, “Fast computation
algorithm for robot dynamics and its
implementation,” in Proceedings of the IEEE
International Symposium on Industrial
Electronics, 1992, pp. 352-356.

[10] J.W. Jang, S.B. Choi, and V.K. Prasanna,
“Energy- and time-efficient matrix
multiplication on FPGAs,” IEEE Transaction
on Very Large Scale Integration Systems, vol.
13, no. 11, pp. 1305-1319, November 2005.

[11] G. Kuzmanov and W.M. van Oijen,
“Floating-point matrix multiplication in a
polymorphic processor,” International
Conference on Field-Programmable
Technology (ICFPT), pp. 249-252, December
2007.

[12] W.C. Park, T.D. Han, and S.D. Kim, “Efficient
simultaneous rouding method removing
sticky-bit from critical path for floating point
addition,” The Second IEEE Asia Pacific
Conference on ASICs, pp. 223-226, August
2000.

[13] W.C. Park, S.W. Lee, O.Y. Kwon, T.D. Han,
and S.D. Kim, "Floating-point
adder/subtractor performing IEEE rounding
and addition/subtraction in parallel," IEICE
Trans. Information and Systems, vol. 4, pp.
297-305, 1996

[14] N.T. Quach, N. Takagi, and M.J. Flynn,
“Systematic IEEE rounding method for
high-speed floating-point multipliers,” IEEE

 9

Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 5, May 2004.

[15] P.M. Seidel and G. Even, “Delay-optimized
implementation of IEEE floating-point
addition,” IEEE Transaction On Computers,
vol. 53, no. 2, pp. 97-113, February 2004.

[16] V. Strassen, “Gaussian elimination is not
optimal,” Number. Math., vol.13, pp. 354-356,
1969.

[17] E.E. Swartzlander, Jr., “Merged arithmetic,”
IEEE Transaction on Computers, vol. C-29, no.
10, pp. 946-950, October 1980.

[18] L. Zhuo and V.K. Prasanna, “Scalable and
modular algorithms for floating-point matrix
multiplication on FPGAs,” in Proceedings of
the 18th International Parallel and Distributed
Processing Symposium (IPDPS’4), pp. 94-103,
2004.

[19] L. Zhuo and V.K. Prasanna, “Scalable and
modular algorithms for floating-point matrix
multiplication on reconfigurable computing
systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 18, no. 4, pp. 433–448, 2007.

