

Integration of Linux USB Device Drivers into a

Component-Based Embedded Operating System

Chung-Wei Tsai

Department of Information Management

National Chi Nan University

Email: s96213516@ncnu.edu.tw

Mei-Ling Chiang

Department of Information Management

National Chi Nan University

Email: joanna@ncnu.edu.tw

Yu-Chen Yeh

Department of Information Management

National Chi Nan University

Email: s97213527@ncnu.edu.tw

Abstract--In recent years, the booming of embedded sys-

tems provides more and more applications, and the cor-

responding device drivers must be developed in time when

numerous peripheral devices have been promoted. Some

of those devices support Universal Serial Bus (USB) which

is a serial bus standard designed for connecting devices to

a host computer and is widely used in devices.

This paper discusses how we transplant Linux USB de-

vice drivers into a component-based embedded operating

system. We take the source codes in Linux 2.6 kernel and

integrate them into the component-based embedded oper-

ating system named LyraOS after making the source

codes wrapped with wrappers. Our major tasks include (1)

transplanting drivers of USB host controller, USB Core,

USB keyboard and USB mouse into LyraOS, (2) imple-

menting the required data structures and functions of de-

vice drivers in wrappers, and (3) integrating the trans-

planted USB device drivers into LyraOS’s device driver

model.

Index Terms: Embedded Operating Systems, Device Driv-

er, Transplantation, Linux, USB

1. Introduction

 With the rapid development of information

technology in recent years, the embedded systems

become the daily applications for human beings.

Many embedded operating systems have been de-

veloped with the booming of embedded systems.

However, device drivers must be redesigned due to

the difference between varieties of embedded oper-

ating systems. For pushing the hardware products

to market quickly, how to efficiently reduce the

development time and costs becomes the signifi-

cant issue for vendors.

 LyraOS [1-4] is a component-based embedded

operating system which is created as a research

platform for operating systems and providing a set

of well-designed and clear-interface system soft-

ware components. The ideas of component-based

design and component reuse let us think over the

feasibility of reusing the existent device drivers de-

liberately. However, we need a universal and open

source library to help us continuously to make a

further study over the device drivers. Due to the

feature of open source, Linux is the biggest library

of open source and device drivers.

 Universal Serial Bus (USB) is a serial bus stan-

dard for connecting devices to a host computer.

Owing to the widely-used USB devices, our re-

search focuses on implementing USB device driv-

ers in LyraOS for supporting USB devices.

Currently, we have undertaken the transplanta-

tion of USB device drivers from Linux 2.6 kernel

into LyraOS. The major tasks of our research are

transplanting USB host controller drivers, USB

 2

Core, USB keyboard and mouse drivers into Ly-

raOS, and implementing necessary data structures

and functions for supporting these transplanted

drivers, as well as integrating the transplanted USB

device drivers into LyraOS’s device driver model.

2. Background and Related Work

 This section briefly introduces the device

driver models of LyraOS and Linux. The structure

of USB is introduced as well.

2.1 LyraOS

LyraOS [1-4] is designed to abstract the hard-

ware resources such that low-level machine de-

pendent layer is clearly divided from higher-level

system semantics. Thus, it can be easily ported to

different hardware architectures [2,4].

Figure 1 shows system architecture of LyraOS.

Each system component is completely separate,

self-contained, and highly modular. LyraFILE

component [7,8], a light-weight VFAT-based file

system, supports both RAM-based and disk-based

storages. Besides, LyraOS provides the Linux de-

vice driver emulation environment [9-11] to make

use of Linux device drivers. Under this emulation

environment, Linux device driver codes can be in-

tegrated into LyraOS without modification. Fur-

thermore, the LyraNET component [12,14], a

TCP/IP protocol stack derived from Linux TCP/IP

codes is implemented with the zero-copy mechan-

ism to reduce protocol processing overhead and

memory usage. Recently, LyraOS uses a sen-

sor-side prelinking mechanism to support dynamic

component update to efficiently update its compo-

nents on-the-fly without rebooting. Besides, a

memory protection mechanism [15] is implemented

to safely update LyraOS’s components dynamical-

ly.

Figure 1. LyraOS system architecture

LyraOS supports three classes of devices, i.e.

character devices, block devices, and network de-

vices. LyraOS adopts object-oriented design con-

cept and is implemented with C++ language. Figure

2 shows device types of LyraOS.

Figure 2. Device types of LyraOS

Figure 3 shows the base class structure for

hardware devices. Each device has Device_ID and

Instance_Number fields to identify hardware de-

vice. Native_Device filed is used to differentiate

Linux drivers from Native drivers. If the device

uses a Linux driver, then the Port_Device_Struct

 3

field will point to the Linux device data structure.

Figure 3. The base class structure for hard-

ware devices

LyraOS device driver model [9] contains four

components, including Device Manager, LyraOS

wrapper, native device drivers, Linux device driv-

ers. Device Manager is used to manage all devices.

LyraOS wrapper includes OS service wrapper and

driver specific wrapper. There are two device driv-

er types in LyraOS, including native device drivers

and Linux device drivers. Linux device drivers

were transplanted from Linux. Nevertheless, both

types of the drivers support different functions. In

order to let each OS kernel component access all

device drivers conveniently, the Device Manager

component provides a unified management inter-

face and each component of OS kernel invokes

functions of device drivers through the Device

Manager component.

Device Manager component maintains a linked

list named DEVICE_LIST which stores the infor-

mation of all controllable hardware devices in sys-

tem. When a device driver begins to initiate, it in-

vokes functions of the Device Manager and adds

information of device to the DEVICE_LIST. The

Device Manager also includes functions for regis-

tering I/O port for device drivers, I/O management,

and IRQ Management. Table 1 shows functions of

the Device Manager component.

Functions of Device Manager

Component

Description

DMgr.read() Read data from

hardware

DMgr.write Write data to hard-

ware

DMgr.Set_Device() Register hardware

information to DE-

VICE_LIST

DMgr.Get_Device_Instance_Number() Get the instance

number of hardware

DMgr.FindDev() Get a pointer of

device structure

Table 1. Functions of Device Manager

 Before an OS kernel component invokes device

driver, it must use FindDev() function of Device

Manager component to get a pointer of hardware

device structure. Then the OS kernel component

could use read() and write() functions of Device

Manager component to invoke device driver. Fig-

ure 4 shows Device Manager component of Ly-

raDD [9].

LyraOS wrapper includes OS service wrapper

and device specific wrapper. Developers can trans-

plant Linux device driver codes into LyraOS and

need not major modification. OS service wrapper

provides wrapper functions to map Linux kernel

functions to OS service in LyraOS and implement

some functions which are not provided in LyraOS.

Device specific wrapper provides data structures

needed in Linux device drivers and supports spe-

cific device functions including Net driver wrapper

and IDE driver wrapper (for Linux kernel 2.0/2.4).

 4

 Figure 4. Device management of LyraDD

2.2 Linux Device Drivers

Linux’s source codes are open and available for

everyone to trace and research [13]. Therefore, it

results in having many developers devoting them-

selves to test, modify, and develop applications and

programs in Linux. Device drivers play an impor-

tant role in Linux kernel [16], they could control

and communicate with hardware. Developing de-

vice drivers can be separated from Linux kernel

while they could be developed modularly. Because

of the modular design, the kernel would not need to

be updated frequently for supporting new hardware.

Traditionally, Unix systems classify hardware de-

vices into three types while the drivers could be

three types as well. These types are character de-

vice, block device, and Network interface.

2.3 USB Architecture

USB, as known as Universal Serial Bus, is a

bridge to connect a computer and affiliated devices.

Topologically, USB could not be counted as bus,

instead it is a tree structure which is constructed of

multiple point-to-point lines. USB devices connect

to USB hub via four-wire cables. The USB host

controller shall query each USB device in rotation

to check if any of these devices has data to send.

Therefore, USB devices would not transmit a bit of

data before receiving the first call from host con-

troller. The purpose of the design is to support plug

and play and let the system configure the device

just plugged in easily and automatically. Another

feature of USB is that it is only a communication

tunnel between computers. USB specification has

defined a set of standard protocols for any type of

devices to follow, which means that there is no

need to develop drivers for particular devices be-

cause the same type of devices could use the same

driver. USB has defined many device classes such

as storage media, keyboard, mouse, network device,

modem, and printer, et al.

Figure 5 shows USB device overview, the USB

driver is located among different kernel subsystems

(i.e. block, character, network). USB core provides

a platform to USB drivers to access and control

USB hardware without dealing with the format of

the USB hardware host controller.

Figure 5. USB device overview

The main task of the USB host controller is to

communicate with hardware. USB host controller

has three types: OHCI (Open Host Controller In-

terface), UHCI (Universal Host Controller), and

EHCI (Enhanced Host Controller Interface). OHCI

driver supports non-PC and chipset that belongs to

SiS, ALi USB chipset. UHCI driver supports most

PCs including Intel and Via USB chipset. EHCI

issued in USB 2.0 standard is compatible with both

OHCI and UHCI.

 5

USB devices are complicated, but Linux kernel

has provided USB core subsystem that could take

care of the complicated parts. Figure 6 shows the

USB device descriptors [17]. The communication

of USB is through so-called endpoint. One USB

endpoint could only send data in one direction that

is called one-way transmission. OUT endpoint is

used to send data from computer to device’s node.

IN endpoint is used to send data from device to

computer. Configurations are composed of the op-

erating status of USB interface. An USB interface

can have multiple modes, but the device can only

stay under one kind of the modes at anytime. The

USB devices can change status by switching to

other modes, for example, firmware update mode.

Figure 6. USB device descriptors.

In summary, the USB devices are complex and

the devices are composed of different logic units.

The devices can have one or multiple configura-

tions and configurations usually include one or

multiple interfaces. An interface often has one or

more settings and an interface can include no end-

points or multiple endpoints.

3. Supporting USB Devices in LyraOS

Section 3 mainly describes how to integrate Ly-

raOS with Linux’s USB device drivers. Section 3.1

describes the modified LyraOS device driver model.

Section 3.2 introduces Linux USB device driver

architecture. Section 3.3 describes what kinds of

USB devices drivers are integrated in the study.

Finally, Section 3.4 focuses on the modification of

LyraOS wrappers, and adding Linux 2.6 kernel

wrapper to let the USB device driver work

smoothly in LyraOS.

3.1 Modified LyraOS Device Driver Model

To integrate Linux’s USB device drivers into

LyraOS, we adopt the same design concept of Ly-

raDD and add a USB driver wrapper to LyraDD.

Figure 7 shows the modified LyraOS device driver

model. In this study, we focus on integrating Li-

nux’s USB keyboard driver and mouse driver into

LyraDD, so that USB keyboard and mouse can

work under LyraOS. Since OS service wrapper is

originally designed to work with Linux 2.4 device

drivers, however, in this study we use Linux 2.6

USB device drivers. Therefore, OS service wrapper

also gets updated.

Figure 7. Modified LyraOS device driver model.

3.2 Linux USB Driver Architecture

As shown in Figure 8 [17], the overall structure

of USB device drivers can be classified into several

layers such as hardware USB host controller, USB

host controller driver, USB core, and USB device

drivers for flash drive, mouse, keyboard, hub,

wireless network interface, etc.

Figure 8 depicts that there are two kinds of USB

drivers, USB controller driver and USB device

driver. The former controls the inserted USB device

and the latter controls the USB device to commu-

Device

Configuration Configuration

Interface Interface Interface Interface Interface

Endpoint Endpoint Endpoint Endpoint

 6

nicate with operating system. USB Core of Linux

kernel manages the USB device driver and handles

USB protocol and USB data transmission. It plays

an important role between the controller driver and

the USB device driver.

The USB controller can be classified to OHCI,

EHCI, UHCI. Each kind of controller has a corres-

ponding driver. USB core includes Endpoint, Inter-

face, Configurations structure, and URB (USB re-

quest block) structure. Programs in Linux use the

URB to communicate with the USB devices. The

keyboard and mouse drivers belong to human in-

terface device (HID) category of Linux USB device,

so they follow HID specification.

Figure 9 shows the hot-plugging flow of the

USB device module [18], including device attach-

ment and detachment.

Figure 8. Linux USB driver architecture

Figure 9. Hot-plugging flow of USB device

USB Device Driver

USB Keyboard/USB Mouse

USB Core

USB Host Controller Driver

OHCI/EHCI/UHCI

USB Host Controller

OHCI/EHCI/UHCI

6. Find driver by probe()

5. Allocate the resource for HCD

4. Configure USB device

3. Call New

Device API

2. Detect device

attach

1. Device Attach

Host

Controller

Driver

Hub DriverUSB Core
USB Device

Driver

7. Device Detach

8. Detect device

detach

9. Call Del Device

API
10. Release driver

by Disconnect()

11. Release the resource for HCD

 7

1. Device Attachment: The interrupt is invoked

and hub driver obtains the information of con-

nection when the computer senses the attach-

ment of the USB device. USB Core provides

the related functions to accomplish the confi-

gurations of USB device. Then, USB Core and

Hub driver allocate the required resources for

the new devices in USB Core, Hub driver, and

host controller driver. USB Core calls the

function probe() of USB device driver to seek

the proper driver to the device.

2. Device detachment: The interrupt is invoked

and hub driver obtains the information of dis-

connection when the computer senses the de-

tachment. Then hub driver calls the related

functions provided by USB Core to release the

allocated resource in USB Core, hub driver

and host controller. At the same time, USB

Core calls the function disconnect() of USB

device driver to release the driver.

3.3 Integrating Linux USB Device Drivers into

LyraOS

Currently, we have transplanted USB host con-

troller drivers, USB core, USB keyboard driver,

and USB mouse driver from Linux 2.6 kernel. To

integrate Linux USB device drivers into LyraOS,

we wrap the transplanted device drivers with

wrapper. There are two types of wrappers, which

are device specific wrapper and OS service wrap-

per. The device specific wrapper provides device

drivers the required data structures and specific

functions which are needed by Linux device driv-

ers but are lacked in LyraOS. Originally, there are

only Net device wrapper and IDE driver wrapper

in LyraOS. We add USB driver wrapper to support

USB device drivers. The OS service wrapper pro-

vides wrapper functions to map Linux kernel func-

tions to OS service functions in LyraOS and im-

plements some certain functions lacked in LyraOS.

To integrate USB Host Controller Driver into

LyraDD, some data structures are needed. In Linux

kernel, usb_hcd (Host Controller Driver) data

structure is used to describe USB host controller

drivers. It includes information of USB host con-

troller, hardware resource, status, and pointers to

driver functions which are used to operate the con-

troller. Besides, Linux usb_driver data structure is

used to identify USB driver to USB Core.

In Linux kernel, the USB Core is a subsystem

with a specific application programming interface

(API) to support USB devices and host controllers.

It aims to abstract all hardware or device depen-

dent parts by defining a set of data structures, ma-

cros, and functions [17].

Every USB device must have the following four

descriptors. The first one is endpoint descriptor.

There are four types of USB endpoint, which are

control endpoint, interrupt endpoint, bulk endpoint,

and isochronous endpoint. Data structure of usb

endpoint descriptor includes fields about length,

endpoint descriptor type, endpoint address,

attributes, max packets size, etc. The second one is

interface descriptor. Fields of interface descriptor

include descriptor types, interface number, settings,

endpoint number, interface class and subclass, and

interface protocol. The third one, configurations

descriptor, includes length, descriptor type, total

length, interface number, configuration value, max

electricity, etc. Device descriptor includes length,

descriptor type, USB version, device class and

subclass, device protocol, endpoint max packet

size, vendor identity, product identity, etc.

All the USB codes in Linux kernel use urb

(USB request block) data structure to communi-

cate with USB devices. This request block is de-

scribed with the struct urb structure. A urb is used

in sending or receiving data to or from a specific

USB endpoint on a specific USB device in an

asynchronous manner. A USB device driver may

allocate many urbs for a single endpoint or may

reuse a single urb for many different endpoints,

depending on the need of the driver. Every end-

point in a device can handle a queue of urbs, so

that multiple urbs can be sent to the same endpoint

before the queue is empty [17].

The typical lifecycle of an urb is as follows

[17]:

 8

1. Created by a USB device driver. Firstly, USB

device driver uses the function usb_alloc_urb()

to create a urb data strucuture.

2. Assigned to a specific endpoint of a specific

USB device. There are four types of endpoints,

which are control, interrupt, bulk, and isoch-

ronous. Each endpoint has distinct initializa-

tion function and the mappings are as follows.

The function usb_fill_int_urb() is a helper

function to properly initialize a urb to be sent

to a interrupt endpoint of a USB device. Bulk

urbs are initialized much like interrupt urbs.

The function that does this is

usb_fill_bulk_urb(), the control urbs are initia-

lized almost the same way as bulk urbs, with a

call to the function usb_fill_control_urb(), the

isochronous urbs unfortunately do not have an

initializer function like the interrupt, control,

and bulk urbs do. So they must be initialized

“by hand” in the driver before they can be

submitted to the USB Core.

3. Submitted to the USB core, by the USB device

driver. USB device driver uses the function

usb_submit_urb() to submit urb data strucuture

to USB core.

4. Submitted to the specific USB host controller

driver for the specified device by the USB

core.

5. Processed by the USB host controller driver that

makes a USB transfer to the device.

6. When the urb is completed, the USB host con-

troller driver notifies the USB device driver. If

USB device is disconnected by some

must-interrupted reasons, USB Core calls ei-

ther the function usb_kill_urb() or

usb_unlink_urb() and destroy the urb data

structure. Figure 10 shows the urb handling

procedure [17].

USB keyboard is a kind of Human Interface

Devices (HID) which can be devices with either

low or full speed rate. In addition to control end-

point, the IN/OUT of data transmission uses inter-

rupt endpoint. IN endpoint is in charge of every

key pressing value, whereas OUT endpoint man-

ages the LED of keyboard driver.

usb_alloc_urb()

 Control:usb_fill_control_urb()

 Interrupt:usb_fill_int_urb()

 Bulk:usb_fill_bulk_urb()

 Isochronous:Manual initialization iso urb

usb_submit_urb()

USB Core and USB HCD

handling

urb -> complete

usb_kill_urb()

usb_unlink_urb()

interrupt

Figure 10. urb handling procedure

The USB keyboard driver of Linux must im-

plement the following items. They are the func-

tions of usb_driver data structure field (e.g.

usb_kbd_prob(), usb_kbd_disconnect()), the initia-

lization of keyboard (e.g. usb_kbd_init()), the

cancellation of keyboard (e.g. usb_kbd_exit()),

keyboard open (e.g. usb_kbd_open()), keyboard

close (e.g. usb_kbd_close()) and the functions of

interrupt handler (e.g. usb_kbd_irq()).

When the USB keyboard driver is initialized, it

registers the function usb_kbd_irq() of USB key-

board driver to the irq_handle of USB device data

structure. In the meantime, USB keyboard driver

applies the endpoint of IN/OUT through USB

Core and is mounted on periodic list. Host con-

troller acquires the data from USB keyboard buffer

according to the period. Finally, Input subsystem

outputs the data from keyboard buffer, and then

USB keyboard driver and USB keyboard function

properly.

USB Mouse is one of Human Interface Devices

(HID), like USB keyboard. In addition to control

endpoint, the IN/OUT of data transmission uses

interrupt endpoint. IN endpoint manages the sig-

naling of every mouse clicking.

 9

The USB mouse driver of Linux must imple-

ment the following items. They are the functions

of usb_driver data structure field (e.g.

usb_mouse_prob(), usb_mouse_disconnect()), the

initialization of keyboard (e.g. usb_mouse_init()),

the cancellation of keyboard (e.g.

usb_mouse_exit()), keyboard open (e.g.

usb_mouse_open()), keyboard close (e.g.

usb_mouse_close()) and the functions of interrupt

handler (e.g. usb_mouse_irq()).

When the USB mouse driver is initialized, it

registers the function usb_kbd_irq() of USB mouse

driver to the irq_handle of USB device data struc-

ture. In the meantime, USB mouse driver applies

the endpoint of IN/OUT through USB Core and is

mounted on periodic list. Host controller acquires

the data from USB mouse buffer according to the

period. Finally, Input subsystem outputs the data

from mouse buffer, and then USB mouse driver

and USB mouse function properly.

3.4 Modification of LyraOS Wrappers

The modification of LyraOS wrappers includes

the modification of OS service wrapper and addi-

tion of USB device specific wrapper.

Slab allocator is implemented in Linux kernel,

however, not in LyraOS. The allocated memory in

slab allocator is divided into the planned-sized

slabs in order to be accessed efficiently. Owing to

the complex implementation of slab allocator, we

just make modifications over some functions to

avoid the complicated slab allocator procedure

while the driver is still capable of accessing mem-

ory space properly.

At first, we implement the function

kmem_cache_create() which is the function of Li-

nux slab allocator to create an object cache for a

specific object to create a kmem_cache data struc-

ture. The obj_size member of the kmem_cache da-

ta structure records the allocated size of memory.

The function kmem_cache_zalloc(), which is the

function of Linux slab allocator to allocate memo-

ry space for an object from the object cache, is

implemented to use LyraOS’s memory allocation

function named malloc() to memory space using

the stored obj_size in the kmem_cache data struc-

ture. Another slab allocators’s function

kmem_cache_free() which is used to release mem-

ory space is implemented by invoking free() func-

tion in LyraOS, and the function

kmem_cache_destroy() is implemented to releases

the kmem_cache data structure.

The input subsystem is the part of the Linux

kernel that manages the various input devices

(such as keyboards, mice, joysticks, tablets, and a

wide range of other devices) that a user uses to in-

teract with the system. This subsystem is included

in the kernel because these input devices usually

are accessed through special hardware interfaces

such as serial ports, PS/2 ports, and the Universal

Serial Bus, which are protected and managed by

the kernel. The kernel then exposes the user input

in a consistent, device-independent way to user

space through a range of defined APIs [18].

The transplanted USB device driver requires

Linux kernel’s input subsystem which is what Ly-

raOS lacks. Therefore, we transplant the input

subsystem in Linux kernel 2.6 to LyraOS.

Figure 11 depicts the structure of input subsys-

tem. Input subsystem is composed of driver, input

core, and event handler. Input events, such as USB

keyboard key pressing and USB mouse movement,

would trigger event handler to display the values

of key pressing on the screen after being processed

by device driver and input core.

Figure 11. Structure of input subsystem

USB wrapper supports the required data struc-

tures and kernel functions. When usb_init() func-

tion to initiate, it needs to use the following func-

USB
Input Core

Keyboard

Handler

Mouse

Handler

Userspace

Drivers Handlers

 10

tions: devices_init(), device_register(), de-

vice_unregister(), buses_init(), bus_register(),

bus_unregister(), classes_init(), class_register(),

class_unregister(), kset_init(), kset_register(),

kset_unregister(), kset_add(), kobject_init(), kob-

ject_set_name(), kobject_register(),

my_object_release(), kobject_add(), kobject_del(),

subsystem_init(), subsystem_register(), etc.

The functions that must be used in USB host

driver and USB Core are dma_pool_create(),

dma_pool_destory(), register_chrdev(), sche-

dule_timout(), prepare_to_wait(), snprintf(),

scnprintf(), kref_get(), kref_pur(), kobj_map(),

kobj_unmap(), cdev_get(), register_chrdev(),

__unegister_chrdev_region(),

cdev_dynamic_release(), exact_lock(),

cdev_alloc(), cdev_add(), cdev_purge(), de-

lay_loop(), __underlay(), find_next_zero_bit(),

msleep(), up_write(), pte_alloc_one(), re-

map_pmd_range(), pud_alloc(), pmd_alloc(), re-

map_pud_range(), remap_pfn_range(), bit-

map_scnprintf(), cap_capable(), param_set_bool(),

param_get_bool(), register_chrdeb_region(), etc.

Mapping functions deal with the mapping of

functions whose tasks are identical between Linux

and LyraOS, however, the naming of the functions

is different. The typical example is that the func-

tion printk() in Linux and the function printf() in

LyraOS have the same functionality, but they have

different function names. Other examples are like

jiffies_64(), kmalloc(), __get_free_pages(),

spin_lock(), spin_unlock(), schedule(),

kthread_create(), yield(), kthread_stop(), re-

quest_irq_register_isr(), free_irq(), thread_sleep(),

thread_wakeup(), etc.

4. Experimental Results

 In this section, we make some analysis and sta-

tistics of codes of transplanted USB device drivers

in LyraOS. Table 2 shows our experimental plat-

form and USB devices.

Table 3 lists code lines of LyraOS wrapper and

Device Manager component, where the statistic of

the lines contains programming comments. Table 4

lists code lines of Linux device drivers.

CPU AMD Athlon 64X2 Dual
Core Processor 4200+

System Memory DDR2 1G

Operating System LyraOS 2.1.17

USB Keyboard ViewSonic USB 1.1

USB Mouse Acer USB1 .1

Table 2. Experimental platform

Description Original
Codes

Added
Codes

Device Manager 776 0

IRQ Management 876 0

Timer Management 59 392

Wait Queue Management 174 0

Slab Allocator 0 100

Input Core 0 1162

Mapping Functions 124 18

USB Driver Wrapper 0 5388

Total 2009 7060

Table 3. The line of codes of Device Manager

and LyraOS wrapper

Description Line of
Codes

USB Host Controller Drivers- EHCI 6631

USB Host Controller Drivers- OHCI 4323

USB Host Controller Drivers- UHCI 3418

USB Core 12282

Human Interface Devices 3070

USB keyboard 366

USB mouse 248

Total 30338

Table 4. The line of codes of device drivers

 11

Table 5 lists object code sizes of the LyraOS

wrapper and Device Manager component. Table 6

lists the object code sizes of the USB driver wrap-

per, UHCI host controller driver, USB Core, HID,

USB keyboard driver, and USB mouse driver.

Description Object
Code Sizes

(bytes)

Percen-
tage

Device Manager 10552 10.7%

IRQ Management 11912 12%

Timer Management 4176 4.2%

Wait Queue Manage-
ment

19 0%

Slab Allocator 11 0%

Input Core 14716 15%

Mapping Functions 4724 4.8%

USB Driver Wrapper 52540 53.3%

Total 98650 100%

Table 5. The object codes size of Device Man-

ager component and LyraOS wrapper

Description Object Code
Sizes(bytes)

Percen-
tage

USB Host Controller
Drivers- EHCI

26432 13%

USB Host Controller
Drivers- OHCI

5540 3%

USB Host Controller
Drivers- UHCI

19272 9.3%

USB Core 103724 50%

Human Interface Devic-
es

33916 16.5%

USB keyboard driver 10228 5%

USB mouse driver 6674 3.2%

Total 205786 100%

Table 6. The object code size of device drivers

5. Conclusions and Future Work

The development of device drivers in Linux is

very mature and the source codes are available to

be modified, added, and investigated in public due

to the feature of open source. Therefore, we aim at

transplanting the source codes of device drivers

from Linux into LyraOS without major modifica-

tions. In this paper, our major tasks include (1)

transplanting USB host controller drivers, USB

Core, USB keyboard and mouse drivers into Ly-

raOS, (2) implementing the required data struc-

tures and functions for supporting these trans-

planted device drivers, and (3) integrating the

transplanted USB device drivers into LyraOS’s

Driver Manager component LyraDD.

The development of device drivers is a quite

time-consuming task. In order to shorten the time

of development of device drivers and make the

USB drivers properly operate on our LyraOS, the

component-based embedded operating system,

without significant modifications, we transplant

source codes of device drivers from Linux and

wrap them with wrappers. Moreover, this concept

can be also used in transplanting other device

drivers into operating systems.

However, the data structures, functions, and the

process of USB device drivers are quite compli-

cated, which significantly increases the difficulties

of transplanting device drivers from Linux.

Therefore, the thorough understanding over Linux

kernel and USB device drivers is required and

helps us to successfully transplant the device driv-

ers.

We have transplanted some USB device drivers,

including USB keyboard and mouse drivers into

our embedded operating system - LyraOS. Hence,

any future appendant of other USB device drivers

is helpful for LyraOS to support more USB devic-

es. In the future, we hope that LyraOS is capable

of supporting more diverse USB devices, like USB

drives, USB disks, etc.

 12

References

[1] LyraOS homepage, http at

http://163.22.32.199/joannaResearch/LyraOS

/index.htm.

[2] Z. Y. Cheng, M. L. Chiang, and R. C. Chang,

“A Component Based Operating System for

Resource Limited Embedded Devices,”

IEEE International Symposium on Consumer

Electronics (ISCE’2000), Hong Kong, Dec.

5-7, 2000.

[3] Chi-Wei Yang, C. H. Lee, and R. C. Chang,

“Lyra: A System Framework in Supporting

Multimedia Applications,” IEEE Internation-

al Conference on Multimedia Computing and

Systems’99, Florence, Italy, June 1999.

[4] Zan-Yu Chen, “A Component Based Embed-

ded Operating System,” Master Thesis, De-

partment of Information and Computer

Science, National Chiao-Tung University,

June 2000.

[5] eCos, http://sources.redhat.com/ecos/.

[6] MicroC/OS-II, at http://www.ucos-ii.com/.

[7] Mei-Ling Chiang and Ching-Ru Lo, “Lyra-

FILE: A Component-Based VFAT FileSys-

tem for Embedded Systems,” International

Journal of Embedded Systems, Vol. 2, Nos.

3/4, pp. 248-259, Aug 2007.

[8] H. K. Ting, C. R. Lo, M. L. Chiang, and R. C.

Chang, “Adapting LINUX VFAT Filesystem

To Embedded Operating Systems,” Interna-

tional Computer Symposium (ICS’2002),

HwaLian, Taiwan, R.O.C., 2002.

[9] Chun-Hui Chen, “LyraDD: Design and Im-

plementation of the Device Driver Model for

Embedded Systems,” Master Thesis, De-

partment of Information Management, Na-

tional Chi-Nan University, June 2004.

[10] C. W. Yang, “An Integrated Core-Work for

Fast Information-Appliance Buildup,” Mas-

ter Thesis, Department of Information and

Computer Science, National Chiao Tung

University, June 1998.

[11] Chi-Wei Yang, Paul C. H. Lee, and R. C.

Chang, “Reuse Linux Device Drivers in

Embedded Systems,” Proceeding of the 1998

International Computer Symposium (ICS’98),

Taiwan, 1998.

[12] Jer-Wei Chuang, Kim-Seng Sew, Mei-Ling

Chiang, and Ruei-Chuan Chang, “Integration

of Linux Communication Stacks into Em-

bedded Operating Systems,” International

Computer Symposium (ICS’2000), Taiwan,

December 6-8, 2000.

[13] Daniel P. Bovet and Marco Cesati, Under-

standing the Linux kernel, 3
rd

 edition,

O’REILLY, November 2005.

[14] Mei-Ling Chiang and Yun-Chen Lee, “Ly-

raNET: A Zero-Copy TCP/IP Protocol Stack

for Embedded Systems,” Journal of

Real-Time Systems, Vol. 34, No. 1, pp. 5-18,

Sep. 2006.

[15] Bor-Yeh Shen and Mei-Ling Chiang, “A

Server-side Pre-linking Mechanism for Up-

dating Em-bedded Operating System Dy-

namically,” Journal of Information Science

and Engineering, Vol. 26, No. 1, Jan. 2010.

[16] Jonathan Corbet, Alessandro Rubini, and

Greg Kroah-Hartman, “Linux Device Driv-

ers,” 3
rd

 edition, O’REILLY, February 2005.

[17] Jing Chen and Jun-Lin Huang, “The Design

and Implementation of Universal Serial Bus

Driver in a Microkernel Operating System,”

Master Thesis, Department of Electrical En-

gineering, National Cheng Kung University,

July 2009.

[18] Brad Hards, The Linux USB Input Subsystem,

Part I, Linux Journal, at

http://www.linuxjournal.com/article/6396,

February 1st, 2003.

