
Design a Fully MIPS32 ISA Processor with
Corresponding Verification Environment

Slo-Li Chu, Geng-Siao Li, Chih-Nan Hsu

Department of Information and Computer Engineering,

Chung Yuan Christian University, Taiwan
slchu@cycu.edu.tw, johneymay@gmail.com, icearea@gmail.com,

Abstract―The processor is the most important part in the
high performance computer system which is widely used in
all kinds of application level, such as desktop computer,
household appliances, mobile phone. In this paper, we
design a five-stage pipelined MIPS32 processor that can be
the major processing core of multimedia system and the
important beginning of our chip multiprocessor
architectures. The major functionality of this proposed
processor is implemented full integer instruction sets in
MIPS32 ISA, which includes eighty MIPS32 instructions.

In order to verify this design, we develop two levels of
verification environments: functional verification on
proposed Simulation Model with Verilog Simulator and
FPGA proven on ARM Integrator with FPGA implemented
on attached Logic Tile.

Finally we adopt Synopsys Design Compiler to synthesize
our MIPS32 processor by TSMC 0.13µm technology. The
result proves the work frequency of our design can achieve
124.24 MHz. The chip layout generated by Synopsys Astro
is also provided.

Keywords―Pipeline, MIPS32, Processor, Arithmetic logic
Unit, Platform based software verification environment,
Simulation model.

I. Introduction
MIPS processor families are used in many

commercial products and embedded system, such as
Sony PlayStation Portable, Sony PlayStation2 and
network processor. Based on the reasons, we select
MIPS32 as basic processor design, and create a
design flow to implement the MIPS32 processor
hardware.

 In this paper, we design a five-stage pipelined
MIPS32 processor that will be the major processor
core of multimedia system we developed and the
important beginning of Chip Multiprocessor
development.

II. Background

MIPS is a reduced Instruction set computing
(RISC) instruction set architecture (ISA) developed
by MIPS Computer Systems. Reduced instruction set
computing, represents a CPU design strategy
emphasizing the insight that simplified instructions,
simplicity instruction can be utilized to make
instructions execute very quickly. MIPS are load-
store architecture. Program access memory across
special instruction load and store, not any operation
can access memory. Operation is performed on the
registers. Result is written into a register. Because
memory access latency compare with other operation
is longer. Load-store architecture decrease memory
access frequency, to reduce total memory access time.
2.1. MIPS32 Instruction Set Architecture

MIPS32 is popular IP in commercial embedded
system. It includes multiple-cycle multiply and
divides instructions. It had thirty-two 32-bit general
purpose registers and one 32-bit program counter,
unlike other registers, the program counter is not
directly accessible.

MIPS32 (not include floating operation) have
eighty instructions, those instructions divided into
three major formats, R format, I format and J format.

1. R format
op rs rt rd shamt funct
6bit 5bit 5bit 5bit 5 bit 6 bit

op: Basic operation of the instruction, also called opcode
rs: The first register source operand
rt: The second register source operand
rd: The register destination operand. It gets the result of
operation
shamt: Shift amount
funct: Function This field selects the specific variant of the
operation in the op field, also called function code

2. I format
op rs rt offset
6 bit 5 bit 5 bit 16 bit

op: Basic operation of the instruction, also called opcode
rs: The first register source operand
rt: The register target operand. It gets the result of operation
offset: Immediate value for operation or address generation

3. J format
op address
6 bit 26 bit
op: Basic operation of the instruction, also called opcode
address: Immediate value for jump address

2.2. Five-stages pipeline
Pipelining is an implementation technique in witch

multiple instructions are overlapped in execution. It
can increase CPU throughput, MIPS instruction
classically take five pipelining stage

1. IF(instruction fetch): fetch instruction from
memory

2. ID(instruction decode): read registers while
decoding the instruction.

3. EX(execution): Execute the operation or
calculate an address

4. MEM(memory access): Access an operand in
data memory

5. WB(write back): write the result into register
file

The traditional five-stage pipelined MIPS show in Figure 1.

2.3. Pipeline hazard

Pipeline hazard means that the situation in pipeline
when next instruction cannot execute in the
following clock cycle, and there are three different
types

1. Structural hazard: Structural hazard means
that the hardware cannot concurrently
support multiple instructions in the same
clock cycle. MIPS make it easy for designer
to avoid structural hazard, it include two
memories (Harvard architecture) instead of
single memory (von Neumann architecture).

2. Data hazard: Data hazard occur when the
pipeline must be stalled because one step
must wait for another to complete. In five
stage pipeline, data hazard arise from the
dependence of one instruction on an earlier
one that still in the pipeline, and earlier
instruction not in write back stage. The
example shown as follow

add $S0, $S1, $S2;
sub $S3, $S0, $S4;

The solution is data forwarding. In previous

example, as soon as the ALU creates the sum
for the add instruction, datapath can provide it
as an input for the sub instruction.

Figure 1. Traditional Five Stage Pipeline

3. Control hazard: Control hazard arising from

the need to make a decision based on the
result of one instruction while others are
executing. The hardware solution is stall and
predict

A. Stall: when branch occur, stall followed
instruction until control unit make decision, but
it is slow.

B. Predict: It means that apply a method to predict

decision result. This option does not slow down
the pipeline when predict correct, when predict
wrong, you need rollback data and redo
instructions.

III. MIPS32 Architecture Implementation
In this section, we focus on architecture

implementation based on traditional five stages
pipeline-IF, ID, EX, MEM and WB stage that
include overall pipeline datapath and components,
finally is construct simulation model.
3.1. Five-stages Pipelined MIPS32 datapath

The overall Five-stage Pipelined MIPS32 datapath
are shown in Figure 5. Following is stages datapath
and components detail implement methods.
3.1.1. Instruction Fetch stage

The Instruction Fetch stage is where a program
counter will pull the next instruction from the correct
location in instruction memory. These stages major
functionalities are decide next instruction address
and load instruction from instruction memory. The
main components are program counter, instruction
memory and branch prediction unit of this stage.

[1] Program Counter(PC)
A four bytes register to record next instruction
address.

[2] Instruction Memory
The instruction memory was sized at 1k bits,
total contains 32 separate instructions.

[3] Branch Prediction Unit
In order to reduce control hazard penalty, we
choosing 2 bits history branch prediction
mechanism, this mechanism key idea is
unchanged prediction until predict wrong twice,
the mechanism flow shown as Figure 6.

Figure 2. A Data Forwarding Example

Figure 3. A Stall Example

Figure 4. Branch Prediction Example

3.1.2. Instruction Decode stage

The Decode Stage is where the fetched instruction
to decoding, load operator values from the register
file and detect hazard. The main components are
register file, control unit and hazard detect unit of
this stage.

[1] Register File
The register file was sized at 1k bits, total
contains 32 operator values.

[2] Control Unit
The Control unit takes the given Opcode and
translate to control signal, these control signal
control the MIPS32 datapath.

[3] Hazard Detect Unit
The hazard detection unit monitors output from
the execute stage and memory stage to
determine hazard conditions, these condition
signal will control datapath to solve hazard.

3.1.3. Execution stage
The execute stage is responsible for taking the

operator value and performing the specified
operation. The forwarding unit forward data from
datapath to avoid data hazard. The main components
are arithmetic logical unit, multi-cycle multiplier,
multi-cycle divider, barrel shifter and forwarding unit
of this stage.

[1] Arithmetic Logical Unit
The arithmetic logical unit (ALU) is

performing the calculations specified by the
instruction. It takes two 32 bit inputs and some
control signals, and gives a single 32 bit output,

The ALU functionality include add, sub, shift and
compare. Detail functionality shown in Table 1.
[2] Multi-Cycle Multiplier

 (Booth’s Algorithm)
This is a signed multiplier that takes 32 cycles

to calculate, Booth’s algorithm was invented by
Andrew D. Booth in 1951, the hardware scheme
shown as Figure 7.

[3] Restoring Multi-Cycle Divider

This is an unsigned divider that takes 32 cycles
to calculate result, the hardware scheme shown as
Figure 8.

[4] Barrel Shifter
The barrel shifter [9] is a digital circuit that can

shift a data word by a specified number of bits in
one clock cycle, the hardware scheme shown as
Figure 9.

Figure 7. Booth’s Algorithm Multiplier

Figure 8. Restoring Multi-Cycle Divider

Figure 6. 2-Bits History Branch Prediction

[5] Forwarding Unit
The forwarding unit is responsible for choosing

what input is to be fed into the ALU If register
number conflict; this means that when an
instruction tries to use a register in its execute
stage or memory stage that an earlier instruction
intends to write in its write back stage, we need
forward data to ALU input instead of read data
from register file.

[6] Forwarding Unit

The forwarding unit is responsible for choosing
what input is to be fed into the ALU If register
number conflict; this means that when an
instruction tries to use a register in its execute
stage or memory stage that an earlier instruction
intends to write in its write back stage, we need
forward data to ALU input instead of read data
from register file.

3.1.4. Memory stage

The Memory stage is responsible for taking the
output of execution stage and load or store a data
from data memory. The main component is data
memory of this stage.
3.1.5. Write back stage.

The write back stage is responsible for writing the
result to the register file back, the result generates
from data memory or ALU. It has input control lines
that tell it whether this instruction writes back or not.
Write number will guide the result to proper register
file location.
3.2. MIPS32 simulation model

The basis of ARM integrator is difficult to debug,
we map the ARM integrator hardware to soft IP,
construct a pure software verification environment.
The MIPS32 simulation model based on ARM
integrator platform design, the hardware scheme
shown as Figure 10
3.3. MIPS32 design flow

In this paper, we used several tools to implement
MIPS32 hardware. Mentor Graphic Modelsim used
to Simulation RTL design. Spring soft nLint used to
check RTL coding style. Synopsys Design compiler
used to logic synthesis. Synopsys Astro for physical
synthesis. Detail design flow shown as Figure 11.

VI. Experiment results

This section contains MIPS32 functional
verification and synthesis result.
4.1. RTL code Verification

In order to verify the MIPS32 simulation model,
we choose DSPstone benchmark [7] as verification
programs. DSPstone benchmark suite is based on
algorithm kernels derived from important DSP
applications. The benchmark experiment result
shown in Table 2.

In Figure 12, we select a bubble sort assembly
program as example. Original data is 4, 2, 8, 1, 7; the

Shift right 1 bit Shifter

Shift right 2 bit Shifter

Shift right 8 bit Shifter

Shift right 4 bit Shifter

Shift right 16 bit Shifter

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

Input Data[31:0] Offset[4:0]

Result[31:0]
Figure 9. Barrel Shifter

sorted result is 1, 2, 4, 7, 8, the waveform shown as
Figure 13.
4.2. RTL code Synthesis

We choose Synopsys Design compiler as logic
synthesis tool to synthesis MIPS32 RTL design,
Figure 14 shows the symbol view and Figure 15
shows the schematic view.

Logic synthesis clock period set to 8.18ns, and met
all design constraints. Working frequency up to
124.24 MHz. Total cells area is 9795118.40nm2,
major module hierarchy area report shown in Table 3,
and Synopsys Astro chip layout shown in Figure 16.

V. Conclusions
In this paper we provide a five-stage pipelined

MIPS32 processor with corresponding design flow.
The proposed processor implements complete eighty
integer instructions of MIPS32 instruction set
architecture. To verify this design, we develop two
levels of verification environments: functional
verification on proposed Simulation Model with
Verilog Simulator and FPGA proven on ARM
Integrator with FPGA implemented on attached
Logic Tile. .Finally we adopt Synopsys Design
Compiler to synthesize our MIPS32 processor by
TSMC 0.13µm technology. The result proves the
work frequency of our design can achieve 124.24

MHz. The chip layout generated by Synopsys Astro
is also provided.

VI. Reference
[1] ARM Inc., “AMBA Specification Rev.2.0.”.
[2] ARM Inc., “INTEGRATOR ® / CM920T,

CM920T-ETM, CM940T CORE MODULE
USER GUIDE”.

[3] ARM Inc., “INTEGRATOR ® / LT-XC2V4000
+ LOGIC TILE USER GUIDE”.

[4] ARM Inc., “INTEGRATOR TM / AP ASIC
PLAFORM USER GUIDE”.

[5] D. A. Patterson and J. L. Hennessy, ”Computer
Organization and Design The
Hardware/Software Interface Third Edition”,
Morgan Kaufmann, 2007.

[6] D A. Patterson and J. L. Hennessy, ”Computer
Architecture A quantitative Approach Fourth
Edition”, Morgan Kaufmann., 2007.

[7] H. Meyr, ”DSP Compiler and Processor
Evaluation - DSPstone”, [Online]. Available:
http://www.iss.rwth-
aachen.de/Projekte/Tools/DSPSTONE/dspstone.
html. [Accessed: July 9, 2009].

[8] MIPS Technologies Inc., ”MIPS32 Architecture
For Programmers Architecture Revision 2.00”,
2003.

[9] P. Gigliotti, ”Implementing Barrel Shifters
Using Multiplexer”,2004

http://www.iss.rwth-aachen.de/Projekte/Tools/DSPSTONE/dspstone.html
http://www.iss.rwth-aachen.de/Projekte/Tools/DSPSTONE/dspstone.html
http://www.iss.rwth-aachen.de/Projekte/Tools/DSPSTONE/dspstone.html

Figure 5. The Proposed Complete MIPS32 Pipeline Datapath

Se
l

Figure 10. Proposed MIPS32 Simulation Model

Basic MIPS32 RTL
Coding

Syntax Check by nLint

 Verification by
Modelsim

MIPS32 Simulation
Model RTL Coding

Syntax Check by nLint

 Verification by
Modelsim

Logic Synthesis by
Design Compiler

Physical Synthesis by
Astro

Verification & Syntax
Pass?

Verification & Syntax
Pass?

No

Yes

No

Yes

Gate level netlist

GDS II
Figure 11. The Design Flow of our MIPS32 Processor

Figure 12. Unsorted Data Waveform View

Figure 13. Sorted Data Waveform View

Figure 14. Design Compiler symbol view

Figure 15. Design Compiler Schematic View

Figure 16. Astro Chip Layout

Operation Action

ANDU Unsigned add

OR Logical or

ADD Signed add

CLO Counting 1

CLZ Counting 0

SLLV Logical Shift left, shift amount is GPR[4..0]

SRLV Logical shift right, shift amount is GPR[4..0]

SRL Logical shift right, shift amount is Instruction[10..6]

SRA Arithmetical shift right, shift amount is Instruction[10..6]

SLL Logical shift left, shift amount is Instruction[10..6]

SRAV Arithmetical shift right, shift amount is GPR[Rs]4..0

MOVN Move conditional on not zero

MOVZ Move conditional on zero

SUBU Unsigned subtract

SUB Signed subtract

SLTU If (unsigned(GPR[Rs])>unsigned(GPR[Rt]))

 ALUout =1;

Else Aluout =0;

SLT If (signed(GPR[Rs])> signed(GPR[Rt]))

 ALUout =1;

Else ALUout =0;

SEB Sign Extend Byte

SHE Sign Extend Halfword

WSBH Word Swap Byte Halfword

XOR Exclusive OR

NOR Bitwise logical NOT OR
Table 1. List of Designed ALU Operations

DSPstone Benchmark Program Name Execution Cycle Counts
mat1x3 124901
complex_multiply 57052
biquad_one_section 83110
biquad_N_sections 119724
real_update 17853
n_real_updates 182738
fir 324500
fir2dim 1791852
complex_update 49577
n_complex_updates 682616
lms 370839
convolution 249187
dot_product 27430

Table 2. The Verified DSPstone Programs and their Execution Cycle Counts

Hierarchical cell Combinational Non-combinational Total
MIPS_CPU 1646.4757 334.3878 1015255.3125
CP0 31895.3125 70564.9141 104694.617
StageDM 3617.1609 0 4941.1362
StageEX 4616.9326 0 164255.1562
StageEX/ALU 13411.1572 0 106695.7031
StageEX/ALU/Shifter 5625.1909 0 77928.4453
StageEX/ALUcontrol 3352.3674 0 3352.3674
StageEX/ForwardUnit 2133.6326 0 2133.6326
StageEX/div_wrapper/divide 5413.0396 5572.5562 19351.8691
StageEX/mult_wrapper/multiplier 2167.5784 4430.2124 12881.5557
StageID 9337.4004 0 477904.7812
StageID/Control 2053.8545 0 2053.8545
StageID/hazard_detection 339.4800 0 339.4800
StageIF 3457.6050 0 14611.2031
StageIF/PC 1130.4683 1856.9550 2987.4243
StageIF/predictor 818.1467 81.4752 3352.3672
Total 650912.1250 4334.5312 1015253.964666

Table 3. Major Module Hierarchical Area Reports

