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Abstract―The processor is the most important part in the 
high performance computer system which is widely used in 
all kinds of application level, such as desktop computer, 
household appliances, mobile phone. In this paper, we 
design a five-stage pipelined MIPS32 processor that can be 
the major processing core of multimedia system and the 
important beginning of our chip multiprocessor 
architectures. The major functionality of this proposed 
processor is implemented full integer instruction sets in 
MIPS32 ISA, which includes eighty MIPS32 instructions.  

In order to verify this design, we develop two levels of 
verification environments: functional verification on 
proposed Simulation Model with Verilog Simulator and 
FPGA proven on ARM Integrator with FPGA implemented 
on attached Logic Tile.  

Finally we adopt Synopsys Design Compiler to synthesize 
our MIPS32 processor by TSMC 0.13µm technology. The 
result proves the work frequency of our design can achieve 
124.24 MHz. The chip layout generated by Synopsys Astro 
is also provided. 

Keywords―Pipeline, MIPS32, Processor, Arithmetic logic 
Unit, Platform based software verification environment, 
Simulation model. 

I. Introduction 
MIPS processor families are used in many 

commercial products and embedded system, such as 
Sony PlayStation Portable, Sony PlayStation2 and 
network processor. Based on the reasons, we select 
MIPS32 as basic processor design, and create a 
design flow to implement the MIPS32 processor 
hardware. 

 In this paper, we design a five-stage pipelined 
MIPS32 processor that will be the major processor 
core of multimedia system we developed and the 
important beginning of Chip Multiprocessor 
development. 

II. Background 

MIPS is a reduced Instruction set computing 
(RISC) instruction set architecture (ISA) developed 
by MIPS Computer Systems. Reduced instruction set 
computing, represents a CPU design strategy 
emphasizing the insight that simplified instructions, 
simplicity instruction can be utilized to make 
instructions execute very quickly. MIPS are load-
store architecture. Program access memory across 
special instruction load and store, not any operation 
can access memory. Operation is performed on the 
registers. Result is written into a register. Because 
memory access latency compare with other operation 
is longer. Load-store architecture decrease memory 
access frequency, to reduce total memory access time. 
2.1. MIPS32 Instruction Set Architecture 

MIPS32 is popular IP in commercial embedded 
system. It includes multiple-cycle multiply and 
divides instructions. It had thirty-two 32-bit general 
purpose registers and one 32-bit program counter, 
unlike other registers, the program counter is not 
directly accessible. 

MIPS32 (not include floating operation) have 
eighty instructions, those instructions divided into 
three major formats, R format, I format and J format. 



 
1. R format 
op rs rt rd shamt funct
6bit 5bit 5bit 5bit 5 bit 6 bit 
 
op: Basic operation of the instruction, also called opcode 
rs: The first register source operand  
rt: The second register source operand 
rd: The register destination operand. It gets the result of 
operation 
shamt: Shift amount 
funct: Function This field selects the specific variant of the 
operation in the op field, also called function code  
 
2. I format 
op rs rt offset 
6 bit 5 bit 5 bit 16 bit 
 
op: Basic operation of the instruction, also called opcode 
rs: The first register source operand  
rt: The register target operand. It gets the result of operation 
offset: Immediate value for operation or address generation 
 
3. J format 
op address 
6 bit 26 bit 
op: Basic operation of the instruction, also called opcode 
address: Immediate value for jump address 
 

2.2. Five-stages pipeline 
Pipelining is an implementation technique in witch 

multiple instructions are overlapped in execution. It 
can increase CPU throughput, MIPS instruction 
classically take five pipelining stage 

1. IF(instruction fetch): fetch instruction from 
memory 

2. ID(instruction decode): read registers while 
decoding the instruction.  

3. EX(execution): Execute the operation or 
calculate an address 

4. MEM(memory access): Access an operand in 
data memory 

5. WB(write back): write the result into register 
file 

The traditional five-stage pipelined MIPS show in Figure 1. 

 
 
 
 
 
 
 
 
 
 
  

  
 
 
 
2.3. Pipeline hazard 

Pipeline hazard means that the situation in pipeline 
when next instruction cannot execute in the 
following clock cycle, and there are three different 
types 

1. Structural hazard: Structural hazard means 
that the hardware cannot concurrently 
support multiple instructions in the same 
clock cycle. MIPS make it easy for designer 
to avoid structural hazard, it include two 
memories (Harvard architecture) instead of 
single memory (von Neumann architecture). 

2. Data hazard: Data hazard occur when the 
pipeline must be stalled because one step 
must wait for another to complete. In five 
stage pipeline, data hazard arise from the 
dependence of one instruction on an earlier 
one that still in the pipeline, and earlier 
instruction not in write back stage. The 
example shown as follow 

 
add  $S0,  $S1,  $S2; 
sub  $S3,  $S0,  $S4; 

 
The solution is data forwarding. In previous 

example, as soon as the ALU creates the sum 
for the add instruction, datapath can provide it 
as an input for the sub instruction. 

 
Figure 1. Traditional Five Stage Pipeline 



 
 
 
 
 
 
 
 

 
 
 
 
3. Control hazard: Control hazard arising from 

the need to make a decision based on the 
result of one instruction while others are 
executing. The hardware solution is stall and 
predict 

A. Stall: when branch occur, stall followed 
instruction until control unit make decision, but 
it is slow. 

 
 
 
 
 
 
 
 
 

 
B. Predict: It means that apply a method to predict 

decision result. This option does not slow down 
the pipeline when predict correct, when predict 
wrong, you need rollback data and redo 
instructions. 

 
 
 
 
 
 
 
 
 
 
 
 

III. MIPS32 Architecture Implementation 
In this section, we focus on architecture 

implementation based on traditional five stages 
pipeline-IF, ID, EX, MEM and WB stage that 
include overall pipeline datapath and components, 
finally is construct simulation model. 
3.1. Five-stages Pipelined MIPS32 datapath  

The overall Five-stage Pipelined MIPS32 datapath 
are shown in Figure 5. Following is stages datapath 
and components detail implement methods. 
3.1.1. Instruction Fetch stage 

The Instruction Fetch stage is where a program 
counter will pull the next instruction from the correct 
location in instruction memory. These stages major 
functionalities are decide next instruction address 
and load instruction from instruction memory. The 
main components are program counter, instruction 
memory and branch prediction unit of this stage. 

[1] Program Counter(PC) 
A four bytes register to record next instruction 
address. 

[2] Instruction Memory 
The instruction memory was sized at 1k bits, 
total contains 32 separate instructions. 

[3] Branch Prediction Unit 
In order to reduce control hazard penalty, we 
choosing 2 bits history branch prediction 
mechanism, this mechanism key idea is 
unchanged prediction until predict wrong twice, 
the mechanism flow shown as Figure 6. 

 
Figure 2. A Data Forwarding Example 

 
Figure 3.  A Stall Example 

 
Figure 4. Branch Prediction Example 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1.2. Instruction Decode stage 

The Decode Stage is where the fetched instruction 
to decoding, load operator values from the register 
file and detect hazard. The main components are 
register file, control unit and hazard detect unit of 
this stage. 

[1] Register File 
The register file was sized at 1k bits, total 
contains 32 operator values. 

[2] Control Unit 
The Control unit takes the given Opcode and 
translate to control signal, these control signal 
control the MIPS32 datapath. 

[3] Hazard Detect Unit 
The hazard detection unit monitors output from 
the execute stage and memory stage to 
determine hazard conditions, these condition 
signal will control datapath to solve hazard. 
 

3.1.3. Execution stage 
The execute stage is responsible for taking the 

operator value and performing the specified 
operation. The forwarding unit forward data from 
datapath to avoid data hazard. The main components 
are arithmetic logical unit, multi-cycle multiplier, 
multi-cycle divider, barrel shifter and forwarding unit 
of this stage. 

[1] Arithmetic Logical Unit 
The arithmetic logical unit (ALU) is 

performing the calculations specified by the 
instruction. It takes two 32 bit inputs and some 
control signals, and gives a single 32 bit output, 

The ALU functionality include add, sub, shift and 
compare. Detail functionality shown in Table 1. 
[2] Multi-Cycle Multiplier 

             (Booth’s Algorithm) 
This is a signed multiplier that takes 32 cycles 

to calculate, Booth’s algorithm was invented by 
Andrew D. Booth in 1951, the hardware scheme 
shown as Figure 7. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
[3] Restoring Multi-Cycle Divider 

This is an unsigned divider that takes 32 cycles 
to calculate result, the hardware scheme shown as 
Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

[4] Barrel Shifter 
The barrel shifter [9] is a digital circuit that can 

shift a data word by a specified number of bits in 
one clock cycle, the hardware scheme shown as 
Figure 9. 

 

Figure 7. Booth’s Algorithm Multiplier 

Figure 8. Restoring Multi-Cycle Divider 

Figure 6. 2-Bits History Branch Prediction 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[5] Forwarding Unit 
The forwarding unit is responsible for choosing 

what input is to be fed into the ALU If register 
number conflict; this means that when an 
instruction tries to use a register in its execute 
stage or memory stage that an earlier instruction 
intends to write in its write back stage, we need 
forward data to ALU input instead of read data 
from register file. 

 
[6] Forwarding Unit 

The forwarding unit is responsible for choosing 
what input is to be fed into the ALU If register 
number conflict; this means that when an 
instruction tries to use a register in its execute 
stage or memory stage that an earlier instruction 
intends to write in its write back stage, we need 
forward data to ALU input instead of read data 
from register file. 

 

 
3.1.4. Memory stage 

The Memory stage is responsible for taking the 
output of execution stage and load or store a data 
from data memory. The main component is data 
memory of this stage. 
3.1.5. Write back stage.  

The write back stage is responsible for writing the 
result to the register file back, the result generates 
from data memory or ALU. It has input control lines 
that tell it whether this instruction writes back or not. 
Write number will guide the result to proper register 
file location. 
3.2. MIPS32 simulation model 

The basis of ARM integrator is difficult to debug, 
we map the ARM integrator hardware to soft IP, 
construct a pure software verification environment. 
The MIPS32 simulation model based on ARM 
integrator platform design, the hardware scheme 
shown as Figure 10 
3.3. MIPS32 design flow 

In this paper, we used several tools to implement 
MIPS32 hardware. Mentor Graphic Modelsim used 
to Simulation RTL design. Spring soft nLint used to 
check RTL coding style. Synopsys Design compiler 
used to logic synthesis. Synopsys Astro for physical 
synthesis. Detail design flow shown as Figure 11. 

VI. Experiment results 

This section contains MIPS32 functional 
verification and synthesis result. 
4.1. RTL code Verification 

In order to verify the MIPS32 simulation model, 
we choose DSPstone benchmark [7] as verification 
programs. DSPstone benchmark suite is based on 
algorithm kernels derived from important DSP 
applications. The benchmark experiment result 
shown in Table 2. 

In Figure 12, we select a bubble sort assembly 
program as example. Original data is 4, 2, 8, 1, 7; the 

Shift right 1 bit Shifter

Shift right 2 bit Shifter

Shift right 8 bit Shifter

Shift right 4 bit Shifter

Shift right 16 bit Shifter

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

1 32 bit MUX 0

Input Data[31:0] Offset[4:0]

Result[31:0]
Figure 9. Barrel Shifter 



sorted result is 1, 2, 4, 7, 8, the waveform shown as 
Figure 13. 
4.2. RTL code Synthesis 

We choose Synopsys Design compiler as logic 
synthesis tool to synthesis MIPS32 RTL design, 
Figure 14 shows the symbol view and Figure 15 
shows the schematic view. 

Logic synthesis clock period set to 8.18ns, and met 
all design constraints. Working frequency up to 
124.24 MHz. Total cells area is 9795118.40nm2, 
major module hierarchy area report shown in Table 3, 
and Synopsys Astro chip layout shown in Figure 16. 

V. Conclusions 
In this paper we provide a five-stage pipelined 

MIPS32 processor with corresponding design flow. 
The proposed processor implements complete eighty 
integer instructions of MIPS32 instruction set 
architecture. To verify this design, we develop two 
levels of verification environments: functional 
verification on proposed Simulation Model with 
Verilog Simulator and FPGA proven on ARM 
Integrator with FPGA implemented on attached 
Logic Tile. .Finally we adopt Synopsys Design 
Compiler to synthesize our MIPS32 processor by 
TSMC 0.13µm technology. The result proves the 
work frequency of our design can achieve 124.24 

MHz. The chip layout generated by Synopsys Astro 
is also provided. 
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Figure 5. The Proposed Complete MIPS32 Pipeline Datapath 
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Figure 10. Proposed MIPS32 Simulation Model
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Figure 11. The Design Flow of our MIPS32 Processor



Figure 12. Unsorted Data Waveform View
 
Figure 13. Sorted Data Waveform View 

 
Figure 14. Design Compiler symbol view 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 15. Design Compiler Schematic View 

 
Figure 16. Astro Chip Layout 



 

Operation Action 

ANDU Unsigned add 

OR Logical or 

ADD Signed add 

CLO Counting 1 

CLZ Counting 0 

SLLV Logical Shift left, shift amount is GPR[4..0] 

SRLV Logical shift right, shift amount is GPR[4..0] 

SRL Logical shift right, shift amount is Instruction[10..6] 

SRA Arithmetical shift right, shift amount is Instruction[10..6] 

SLL Logical shift left, shift amount is Instruction[10..6] 

SRAV Arithmetical shift right, shift amount is GPR[Rs]4..0 

MOVN Move conditional on not zero 

MOVZ Move conditional on zero 

SUBU Unsigned subtract 

SUB Signed subtract 

SLTU If (unsigned(GPR[Rs])>unsigned(GPR[Rt])) 

 ALUout =1; 

Else Aluout =0;  

SLT If (signed(GPR[Rs])> signed(GPR[Rt])) 

 ALUout =1; 

Else ALUout =0; 

SEB Sign Extend Byte 

SHE Sign Extend Halfword 

WSBH Word Swap Byte Halfword 

XOR Exclusive OR 

NOR Bitwise logical NOT OR 
Table 1. List of Designed ALU Operations 

 
 



 
 

DSPstone Benchmark Program Name Execution Cycle Counts 
mat1x3 124901 
complex_multiply 57052 
biquad_one_section 83110 
biquad_N_sections 119724 
real_update 17853 
n_real_updates 182738 
fir 324500 
fir2dim 1791852 
complex_update 49577 
n_complex_updates 682616 
lms 370839 
convolution 249187 
dot_product 27430 

Table 2. The Verified DSPstone Programs and their Execution Cycle Counts 
 
 

Hierarchical cell Combinational Non-combinational Total 
MIPS_CPU 1646.4757 334.3878 1015255.3125 
CP0 31895.3125 70564.9141 104694.617 
StageDM 3617.1609 0 4941.1362 
StageEX 4616.9326 0 164255.1562 
StageEX/ALU 13411.1572 0 106695.7031 
StageEX/ALU/Shifter 5625.1909 0 77928.4453 
StageEX/ALUcontrol 3352.3674 0 3352.3674 
StageEX/ForwardUnit 2133.6326 0 2133.6326 
StageEX/div_wrapper/divide 5413.0396 5572.5562 19351.8691 
StageEX/mult_wrapper/multiplier 2167.5784 4430.2124 12881.5557 
StageID 9337.4004 0 477904.7812 
StageID/Control  2053.8545 0 2053.8545 
StageID/hazard_detection 339.4800 0 339.4800 
StageIF 3457.6050 0 14611.2031 
StageIF/PC 1130.4683 1856.9550 2987.4243 
StageIF/predictor 818.1467 81.4752 3352.3672 
Total 650912.1250 4334.5312 1015253.964666 

Table 3. Major Module Hierarchical Area Reports 
 
 
 
 


