

 1

On-line Reconfigurable Cache for Low Power

Embedded Systems

Yu-Tien Liao
Department of Computer Science and Information Engineering

National Chi Nan University
Puli, Nantou Hsien, 54561 Taiwan
Email: s95321054@ncnu.edu.tw

Dyi-Rong Duh
Department of Computer Science and Information Engineering

National Chi Nan University
Puli, Nantou Hsien, 54561 Taiwan

Email: drduh@ncnu.edu.tw

Abstract―Modern embedded systems execute a small

set of applications or even a single one repeatedly.
Specializing cache configurations to a particular
application is well-known to have great benefits on
performance and power. To reduce the searching for
optimal cache configuration, a most-case optimal cache
configuration searching algorithm was proposed which
greatly reduces the time and power in searching. However,
the fact that the behavior of an application varies from
phase to phase has been shown in recent years. Tuning
cache configuration to fit a target application in different
phases gives a further improvement in power
consumption. This work presents a mechanism which
determines the optimal configurations in different phases
during an execution process. By dividing an execution
process into small time intervals and applying
corresponding local optimal cache configuration for each
interval on L1 instruction cache, this work shows that
over 4.751% energy saving is obtained compared with
whole application be divided into 64 intervals. On average
6.626% power reduction is achieved compared to a
benchmark with its respective global optimal cache
configuration.

Index Terms―Cache, reconfigurable cache; embedded
systems; power consumption; benchmark.

I. INTRODUCTION

The research of computer systems is growing
and is getting more important in the last three
decades. The gap between the processor and the
memory has widened when computer systems
improve. It has been shown that inserting caches
between processors and off-chip memories fills the
gap efficiently. Embedded microprocessors have
been widely used for the hand held devices due to
their high performance, low energy consumption,
and low cost. Caches are infixed in embedded

microprocessors with the growth of embedded
systems. The most important thing for embedded
systems like PDA and cellular phone is how long
the device is alive. Segars [9] showed that an
embedded microprocessor such as the ARM920T
processor dissipates more than 50% of the total
power in the cache. With the increasing usage of
cache, energy savings in caches have become more
critical.

Sherwood et al. [10] showed that programs may
have different run-time behaviors in different
portions of an execution as a series of phases. A
phase is defined as an interval of execution during
which a measured program metric is relatively
stable. The scheme proposed by Sherwood et al.
captures phases that account for over 80% of
execution using less than 500 bytes of on-chip
memory [10].

Some strategies augmented small caches
between the processor and lower-level cache to
reduce the energy consumption, such as the filter
cache introduced by Kin et al. [6] and the hotspot
cache introduced by Yang et al. [14]. Others
improved the cache itself to reduce the energy
consumption. Many researches on caches with
tunable parameters to reduce power consumption
have been introduced in recently years. Zhang et al.
[15] introduced a highly configurable cache
architecture which dynamically configures the
associativity size and line size with certain restrict
combinations. Banerjee et al. 0 combined both
program phase detection and cache way
reconfigurable to achieve 32% power reduction on
memory access with less than 2% performance

 2

degradation.

A single-pass multi-cache evaluation has been
proposed and implemented in hardware by
Gordon-Ross et al. [4] which speeds up 7.7 times in
tuning time. Even so, the hardware overhead is so
tremendous which occupies up to 12% area of
ARM920T. Lin and Duh proposed an on-line
reconfigurable cache which greatly reduces the
search time and the cache tuning can proceed
during the execution [7].

Jheng and Duh proposed a reconfigurable cache
scheme which is divided an application into a
number of fixed 64 intervals to find every local
optimal cache configuration. By dividing an
application into a number of fixed intervals, it not
only achieves the purpose of energy saving, but
also overcomes meeting two low points could find
the better one [8]. The work improves Jheng et al.’s
scheme, just try to divide the interval into smaller
ones which were fixed 1 million instructions tuning
once, but the number of intervals were not fixed.
The algorithm is almost the same as Jheng et al.
and Lin et al.’s algorithms but Lin et al.’s algorithm
goes further in statistics. Based on Jheng et al.’s
study, this work enhances the scheme to on-line
tuning.

The remainder of this paper is organized as
follows. Section 2 first introduces the architecture
of reconfigurable cache. The energy model is then
presented. Section 3 presents how to implement an
on-line reconfigurable cache system. Section 4
demonstrates experimental methodology and
results. Conclusions are finally drawn in Section 5.

II. RECONFIGURABLE ARCHITECTURE

This section describes the fundamentals of the
proposed reconfigurable cache architecture. The
search space of configurable cache parameters and
how the parameters are tuned are introduced at first.
Then, how the hardware is modified to support
reconfiguration is illustrated. Finally, an energy
model is used to evaluate the proposed scheme.

A. Parameters

Instead of adopting conventional cache
parameters such as cache size, cache block size,
and way associativity, the proposed reconfigurable

cache architecture includes three parameters: the
number of blocks in a set, cache block size, and
way associativity. The three parameters are nblks,
bsize, and assoc for short in this paper. Cache size
is composed of nblks, bsize and assoc. The
parameter nblks is chosen to replace cache size
because of the “simple and dump” principle.
Considering hardware implementation, it is under a
complicated circumstance for the conventional
cache parameters. Changing cache size affects
nblks simultaneously and so are the other two
parameters. As cache size is not a parameter in this
work, tuning one of the three parameters just
simply doubles or halves the cache size and does
not affect other parameters.

The bounds of configuration search space are
decided by extending Lin et al.’s work [7]. The
upper bound of nblks is 512 and the lower bound is
16. The upper bound of bsize is 64 bytes and the
lower bound is 8 bytes. The minimum value of
bsize is also the lowest bound supported by the
simulator. The upper bound of assoc is 16 and the
lower bound is 1. There are 120 combinations of
three parameters which is much larger than the
number of combinations in Lin et al.’s work [7].
According to the statistic of more than forty
benchmarks, there is no any value of the three
parameters abandoned by every benchmark. The
extension of searching space is necessary because
the instability of a phase is larger than that of entire
execution of a program.

B. Architecture of Reconfigurable Cache

The number of blocks in a set is limited to be
powers of two to enable simple decoding. The
blocks are physically divided into 6 sub arrays: 256,
128, 64, 32, 16, and 16 blocks. The partition makes
it possible to tune from 512 to 16 nblks. The
unused blocks are shutdown for saving energy
consumption.

An approach introduced by Chen et al. [3] can
adjust the line size by configuring a counter which
indicates the number of words to be read from the
off-chip memory when there is a miss. The
associativity tuning is implemented by Banerjee et
al.0. A simple hardware counter keeps track of the
miss rate and the information is fed back to the way
controller. Each cache way can be selectively

 3

enable or disable by the controller.

In an non-tuned cache, the size of tag adjusts to
32 – log2(nblks × bsize) under 32bits addressing
mode. Dynamically tuning cache size during an
execution of programs changes tag size as well.
Even so, implementing a multi-length tag
comparator is not considered efficient in this work.
A feasible solution is the overlapped wide-tag [3]
which extends the size of tag to maximum length in
search space. Although some bits of tag may be
redundant, it makes cache be any size without
additional control hardware.

C. Energy Calculation

With the increasing of working frequency, the
dynamic power consumption dominates most
energy consumption in caches, so the static power
consumption is not considered. The energy
consumption caused by off-chip memory should
not be ignored since the accessing of off-chip
memory is a part of a normal memory access.
When a cache misses, the instruction fetching and
data referencing cause huge miss penalty. Besides
the cache inner calculates, the off-chip accessing is
included.

To calculate the energy consumed in the
proposed cache architecture, the adopted energy
model should be calculated fast and easily. We
modify the energy model used by Shiue and
Chakrabarti [11] for calculating the energy
consumption to support cache reconfiguration. This
model shows in (1) that is separated by four
components.

Edec is the energy consumption of the decoding
logic and translating in address buses. The
capacitance of a decoding logic is usually much
less than that of an address bus; hence the energy
consumption of the address buses dominates the
entire address decoding path. Ecell denotes the
energy consumption of the read/write circuitry and
cell array due to status bit, tag, and data cell arrays.
State bit, tag cell, and data cell consume most
energy in cell array, and they can be implemented
in dynamic or static logic. In dynamic circuit
design, word/bit lines are pre-charged on every
access. The energy consumed on bit lines is the
same whether the values on the bit lines are 1 or 0.
In a static circuit design, there is no pre-charge on

word/bit lines. The energy consumption on tag and
data memory array directly depends on the bit
switch of the word/bit lines. For above reason we
only compute the dynamic energy consumption. It
will access off-chip memory via address/data pad
when cache misses.

Eio represents the energy consumption in I/O pad.
In current microprocessors, the capacitance of I/O
pads is usually larger than that on address and data
buses. Therefore the energy consumption of I/O
pad is dominated by the energy consumed during
the bit switch of the I/O path. Emem stands for
accessing an off-chip memory. The energy model
adopted in this work is stated as follows:

Etotal = Edec + Ecell + Eio + Emain (1)
Edec = α × PrA × Wadd × (C / L) × (Nhit + Nmiss)
Ecell = β × [W × (8 × L + T + st)] × [C / (W × L)

+ 4.8] × (Nhit + Nmiss NWPhits) +β × (8 × L
+ T + St) ×[C / (W × L) + 4.8] × NWPhits

Eio = γ × (PrD × 8 × L + PrA × Wadd) × Nmiss
Emem = γ × (PrD × 8 × L + PrA × Wadd) × Nmiss +

Em × 8 × L × Nmiss

where
PrA = the probability of one bit switch in address

bus/pad
PrD = the probability of one bit switch in data

pad
Wadd = the width of address bus
C = cache size in bytes
L = cache line size in bytes
W = way associativity
Nhit = number of hits
Nmiss = number of miss
NWPhits = number of way prediction hits
T = tag size in bits
St = number of status bits per block frame
Em = energy consumption of a main memory

access
α = 7.89e-17; β = 1.44e-14; γ = 5.45e-11
α, β, γ are used for 0.8 μm CMOS technology

Su and Despain [12] revealed the relationship
between bit switch rate and miss rate. An average
bit switch rate is chosen as 4K bytes for cache size,
16 Bytes for cache line size, and 2-way for way

 4

associativity. By Su et al. [13], the value of PrA is
0.0045, and PrD is 0.0044. Clearly, it takes at least
14 bits address bus to access 16 Kbytes cache size.
The SRAM CY7C1326-133 from Cypreess is used
as our cache memory. The size of the SRAM is
2Mbits, access time 4ns, voltage of 3.3V, energy
consumption of 4.95nJ per access. St is the symbol
of a valid bit which is the only one status bit in the
proposed scheme.

III. ON-LINE RECONFIGURABLE CACHE

This section shows how to achieve
reconfiguration in real-time. First, searching
algorithms are showed and the proposed searching
algorithm is given. Second, the initial configuration
of searching algorithm is decided by statistic. Third,
the priority of the effect of csize, bsize, and assoc is
revealed. Finally, a real-time scheme is proposed by
combining ideas mentioned in this chapter.

A. Algorithm

The algorithm used in this work is based on Lin
et al.’s work [7] and the algorithm is modified to fit
the on-line scheme. The algorithm tunes one of
three parameters at a time. When the low point is
reached, the algorithm goes to the next parameter.
The proposed algorithm has three input sets: nblks,
bsize, and assoc. In each interval, number of cache
misses can be generated by miss counter and sent
to the energy calculator. The following is the
general model of the algorithm.

run the application in the time interval
while(time is up)
{
current energy = energy calculator(nblks, bsize,
assoc, misses, length of interval);
if(optimal energy > current energy)

optimal value = current value;

if(optimal value is minimum or maximum in search
space)

if(value next to the optimal value is checked)
optimal value of the parameter is found;

else
next value = the value next to the optimal
value;

else
if(both sides of optimal value is checked)

optimal value of the parameter is found;
else

if(value = 1/2 × optimal value is checked)
next value = 2 × optimal value;

else
next value = 1/2 × optimal value;

if(optimal value of the parameter is found)

goto next parameter;
else

current value = next value;
}

The proposed algorithm searches for optimal
value of each parameter sequentially. As the
optimal energy and current energy are the only
information available, the direction of tuning is
unknown when the algorithm begins. For the
consistency of implementation, a smaller value is
always chosen to be the next configuration at first.
If a value is selected as the optimal parameter, both
larger and smaller ones around the optimal
parameter must have been tested. If the value is the
minimum or maximum in the search space, only
one side has to be tested.

B. Priority of Three Parameters

The algorithm introduced in above section tunes
one of three parameters at a time. The priority of
parameter tuning is decided by the order of impact
on energy. Figure 1 is the analysis of the energy
model stated in Section 2.5. The x–axis is the
number of misses during 1 million instructions and
the y-axis is the average percentage of energy
increasing when one parameter doubles its value.

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6

LOG10(misses)

energy

increase(%)

nsets bsize assoc

Figure 1. Analysis of the energy model.

As shown in Figure 1, when the number of
misses is less than 100, the assoc is the most
influential parameter. When the number of misses

 5

is larger than 100, the impact of assoc and nblks
decays in a fast speed while the impact of bsize
increases on the contrary. Based on statistics of the
simulation, the number of misses under most cache
configuration is greater than 100 in 1 million
instructions. The priority of parameters is decided
as bsize, assoc and nblks.

C. Statistic Starting Point

An important observation has been introduced in
Lin et al.’s work [7]. With the increasing of nblks,
the arc of energy consumption versus nblks should
have only one low point for any benchmark and so
are the other two parameters. The red line in Figure
2 is not available in the simulation of this work.
The phenomenon is apparent when one parameter
is tuned. The situation gets much complicated if
there are three parameters tuning simultaneously.

16

32

64 128

256

512

1000000

1500000

2000000

2500000

3000000

10 100 1000

nblks

energy(nJ)

Figure 2. The energy consumption of nblks from

16 to 512. The benchmark is bitcount;
bsize is 8 bytes, and assoc is 4. The red
line is a synthetic example which is not
available in this work.

Starting point is the initial value of cache
configuration when the proposed algorithm begins.
If the starting point is too far from the low point, it
is possible for the cache configuration tuning to be
trapped in sub-low points. To avoid this case, the
starting point should be near the low point. After
gathering statistics of all benchmarks in this work,
the values of each parameter appear most in
optimal configurations are chosen as starting point.
The nblks is set as 64, bsize as 16 bytes and assoc
as 8 to the configuration of starting point for L1
instruction cache.

D. Analysis of average Tuning Time

According to the algorithm in section 3.1, the

best case of tuning time is 1 + 1 + 1 and the worst
case of tuning time is 6 + 5 + 4. The best case and
the worst case are the same as Lin et al.’s work [7].
The average tuning time of nblks is given in Table
1.

Each element in Table 1 records the steps needed
when tuning from any nblks in column X to next
nblks in row Y. For example, when current nblks is
512 and the next optimal nblks is 32, it takes 4
steps to go from 512 to 32. There is no information
whether the value 16 is better or not, so it is
necessary to change nblks to 16. After applying try
and error strategy, the value 16 is found worse than
32 and the nblks is changed back to 32. It totally
costs 6 tune times as shown in Table 1. The
assumption that the probability of next nblks is
average to every nblks value is adopted in this
analysis.

Table 1. Tuning Time of All Cases for Current
nblks to Next nblks

 Y
X 512 256 128 64 32 16 sum

512 2 3 4 5 6 5 25
256 2 3 3 4 5 4 21
128 3 4 3 3 4 3 20
64 4 5 4 3 3 2 21
32 5 6 5 4 3 1 24
16 5 6 5 4 3 2 25

sum 136

The possibility of next nblks is 1/6 to each value
so the average tuning time from nblks 512 to next
nblks is 25/6. Because the possibility of current
nblks is also 1/6 for each nblks, the average tuning
time for nblks is 136/36. By the same estimation,
the average tuning time of bsize is 45/16 and the
average tuning time of assoc is 83/25. The overall
average tuning time of the proposed algorithm is
the sum of average cases of three parameters which
equals 9.91. When the proposed algorithm is
applied, it tunes 9.91 times on average to find an
optimal configuration.

E. On-line Reconfigurable Scheme

The idea of on-line reconfiguration is dividing
the execution of an application into constant time
intervals. The interval between tuning is set to be 1
million instructions in this work. During each
interval, the proposed algorithm is applied to find

 6

the optimal cache configuration and the found
configuration is recorded for the next round. The
optimal configuration found in an interval is called
a local optimal configuration while the optimal
cache configuration found during the whole
execution is called global optimal one. A local
optimal configuration may not be optimal for the
next interval because the behavior of the
application may differ. A reasonable scheme is
shifting the recorded local optimal configuration
backward to the start of the interval when the
second round is coming. This scheme ensures that
the applied optimal configuration is suitable for the
current time interval and saves energy in a
significant degree.

IV. EXPERIMENTAL RESULTS

This section demonstrates the simulation results.
The simulation environment in this work is first
introduced and simulation results are then shown.

A. Environment

SimpleScalar introduced by Buger et al. [2], a
MIPS-like microprocessor simulator, is the tool set
used in this work. This tool is developed by
University of Wisconsin, Madison. We carefully
modify and verify the SimpleScalar tool set to
support on-line cache reconfiguration. Mibench
benchmark suit is taken for embedded systems
simulation that is developed by University of
Michigan, Ann Arbor [5]. The simulation is under
the cache which is modeled as in-order execution,
write-back and the replacement policy is LRU.

B. On-line Reconfiguration Results

The proposed reconfigurable scheme saves
energy by finding local optimal configuration
which is considered better than global optimal one.
The dijkstra benchmark calculates the shortest path
between every pair of nodes in a graph. The global
optimal cache configuration of dijkstra is 64 for
nblks, 8 bytes for bsize and 16 for assoc. As shown
in Figure 3, the global optimal configuration is not
always the best configuration in the execution.
There is another configuration better than the
global one periodically. The purpose of the
proposed scheme is always to select the cache
configuration with lowest energy consumption.

However, not every benchmark in Mibench is
sensible to cache reconfiguration. The sha
benchmark in Figure 4 is a secure hash algorithm
that produces a 160-bit message digests for a given
input. The global optimal configuration of sha
dominates the whole execution and there is no
configuration better in any time interval. To these
insensible benchmarks, the proposed scheme still
makes sense. Although it is in vain for the proposed
scheme to tune cache configuration, the global
optimal cache configuration of insensible
applications will be found by the scheme and the
insensibility will be revealed.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

10 20 30 40 50
1M instructions

energy(nJ)

global optiaml N64B8A16 N16B8A16

Figure 3. The energy consumption of dijkstra

benchmark with different cache
configurations.

700000

750000

800000

850000

900000

950000

1000000

0 10 20 30 40 50

1M instructions

energy(nJ)

global optimal N128B8A4 N256B8A2 N64B16A4

Figure 4. The energy consumption of sha

benchmark with different cache
configurations.

Figure 5 shows the overall energy saving on
Mibench. The proposed scheme achieves on
average 6.626% energy reduction compared to
respective global optimal cache configurations of
all benchmarks. Figure 6 also displays that cache
configuration for every 1 million instructions

 7

tuning once is more saving energy than for 64
intervals one on average 4.751% energy reduction.
Besides some cache tuning insensible applications,
applications with tiny number of instructions
benefit nothing from the proposed scheme because
the time interval is still too larger.

Figure 5. The average energy reduction for each

application of Mibench. Local V.S.
Global optimal cache configuration.

Figure 6. The average energy reduction for each

application of Mibench. (Local_1M V.S.
Local_64_intervals optimal cache
configuration.

V. CONCLUSIONS

Saving energy is undoubtedly an important issue
for embedded systems. As embedded systems work
in a quite simple environment, it makes sense to
optimize cache configuration to a certain
application. Lin et al. proposed an on-line
reconfigurable cache architecture which reduces
energy over a non-tuned reference cache [7] and
Jheng et al. further presented a real-time

reconfigurable cache architecture for finding local
optimal cache configuration but the interval will be
divided into 64 ones which reduces energy over the
whole application tuning once reference cache. [8]
This work provides an on-line reconfigurable cache
scheme which improves on average 6.626% energy
reduction over Lin and Duh’s work and also on
average 4.751% energy reduction over Jheng and
Duh’s work.

ACKNOWLEDGMENT

The authors would like to thank the National
Science Council of the Republic of China, Taiwan
for financially supporting this research under
Contract No. NSC-97-2221-E-260-001-.

REFERENCE
[1] S. Banerjee, Surendra G, and S. K. Nandy,

"Program phase directed dynamic cache way
reconfiguration for power efficiency," in: Proc.
the 12th Asia and South Pacific Design
Automation Conference, Yokohama, Japan,
2007, pp. 884–889.

[2] D. Burger and T.M. Austin, "The Simple
Scalar tool set, version 2.0," ACM SIGARCH
Computer Architecture News, Vol. 25, No. 3,
pp. 13–25, 1997.

[3] L.-M. Chen, X.-C. Zou, J.-M. Lei, and Z.-L.
Liu, "Dynamically reconfigurable cache for
low-power embedded system," in: Proc. the
3rd International Conference on Natural
Computation, Vol. 5, 2007, pp. 180–184.

[4] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar,
and E. Barros, "A one-shot configurable-cache
tuner for improved energy and performance,"
in: Proc. the 2007 IEEE/ACM Design,
Automation and Test in Europe (DATE), 2007,
pp. 1–6.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.
M. Austin, T. Mudge, and R. B. Brown,
"MiBench: A free, commercially
representative embedded benchmark suite," in:
Proc. the 4th IEEE Annual Workshop on
Workload Characterization, 2001, pp.3–14.

[6] J. Kin, M. Gupta, and W. Mangione-Smith,
"The Filter Cache: An Energy Efficient
Memory Structure," in: Proc. the 30th
ACM/IEEE Annual International Symposium
on Microarchitecture, Research Triangle Park,
North CA, USA, 1997, pp. 184–193.

[7] C.-H. Lin and D.-R. Duh, "On-line
reconfigurable cache for embedded systems, "
in: Proc. the 2006 Conf. on Information

 8

Technology and Applications in Outlying
Islands, Jinning, Kinmen, Taiwan, June 2–3,
Taiwan, 2006.

[8] G.-C. Jheng, D.-R. Duh, and C.-N. Lai,
"Real-time reconfigurable cache for low
power embedded systems," in: Proc. the 25th
Workshop on Combinatorial Mathematics and
Computation Theory, Chung Hua University,
HsinChu, Taiwan, April 25–26, 2008, pp.
181–187.

[9] S. Segars, "Low power design techniques for
microprocessors," in: Proc. the 4th IEEE
International Solid-State Circuits Conference
Tutorial, San Francisco, CA, USA, 2001.

[10] T. Sherwood, S. Sair, and B. Calder, "Phase
tracking and prediction," in: Proc. the 30th
Annual International Symposium on
Computer Architecture, 2003, pp. 336–347.

[11] W.-T. Shiue and C. Chakrabarti, "Memory
design and exploration for low power,
embedded systems," Journal of VLSI Signal
Processing-Systems for Signal, Image, and
Video Technology, Vol. 29, No. 3, pp.
167–178, 2001.

[12] C.-L. Su and A. Despain, "Cache design
trade-offs for power and performance

optimization: A case study, " in: Proc. the 1995
International Symposium on Low Power
Design, Dana Point, CA, USA, 1995, pp.
63–68.

[13] C.-L. Su and A. M. Despain, "Cache designs
for energy efficiency, " in: Proc. the 28th
Hawaii International Conference on System
Sciences, Kihei, Maui, Hawaii, 1995, pp.
306–315.

[14] C.-L. Yang and C.-H. Lee, "HotSpot cache:
Joint temporal and spatial locality exploitation
for I-cache energy reduction," in: Proc. the
International Symposium on Low Power
Electronics and Design, 2004, pp.114–119.

[15] C. Zhang, F. Vahid, and W. Najjar, "A highly
configurable cache for low energy embedded
systems," ACM Transactions Embedded
Computing Systems, Vol. 4, No. 2, pp.
363–387, 2005.

[16] C. Zhang, F. Vahid, and W. Najjar, "Energy
benefits of a configurable line size cache for
embedded systems," in: Proc. IEEE Computer
Society Annual Symposium on Very Large
Scale Integration, Darmstadt, Germany, 2003,
pp. 87–91.

