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Abstract―Modern embedded systems execute a small 

set of applications or even a single one repeatedly. 
Specializing cache configurations to a particular 
application is well-known to have great benefits on 
performance and power. To reduce the searching for 
optimal cache configuration, a most-case optimal cache 
configuration searching algorithm was proposed which 
greatly reduces the time and power in searching. However, 
the fact that the behavior of an application varies from 
phase to phase has been shown in recent years. Tuning 
cache configuration to fit a target application in different 
phases gives a further improvement in power 
consumption. This work presents a mechanism which 
determines the optimal configurations in different phases 
during an execution process. By dividing an execution 
process into small time intervals and applying 
corresponding local optimal cache configuration for each 
interval on L1 instruction cache, this work shows that 
over 4.751% energy saving is obtained compared with 
whole application be divided into 64 intervals. On average 
6.626% power reduction is achieved compared to a 
benchmark with its respective global optimal cache 
configuration. 

Index Terms―Cache, reconfigurable cache; embedded 
systems; power consumption; benchmark. 

I. INTRODUCTION 

The research of computer systems is growing 
and is getting more important in the last three 
decades. The gap between the processor and the 
memory has widened when computer systems 
improve. It has been shown that inserting caches 
between processors and off-chip memories fills the 
gap efficiently. Embedded microprocessors have 
been widely used for the hand held devices due to 
their high performance, low energy consumption, 
and low cost. Caches are infixed in embedded 

microprocessors with the growth of embedded 
systems. The most important thing for embedded 
systems like PDA and cellular phone is how long 
the device is alive. Segars [9] showed that an 
embedded microprocessor such as the ARM920T 
processor dissipates more than 50% of the total 
power in the cache. With the increasing usage of 
cache, energy savings in caches have become more 
critical. 

Sherwood et al. [10] showed that programs may 
have different run-time behaviors in different 
portions of an execution as a series of phases. A 
phase is defined as an interval of execution during 
which a measured program metric is relatively 
stable. The scheme proposed by Sherwood et al. 
captures phases that account for over 80% of 
execution using less than 500 bytes of on-chip 
memory [10]. 

Some strategies augmented small caches 
between the processor and lower-level cache to 
reduce the energy consumption, such as the filter 
cache introduced by Kin et al. [6] and the hotspot 
cache introduced by Yang et al. [14]. Others 
improved the cache itself to reduce the energy 
consumption. Many researches on caches with 
tunable parameters to reduce power consumption 
have been introduced in recently years. Zhang et al. 
[15] introduced a highly configurable cache 
architecture which dynamically configures the 
associativity size and line size with certain restrict 
combinations. Banerjee et al. 0 combined both 
program phase detection and cache way 
reconfigurable to achieve 32% power reduction on 
memory access with less than 2% performance 
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degradation. 

A single-pass multi-cache evaluation has been 
proposed and implemented in hardware by 
Gordon-Ross et al. [4] which speeds up 7.7 times in 
tuning time. Even so, the hardware overhead is so 
tremendous which occupies up to 12% area of 
ARM920T. Lin and Duh proposed an on-line 
reconfigurable cache which greatly reduces the 
search time and the cache tuning can proceed 
during the execution [7]. 

Jheng and Duh proposed a reconfigurable cache 
scheme which is divided an application into a 
number of fixed 64 intervals to find every local 
optimal cache configuration. By dividing an 
application into a number of fixed intervals, it not 
only achieves the purpose of energy saving, but 
also overcomes meeting two low points could find 
the better one [8]. The work improves Jheng et al.’s 
scheme, just try to divide the interval into smaller 
ones which were fixed 1 million instructions tuning 
once, but the number of intervals were not fixed. 
The algorithm is almost the same as Jheng et al. 
and Lin et al.’s algorithms but Lin et al.’s algorithm 
goes further in statistics. Based on Jheng et al.’s 
study, this work enhances the scheme to on-line 
tuning. 

The remainder of this paper is organized as 
follows. Section 2 first introduces the architecture 
of reconfigurable cache. The energy model is then 
presented. Section 3 presents how to implement an 
on-line reconfigurable cache system. Section 4 
demonstrates experimental methodology and 
results. Conclusions are finally drawn in Section 5. 

II. RECONFIGURABLE ARCHITECTURE 

This section describes the fundamentals of the 
proposed reconfigurable cache architecture. The 
search space of configurable cache parameters and 
how the parameters are tuned are introduced at first. 
Then, how the hardware is modified to support 
reconfiguration is illustrated. Finally, an energy 
model is used to evaluate the proposed scheme. 

A. Parameters 

Instead of adopting conventional cache 
parameters such as cache size, cache block size, 
and way associativity, the proposed reconfigurable 

cache architecture includes three parameters: the 
number of blocks in a set, cache block size, and 
way associativity. The three parameters are nblks, 
bsize, and assoc for short in this paper. Cache size 
is composed of nblks, bsize and assoc. The 
parameter nblks is chosen to replace cache size 
because of the “simple and dump” principle. 
Considering hardware implementation, it is under a 
complicated circumstance for the conventional 
cache parameters. Changing cache size affects 
nblks simultaneously and so are the other two 
parameters. As cache size is not a parameter in this 
work, tuning one of the three parameters just 
simply doubles or halves the cache size and does 
not affect other parameters. 

The bounds of configuration search space are 
decided by extending Lin et al.’s work [7]. The 
upper bound of nblks is 512 and the lower bound is 
16. The upper bound of bsize is 64 bytes and the 
lower bound is 8 bytes. The minimum value of 
bsize is also the lowest bound supported by the 
simulator. The upper bound of assoc is 16 and the 
lower bound is 1. There are 120 combinations of 
three parameters which is much larger than the 
number of combinations in Lin et al.’s work [7]. 
According to the statistic of more than forty 
benchmarks, there is no any value of the three 
parameters abandoned by every benchmark. The 
extension of searching space is necessary because 
the instability of a phase is larger than that of entire 
execution of a program. 

B. Architecture of Reconfigurable Cache 

The number of blocks in a set is limited to be 
powers of two to enable simple decoding. The 
blocks are physically divided into 6 sub arrays: 256, 
128, 64, 32, 16, and 16 blocks. The partition makes 
it possible to tune from 512 to 16 nblks. The 
unused blocks are shutdown for saving energy 
consumption. 

An approach introduced by Chen et al. [3] can 
adjust the line size by configuring a counter which 
indicates the number of words to be read from the 
off-chip memory when there is a miss. The 
associativity tuning is implemented by Banerjee et 
al.0. A simple hardware counter keeps track of the 
miss rate and the information is fed back to the way 
controller. Each cache way can be selectively 
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enable or disable by the controller. 

In an non-tuned cache, the size of tag adjusts to 
32 – log2(nblks × bsize) under 32bits addressing 
mode. Dynamically tuning cache size during an 
execution of programs changes tag size as well. 
Even so, implementing a multi-length tag 
comparator is not considered efficient in this work. 
A feasible solution is the overlapped wide-tag [3] 
which extends the size of tag to maximum length in 
search space. Although some bits of tag may be 
redundant, it makes cache be any size without 
additional control hardware. 

C. Energy Calculation 

With the increasing of working frequency, the 
dynamic power consumption dominates most 
energy consumption in caches, so the static power 
consumption is not considered. The energy 
consumption caused by off-chip memory should 
not be ignored since the accessing of off-chip 
memory is a part of a normal memory access. 
When a cache misses, the instruction fetching and 
data referencing cause huge miss penalty. Besides 
the cache inner calculates, the off-chip accessing is 
included. 

To calculate the energy consumed in the 
proposed cache architecture, the adopted energy 
model should be calculated fast and easily. We 
modify the energy model used by Shiue and 
Chakrabarti [11] for calculating the energy 
consumption to support cache reconfiguration. This 
model shows in (1) that is separated by four 
components. 

Edec is the energy consumption of the decoding 
logic and translating in address buses. The 
capacitance of a decoding logic is usually much 
less than that of an address bus; hence the energy 
consumption of the address buses dominates the 
entire address decoding path. Ecell denotes the 
energy consumption of the read/write circuitry and 
cell array due to status bit, tag, and data cell arrays. 
State bit, tag cell, and data cell consume most 
energy in cell array, and they can be implemented 
in dynamic or static logic. In dynamic circuit 
design, word/bit lines are pre-charged on every 
access. The energy consumed on bit lines is the 
same whether the values on the bit lines are 1 or 0. 
In a static circuit design, there is no pre-charge on 

word/bit lines. The energy consumption on tag and 
data memory array directly depends on the bit 
switch of the word/bit lines. For above reason we 
only compute the dynamic energy consumption. It 
will access off-chip memory via address/data pad 
when cache misses. 

Eio represents the energy consumption in I/O pad. 
In current microprocessors, the capacitance of I/O 
pads is usually larger than that on address and data 
buses. Therefore the energy consumption of I/O 
pad is dominated by the energy consumed during 
the bit switch of the I/O path. Emem stands for 
accessing an off-chip memory. The energy model 
adopted in this work is stated as follows:  

 
Etotal = Edec + Ecell + Eio + Emain (1) 
Edec = α × PrA × Wadd × (C / L) × (Nhit + Nmiss) 
Ecell = β × [W × (8 × L + T + st)] × [C / (W × L) 

+ 4.8] × (Nhit + Nmiss   NWPhits) +β × (8 × L 
+ T + St) ×[C / (W × L) + 4.8] × NWPhits 

Eio = γ × (PrD × 8 × L + PrA × Wadd ) × Nmiss 
Emem = γ × (PrD × 8 × L + PrA × Wadd) × Nmiss + 

Em × 8 × L × Nmiss 
 

where  
PrA = the probability of one bit switch in address 

bus/pad 
PrD = the probability of one bit switch in data 

pad 
Wadd = the width of address bus 
C = cache size in bytes 
L = cache line size in bytes 
W = way associativity 
Nhit = number of hits 
Nmiss = number of miss 
NWPhits = number of way prediction hits 
T = tag size in bits 
St = number of status bits per block frame 
Em = energy consumption of a main memory 

access 
α = 7.89e-17; β = 1.44e-14; γ = 5.45e-11 
α, β, γ are used for 0.8 μm CMOS technology 

 

Su and Despain [12] revealed the relationship 
between bit switch rate and miss rate. An average 
bit switch rate is chosen as 4K bytes for cache size, 
16 Bytes for cache line size, and 2-way for way 
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associativity. By Su et al. [13], the value of PrA is 
0.0045, and PrD is 0.0044. Clearly, it takes at least 
14 bits address bus to access 16 Kbytes cache size. 
The SRAM CY7C1326-133 from Cypreess is used 
as our cache memory. The size of the SRAM is 
2Mbits, access time 4ns, voltage of 3.3V, energy 
consumption of 4.95nJ per access. St is the symbol 
of a valid bit which is the only one status bit in the 
proposed scheme. 

III. ON-LINE RECONFIGURABLE CACHE 

This section shows how to achieve 
reconfiguration in real-time. First, searching 
algorithms are showed and the proposed searching 
algorithm is given. Second, the initial configuration 
of searching algorithm is decided by statistic. Third, 
the priority of the effect of csize, bsize, and assoc is 
revealed. Finally, a real-time scheme is proposed by 
combining ideas mentioned in this chapter. 

A. Algorithm 

The algorithm used in this work is based on Lin 
et al.’s work [7] and the algorithm is modified to fit 
the on-line scheme. The algorithm tunes one of 
three parameters at a time. When the low point is 
reached, the algorithm goes to the next parameter. 
The proposed algorithm has three input sets: nblks, 
bsize, and assoc. In each interval, number of cache 
misses can be generated by miss counter and sent 
to the energy calculator. The following is the 
general model of the algorithm. 

 
run the application in the time interval 
while(time is up ) 
{ 
current energy = energy calculator( nblks, bsize, 
assoc, misses, length of interval); 
if(optimal energy > current energy) 

optimal value = current value; 
 

if(optimal value is minimum or maximum in search 
space) 

if(value next to the optimal value is checked) 
optimal value of the parameter is found;  

else 
next value = the value next to the optimal 
value; 

else 
if(both sides of optimal value is checked) 

optimal value of the parameter is found; 
else 

if(value = 1/2 × optimal value is checked) 
next value = 2 × optimal value; 

else 
next value = 1/2 × optimal value;  

 
if(optimal value of the parameter is found) 

goto next parameter; 
else 

current value = next value; 
} 
 

The proposed algorithm searches for optimal 
value of each parameter sequentially. As the 
optimal energy and current energy are the only 
information available, the direction of tuning is 
unknown when the algorithm begins. For the 
consistency of implementation, a smaller value is 
always chosen to be the next configuration at first. 
If a value is selected as the optimal parameter, both 
larger and smaller ones around the optimal 
parameter must have been tested. If the value is the 
minimum or maximum in the search space, only 
one side has to be tested. 

B. Priority of Three Parameters 

The algorithm introduced in above section tunes 
one of three parameters at a time. The priority of 
parameter tuning is decided by the order of impact 
on energy. Figure 1 is the analysis of the energy 
model stated in Section 2.5. The x–axis is the 
number of misses during 1 million instructions and 
the y-axis is the average percentage of energy 
increasing when one parameter doubles its value. 
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Figure 1. Analysis of the energy model. 

As shown in Figure 1, when the number of 
misses is less than 100, the assoc is the most 
influential parameter. When the number of misses 
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is larger than 100, the impact of assoc and nblks 
decays in a fast speed while the impact of bsize 
increases on the contrary. Based on statistics of the 
simulation, the number of misses under most cache 
configuration is greater than 100 in 1 million 
instructions. The priority of parameters is decided 
as bsize, assoc and nblks. 

C. Statistic Starting Point 

An important observation has been introduced in 
Lin et al.’s work [7]. With the increasing of nblks, 
the arc of energy consumption versus nblks should 
have only one low point for any benchmark and so 
are the other two parameters. The red line in Figure 
2 is not available in the simulation of this work. 
The phenomenon is apparent when one parameter 
is tuned. The situation gets much complicated if 
there are three parameters tuning simultaneously. 
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64 128

256

512

1000000

1500000

2000000

2500000

3000000

10 100 1000

nblks

energy(nJ)

 
Figure 2. The energy consumption of nblks from 

16 to 512. The benchmark is bitcount; 
bsize is 8 bytes, and assoc is 4. The red 
line is a synthetic example which is not 
available in this work. 

Starting point is the initial value of cache 
configuration when the proposed algorithm begins. 
If the starting point is too far from the low point, it 
is possible for the cache configuration tuning to be 
trapped in sub-low points. To avoid this case, the 
starting point should be near the low point. After 
gathering statistics of all benchmarks in this work, 
the values of each parameter appear most in 
optimal configurations are chosen as starting point. 
The nblks is set as 64, bsize as 16 bytes and assoc 
as 8 to the configuration of starting point for L1 
instruction cache. 

D. Analysis of average Tuning Time 

According to the algorithm in section 3.1, the 

best case of tuning time is 1 + 1 + 1 and the worst 
case of tuning time is 6 + 5 + 4. The best case and 
the worst case are the same as Lin et al.’s work [7]. 
The average tuning time of nblks is given in Table 
1. 

Each element in Table 1 records the steps needed 
when tuning from any nblks in column X to next 
nblks in row Y. For example, when current nblks is 
512 and the next optimal nblks is 32, it takes 4 
steps to go from 512 to 32. There is no information 
whether the value 16 is better or not, so it is 
necessary to change nblks to 16. After applying try 
and error strategy, the value 16 is found worse than 
32 and the nblks is changed back to 32. It totally 
costs 6 tune times as shown in Table 1. The 
assumption that the probability of next nblks is 
average to every nblks value is adopted in this 
analysis. 

Table 1. Tuning Time of All Cases for Current 
nblks to Next nblks 

 Y 
X 512 256 128 64 32 16 sum

512 2 3 4 5 6 5 25
256 2 3 3 4 5 4 21
128 3 4 3 3 4 3 20
64 4 5 4 3 3 2 21
32 5 6 5 4 3 1 24
16 5 6 5 4 3 2 25

sum 136

The possibility of next nblks is 1/6 to each value 
so the average tuning time from nblks 512 to next 
nblks is 25/6. Because the possibility of current 
nblks is also 1/6 for each nblks, the average tuning 
time for nblks is 136/36. By the same estimation, 
the average tuning time of bsize is 45/16 and the 
average tuning time of assoc is 83/25. The overall 
average tuning time of the proposed algorithm is 
the sum of average cases of three parameters which 
equals 9.91. When the proposed algorithm is 
applied, it tunes 9.91 times on average to find an 
optimal configuration. 

E. On-line Reconfigurable Scheme 

The idea of on-line reconfiguration is dividing 
the execution of an application into constant time 
intervals. The interval between tuning is set to be 1 
million instructions in this work. During each 
interval, the proposed algorithm is applied to find 
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the optimal cache configuration and the found 
configuration is recorded for the next round. The 
optimal configuration found in an interval is called 
a local optimal configuration while the optimal 
cache configuration found during the whole 
execution is called global optimal one. A local 
optimal configuration may not be optimal for the 
next interval because the behavior of the 
application may differ. A reasonable scheme is 
shifting the recorded local optimal configuration 
backward to the start of the interval when the 
second round is coming. This scheme ensures that 
the applied optimal configuration is suitable for the 
current time interval and saves energy in a 
significant degree. 

IV. EXPERIMENTAL RESULTS 

This section demonstrates the simulation results. 
The simulation environment in this work is first 
introduced and simulation results are then shown. 

A. Environment 

SimpleScalar introduced by Buger et al. [2], a 
MIPS-like microprocessor simulator, is the tool set 
used in this work. This tool is developed by 
University of Wisconsin, Madison. We carefully 
modify and verify the SimpleScalar tool set to 
support on-line cache reconfiguration. Mibench 
benchmark suit is taken for embedded systems 
simulation that is developed by University of 
Michigan, Ann Arbor [5]. The simulation is under 
the cache which is modeled as in-order execution, 
write-back and the replacement policy is LRU. 

B. On-line Reconfiguration Results 

The proposed reconfigurable scheme saves 
energy by finding local optimal configuration 
which is considered better than global optimal one. 
The dijkstra benchmark calculates the shortest path 
between every pair of nodes in a graph. The global 
optimal cache configuration of dijkstra is 64 for 
nblks, 8 bytes for bsize and 16 for assoc. As shown 
in Figure 3, the global optimal configuration is not 
always the best configuration in the execution. 
There is another configuration better than the 
global one periodically. The purpose of the 
proposed scheme is always to select the cache 
configuration with lowest energy consumption. 

However, not every benchmark in Mibench is 
sensible to cache reconfiguration. The sha 
benchmark in Figure 4 is a secure hash algorithm 
that produces a 160-bit message digests for a given 
input. The global optimal configuration of sha 
dominates the whole execution and there is no 
configuration better in any time interval. To these 
insensible benchmarks, the proposed scheme still 
makes sense. Although it is in vain for the proposed 
scheme to tune cache configuration, the global 
optimal cache configuration of insensible 
applications will be found by the scheme and the 
insensibility will be revealed. 
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Figure 3. The energy consumption of dijkstra 

benchmark with different cache 
configurations. 
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Figure 4. The energy consumption of sha 

benchmark with different cache 
configurations. 

Figure 5 shows the overall energy saving on 
Mibench. The proposed scheme achieves on 
average 6.626% energy reduction compared to 
respective global optimal cache configurations of 
all benchmarks. Figure 6 also displays that cache 
configuration for every 1 million instructions 
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tuning once is more saving energy than for 64 
intervals one on average 4.751% energy reduction. 
Besides some cache tuning insensible applications, 
applications with tiny number of instructions 
benefit nothing from the proposed scheme because 
the time interval is still too larger. 

 
Figure 5. The average energy reduction for each 

application of Mibench. Local V.S. 
Global optimal cache configuration. 

 

 
Figure 6. The average energy reduction for each 

application of Mibench. (Local_1M V.S. 
Local_64_intervals optimal cache 
configuration. 

V. CONCLUSIONS 

Saving energy is undoubtedly an important issue 
for embedded systems. As embedded systems work 
in a quite simple environment, it makes sense to 
optimize cache configuration to a certain 
application. Lin et al. proposed an on-line 
reconfigurable cache architecture which reduces 
energy over a non-tuned reference cache [7] and 
Jheng et al. further presented a real-time 

reconfigurable cache architecture for finding local 
optimal cache configuration but the interval will be 
divided into 64 ones which reduces energy over the 
whole application tuning once reference cache. [8] 
This work provides an on-line reconfigurable cache 
scheme which improves on average 6.626% energy 
reduction over Lin and Duh’s work and also on 
average 4.751% energy reduction over Jheng and 
Duh’s work. 
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