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Abstract―To provide more anonymous protection for 
the actual signer, the first ring signatures with strong des-
ignated verifiers is proposed in 2007.  In the ring signa-
ture scheme with strong designated verifiers, any member 
in the ad-hoc ring is able to generate ring signatures, so 
ring signatures provide signer ambiguity to protect the 
actual signer’s anonymity.  Moreover, only the designat-
ed verifier is convinced that the actual signer is one of the 
ring members.  The other only guesses the actual signer 
may be one of the ring members and the designated ve-
rifier.  If the other one guesses the actual signer being not 
only the ring members but also any possible ones, the 
scheme with strong designated verifiers provides the 
maximum anonymity protection for the actual signer.  In 
order to convince the designated verifier, the designated 
verifier is still sure that the actual signer is one of the ring 
members.  Therefore, the first ring signature scheme 
with strong designated verifiers is proposed to provide 
signer anonymity.  In our scheme, the signer admission is 
also provided for the actual signer to prove who the actual 
signer is.  The provable security analysis is provided to 
show that our scheme satisfies the ring signatures’ cor-
rectness and unforgeability. 

 
Index Terms―Ring signature, designated verifier, ano-

nymity, random oracle model. 

I. INTRODUCTION 

The concept of digital signature scheme is first 
proposed by Diffie and Hellman in 1976 [4].  In a 
digital signature scheme, a signer can transmit a 
message to the receiver.  Then the receiver can 
authenticate the signature and message that the 
signature and message are really made by the signer.  
In general, a digital signature scheme satisfies these 

properties: soundness, completeness, and unforgea-
bility [6]. 

However, the signer wants to keep his privacy 
without disclosing his true identity in some situa-
tion.  So, Chaum and van Heyst proposed group 
signature schemes [3] to preserve signer’s privacy.  
In the group signature scheme, a group manager is 
responsible to administrate the set of group mem-
bers, to generate the public key for each group 
member, and to disclose the identity of the actual 
signer.  The group signatures generated by each 
group member can be validated without knowing 
who the member is.  To solving disputes, the 
group manager is also responsible to disclose the 
actual signer of some group signature.  To protect 
the member’s privacy, a group signature scheme 
satisfies two properties: signer ambiguity and sig-
natures unlinkability [6]. 

Though group signature schemes preserve sign-
ers’ privacy, the signer’s privacy protection relies 
on the group manager’s trusty.  If the group man-
ager is not trustworthy, then the signer’s privacy is 
not protected at all.  Moreover, in many situations, 
there is no group frame for some signers to gener-
ate anonymous signatures. 

To solve this problem, in 2001, Rivest, Shamir, 
and Tauman proposed the concept of ring signature 
schemes [16].  In the ring signature scheme, there 
is no group frame, so a group manager is not 
needed.  The actual signer arbitrarily specifies 
some innocent signers and the actual signer him-
self/herself to from an arbitrary set that is called a 
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ring.  Then the actual signer generates a ring sig-
nature in ambiguous way that each member in the 
ring is able to generate the ring signature.  To 
protect the actual signer’s privacy, a ring signature 
scheme has to provide signer ambiguity at least.  
So the verifier only knows that the actual signer is 
somebody in the ring, but cannot know who the 
actual signer is. 

An example is used to illustrate the application 
of ring signature schemes.  For example, John is 
an employee of Allen’s company, and he discov-
ered that Allen will hollow out company’s assets.  
John wants to send witness to a journalist without 
leaking his identity.  So John chooses Allen’s 
friends, customers, and employees to construct the 
ring.  Then John signs a ring signature to a jour-
nalist.  After validating the ring signature, the 
journalist is convinced by that all the members in 
the ring are the persons being possible knowing 
witness.  However, the journalist does not confirm 
who the actual signer is. 

After the first ring signature scheme is proposed, 
some ring signature schemes are proposed.  In 
Naor’s deniable ring signature schemes [12], the 
verifier validates ring signatures but cannot con-
vince a third party that these ring signatures were 
signed by one of the ring members in 2000.  
Zhang and Kim proposed their identity-based ring 
signature scheme [19] in 2002.  In the same year, 
Abe et al. proposed their separable ring signature 
schemes [1] in which all participants can choose 
their keys with different signature generation algo-
rithms adopting different signature types.  In 2003, 
Lv and Wang proposed their verifiable ring signa-
ture schemes [11].  In the verifiable ring signature 
scheme, the actual signer can prove to a recipient 
that the signature was signed by him/her.  In 2004, 
Liu et al. proposed the linkable ring signature 
schemes [10].  In a linkable ring signature scheme, 
any two signatures are signed by the same ring 
member can be linked together.  Ren and Harn 
proposed generalized ring signature scheme [15] in 
2008 based on the original ElGamal signature 
scheme.  Moreover, Ren and Harn’s scheme is 
secure against adaptive chosen-message attack [7]. 

Among those proposed ring signature schemes, 

ring signatures are validated by anyone.  In the 
above example, after obtaining and verifying the 
ring signature, Allen also knows the actual signer is 
some ring member and may be John.  In fact, the 
actual signer does not want that Allen knows this 
betrayal, and wishes only the journalist can verify 
ring signatures.  Therefore, a ring signature 
scheme with strong designated verifiers is needed 
for actual signers. 

The designated verifier signature scheme was 
first introduced by Jakobsson et al [8].  In Ja-
kobsson et al’s scheme, anyone can validate the 
signature since only the signer’s public key and the 
designated public key are used to validate signa-
tures with designated verifier.  But only the des-
ignated verifier is convinced who the actual signer 
is.  In order to protect the designated verifier’s 
privacy, Jakobsson et al defined the concept of 
strong designated verifier that only the designated 
verifier can validate signatures to identify the sign-
er. 

Lee and Chang proposed the first ring signature 
scheme [9] with strong designated verifier in 2007.  
In their scheme, only the designated verifier can 
validate the ring signature and be convinced that 
only some ring member generates the ring signa-
ture.  Moreover, the designated verifier is also 
able to generate ring signatures that are indistin-
guishable from the ring signatures generated by 
some ring member.  Therefore, Lee and Chang’s 
scheme satisfies 1/n signer ambiguity only for the 
designated verifier, where n is the number of ring 
members.  However, in Lee and Chang’s scheme, 
the designated verifier is also able to generate in-
distinguishable ring signatures with strong desig-
nated verifier from those ring signature generated 
by some ring member.  Therefore, Lee and 
Chang’s scheme provides 1/(n+1) signer ambiguity 
for the other.  Wu and Li [18] proposed another 
ID-based ring signature scheme to provided verifier 
specification.  In order to specify many verifiers, 
Zhang and Xie proposed the ring signature scheme 
with multi-designated verifiers [20] based on the 
hardness of the chosen-target-inverse-CDH prob-
lem. 

Among those proposed schemes, the actual sign-
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er’s identity is at most protected just among the 
ring members and the designated verifier.  How-
ever, the most identity protection of the actual 
signer is among all possible users in the cryptosys-
tem.  In other words, the most protection is the 
signer anonymity, that is 1/max. signer ambiguity, 
for anyone except the actual signer and the desig-
nated verifier, where the denominator of 1/max. 
means all possible ones.  To convince the desig-
nated verifiers, the ring signatures are still 1/n 
signer ambiguity for the designated verifiers.  Be-
cause the designated verifier is also able to generate 
ring signatures, the actual signer needs to admit 
that the ring signature is made by him.  However, 
those proposed schemes with strong designated ve-
rifiers do not provide the admission way for actual 
signers. 

To provide the best anonymous protection for the 
actual signer and the most convince for the desig-
nated verifiers, the first ring signature scheme with 
strong designated verifiers is proposed to provide 
signer anonymity except designated verifiers.  
Moreover, in our new scheme, the signer admission 
algorithm is provided for the actual signer to admit 
that the ring signature is made by him.   

In the next session, the reviews of the genera-
lized ring signature scheme and the promise of 
Schnorr signature scheme are given.  In Session 
III, the formal definition and security model of our 
ring signature scheme with strong designated ve-
rifiers are given first.  Then our concrete ring 
scheme with strong designated verifiers is proposed 
to satisfy correctness, strong designated verifiers, 
unforgeability, signer anonymity, and signer ambi-
guity properties in the same session.  The security 
proofs of our concrete scheme are given in Session 
IV.  The last session is our conclusions. 

II. REVIEW 

A. Schnorr Signature Scheme and Corres-
ponding Promises 

Schnorr signature scheme [17] is given before 
the description of the promise of Schnorr signatures 
[13].  Schnorr signature scheme is consisted of 
three algorithms: SETUP, SIGN, and VERIFY. 

SETUP: 

The input of SETUP algorithm is a security pa-
rameter l.  On this security parameter l, SETUP 
algorithm generates some public system parameters 
p, q, and γ, where p and q are two large primes with 
q|(p−1) and γ∈Zp* is an element with order q.  
SETUP algorithm also publishes a one-way hash 
function h: {0,1}*→ Zq*.  For each user Ui, 
his/her private key is a random integer Si∈Zq* and 
the corresponding public key is Pi= γSi mod p. 

SIGN:  

SIGN algorithm is used to generate a signature 
on some message Mi.  The input of SIGN algo-
rithm is (Mi, Si) while the output of SIGN algo-
rithm is the signature (σi, ci) on the message Mi.  
The concrete SIGN algorithm is stated below.  
Choose a random number ki∈Zq*, compute ci= 
h(γki, Mi), and find σi such that σi≡ ki− ciSi (mod q).  
Then the Schnorr signature on the message Mi is 
(σi, ci). 

VERIFY:  

The input of VERIFY algorithm is the triple (σi, 
ci, Pi).  This algorithm outputs “accept” if ci= 
h(γδiPi

ci mod p, Mi) holds; otherwise, outputs “re-
ject”. 

The following theorem shows that Schnorr sig-
nature scheme is secure against passive adversary. 
Theorem 1: If discrete logarithm (DL) problem is 
hard, then Schnorr signature can be secure against 
passive adversary in the random oracle model [14]. 

For a valid Schnorr signature (σi, ci) on the 
message mi, the promise of (σi, ci) is (Σi, ci), where 
Σi= γδi mod p.  The verification of the promise (Σi, 
ci) is the equation ci= h(Σi×Pi

ci mod p, Mi). 

The promise of Schnorr signature is forgeable.  
By using the public key Pi, everyone can forge a 
valid promise of some Schnorr signature at will.  
On any message Mi', anyone randomly chooses k' 
from Zq*, and computes ci'= h(γk', Mi') and Σi'= 
(γk'/Pi

ci') mod p.  The equation ci'= h(Σi'×Pi
ci' mod p, 

Mi') holds, so (Σi', ci') is a forged promise of 
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Schnorr signature on any message Mi' without the 
private key Si. 

B. Generalized Ring Signature Scheme based 
on ElGamal Signature Scheme 

The generalized ring signature scheme [15] pro-
posed by Ren and Harn is described after the de-
scription of the ElGamal Signature Scheme [5].  
The ElGamal signature scheme is consisted of three 
algorithms: SETUP, SIGN, and VERIFY. 

SETUP:  
The input of SETUP algorithm is a security pa-

rameter l.  On this security parameter, SETUP al-
gorithm first generates the public system parame-
ters p and g∈Zp, where g is an element with order 
p−1 over Zp.  Each user Ui randomly chooses 
his/her private key Si∈Zp and computes the corres-
ponding public key Pi= gSi mod p. 

SIGN:  
SIGN algorithm is used to generate a signature 

on a message mi∈Z(p-1)*.  The input of SIGN is 
(mi, p, g, Pi, Si), where p and g are system parame-
ters, Pi is the signer’s public key, and Si is the sign-
er’s private key.  The concrete SIGN algorithm is 
stated here.  Choose a random integer ki∈Z(p-1)* 
and Compute αi= gki mod p and βi= ki

-1(mi− Siαi) 
mod (p−1).  Then the ElGamal signature on mes-
sage mi is (αi, βi). 

VERIFY:  
The input of VERIFY algorithm is the tuple (mi, 

(αi, βi), p, g, Pi).  The algorithm outputs “accept” 
if the signature (αi, βi) is valid; otherwise, the algo-
rithm outputs “reject”.  The concrete VERIFY al-
gorithm is the validation of the equation gαiαi

βi≡ 
Pi

mi (mod p).  If gαiαi
βi≡ Pi

mi (mod p) holds, then 
outputs “accept”; otherwise, outputs “reject”. 

According to [5], ElGamal signature scheme is 
existential forgeable under no message attack.  In 
[5], the two-parameter forgery is proposed to forge 
ElGamal signature without private keys.  Given 
the public key Pi, the attacker first randomly 
chooses ai from Zp−1 and bi from Zp−1*.  Then the 
attacker computes αi'= gaiPi

bi mod p, βi'= -αi'bi
-1 

mod (p−1), and mi'= aiβi' mod (p−1).  Finally, (αi', 
βi') is a valid ElGamal signature on the message mi' 
because Pi

αi'αi'βi'≡ Pi
αi'(gaiPi

bi)βi'≡ (gSi)αi'gaiβi'(gSibi)βi'≡ 
(gSiαi') gmi'(g-Siαi')≡ gmi' (mod p) holds.  The nota-
tion G(ai, bi, Pi)= (αi', βi', mi') denotes this 
two-parameter forgery. 

Ren and Harn’s generalized ring signature 
scheme is consisted of three algorithms: SETUP, 
R-SIGN and R-VERIFY.  SETUP algorithm is the 
same as the SETUP algorithm in ElGamal signature 
scheme, so only R-SIGN and R-VERIFY algo-
rithms are described.  Suppose that some actual 
user wants to generate a ring signature on a mes-
sage M.  The actual signer first chooses the ring 
member set {U0, U1, U2,…, Un-1} including the ac-
tual signer.  The notation R denotes the public key 
set {P0, P1, P2,…, Pn-1}, where Pi is the public key 
of the user Ui.  Without losing generality, suppose 
that the actual signer is Us, where 0≤s ≤(n−1). 

R-SIGN:  
The input of R-SIGN algorithm is the tuple (M, 

R, Ss, s), where s specifies the sth member, Us is the 
actual signer and Ss is the actual signer’s private 
key.  The algorithm is stated as follows: 
1. Choose a random starting value v from Zp. 
2. Forge the ElGamal signature (αi, βi) on some 

message mi for each ring member by using the 
two-parameter forgery G, except the actual sign-
er Us. 

2-1. Choose two random integers ai∈Zp−1 and 
bi∈Zp−1* for i= 0, 1, 2, …, (n−1) and i≠ 
s. 

2-2. Forge the ElGamal signature (αi, βi) by 
performing G(ai, bi, Pi)= (αi, βi, mi).  
After forging (αi, βi), the message mi is 
also determined. 

3. Compute vs+1 mod n= h(M, v), and vs+j+1 mod n= 
h(M, ms+j mod n⊕ vs+j mod n) for j= 1, 2, ..., n−1.  
To fill the gap between v and vs, compute ms= 
v⊕vs. 

4. Generate (αs, βs) on the message ms by using the 
actual signer’s private key Ss. 

4-1. Choose a random integer ks from Zp*. 

4-2. Compute (αs, βs)= (gks mod p, ks
-1(ms− 
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Ssαs) mod (p−1)). 

5. The ring signature on the message M is define: 
ϕ= (R; r, vr; m1, m2,…, mn; (α0, β0), (α1, β1),…, 
(αn-1, βn-1)), where r is an integer randomly cho-
sen between 0 and n−1. 

R-VERIFY:  
The input of R-VERIFY algorithm is the tuple 

(M, ϕ, R).  This algorithm outputs “accept” if the 
signature ϕ is valid; otherwise, this algorithm out-
puts “reject”.  The concrete R-VERIFY algorithm 
is given in the following. 
1. Verify equations gmi= Pi

αiαi
βi mod p for i= 0, 1, 

2,…, (n−1).  If any equation does not hold, 
outputs “reject” and stop. 

2. Verify the equation vr= h(M, mr+(n−1) mod n⊕h(M, 
mr+(n−2) mod n⊕h(M, …⊕h(M, mr+1 mod n⊕h(M, mr 

mod n⊕vr mod n))…))).  If this equation holds, 
then outputs “accept”; otherwise, outputs “re-
ject”. 
Instead of using the primitive root as the para-

meter g, the generator with order q can be used as 
the parameter g for the ElGamal signature scheme.  
The existential forgery attack is still work for the 
ElGamal signature scheme using the generator g 
with order q.  Here and after, the notation G(ai, bi, 
Pi)= (αi', βi', mi') is redefined as the two-parameter 
forgery for the ElGamal signature scheme using the 
generator g with order q.  The computational cost 
of (αi', βi') is about 1.16 modular exponentiations 
for gaiPi

bi mod p and one modular inverse for bi
-1 

mod q, where the double modular exponentiation 
gaiPi

bi mod p is estimated by 1.16 modular expo-
nentiations [2].  

C. Underlying Hard Problems 
Since our proposed scheme is based on the 

hardness of DDHP, the problem is described below. 

Decision Diffie-Hellman Problem (DDHP) 
Let p, q be two large primes such that q|(p-1).  

Let g be an element with order q in Zp
*.  Given ga 

mod p, gb mod p, and gc mod p (where a,b,c∈Zq* 
and be unknown), determine whether or not gc ≡ gab 

(mod p). 

DDHP Assumption 
There is no algorithm can solve DDHP in poly-

nomial time with at least probability ε, where ε is 
negligible. 

III. OUR RING SIGNATURE SCHEME with STRONG 
DESIGNATED VERIFIERS 

A. Formal Definition of Our Scheme 
Our ring signature scheme with strong designat-

ed verifiers is consisted of four algorithms: Setup, 
R-Sign, R-Ver and Admission. 
Setup(l): 

On this security parameter l, the Setup algorithm 
first generates the public system parameters and 
public functions.  This algorithm also generates 
the public key Pi and private key Si for each user 
Ui. 
R-Sign(M, P1, P2, …, Pn, s, Ss, Pv): 

Given a message M, the public keys P1, P2, …, 
Pn of the n ring members, the actual signer Us’s 
private key Ss, and the designated verifier’s public 
key Pv, then Algorithm R-Sign produces a ring sig-
nature δ which contains the set of promises X on 
the message M.  Algorithm R-Sign also produces 
a secret sender’s evidence σs which is used to con-
vert the actual signer’s promise containing in X to 
the original Schnorr signature. 

R-Ver(M, δ, P1, P2, …, Pn, Sv): 
On the input consisting of the message M, a ring 

signature δ, the public keys P1, P2, …, Pn of the n 
ring members, and the designated verifier’s private 
key Sv, then Algorithm R-Ver determines whether 
or not (M, δ) is a valid ring signature. 

Admission(δ, σs, g, p):  
Given the ring signature δ and the evidence σs, if 

the one of promise set X in the ring signature δ is 
really constructed by σs, then outputs “accept”; 
otherwise, outputs “reject”. 

 
B. Formal Security Model 
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A ring signature scheme should satisfy the fol-
lowing security properties.  These security proper-
ties are defined below. 

 
Correctness: If a ring signature is generated by 
R-Sign algorithm, then inputs to R-Ver algorithm 
always outputs “accept”. 
Strong Designated Verifiers: Only the designated 
verifier can validate ring signatures. 
Unforgeability: R-Sign algorithm is existentially 
unforgeable against adaptive chosen message attack 
if any probabilistic polynomial time adversary A 
wins the follow game with non-negligible probabil-
ity. 
GAME: (Existential Forgery Game by Adaptive 
Chosen Message Attacks) 

Let L(init)= {P1, P2, …, Pn}, Li= L(init)∪{P0}, 
where P0 is the virtual user’s public key.  The ad-
versary A makes the hash and signing queries po-
lynomial-bounded times in polynomial-bounded 
order. 
Hash Query: The adversary A sends the query to 
obtain the corresponding hash value h(x). 
Signing Query: A sends the query Qi= (Li, Mi) 
to the ring signing oracle SO, then SO returns δi 
being always accepted by Algorithm R-Ver if Li is a 
legal set consisting of legal users.  Otherwise, SO 
returns the error message. 

With the help of collecting (Li, Mi, δi)s, A out-
puts a forged ring signature (L*, M*, δ*).  Let 
{(Li, Mi, δi)} denote the history of conversation 
between SO and A.  The adversary A wins the 
game if (L*, M*, δ*)∉{(Li, Mi, δi)}, L* is the set 
consisting of all legal users, and R-Ver(L*, M*, δ*) 
always outputs “accept”.  
Signer Anonymity: It is unconditionally impossi-
ble to determine who produced ring signatures, 
even through the signer may be not in the group. 
Signer Ambiguity: It is unconditionally impossible 
to determine which member produced given collec-
tion of signatures. 
C. Our Concrete Scheme 

Our concrete scheme is described by the four 
algorithms.  In the following, the four algorithms 
are stated one by one. 

 
Setup(l): 

The input of Setup algorithm is a security para-
meter l.  On this security parameter, Setup algo-
rithm first generates the public system parameters p, 
q, and g, where p and q are two large primes with 
q|(p−1) and g∈Zp* is an element with order q.  
Setup algorithm also publishes a one-way hash 
function h: {0, 1}* → Zq*, and makes a ring in-
clude n members {U1, U2, U3,…, Un}.  Each user 
Ui’s private key is a random integer Si∈Zq* and the 
corresponding public key is Pi= gSi mod p. 

R-Sign(M, P1, P2, …, Pn, s, Ss, Pv): 
The actual signer performs the ring signature 

generation algorithm to generate the ring signature 
δ and the secret evidence σs on the message M for 
the designated verifier is the user Uv.  To be hid-
den among n possible signers, the actual signer 
randomly constructs the ring {U1, U2, … , Un}.  
Without losing generality, suppose that Us is the 
actual signer, where 1≤ s≤ n. 

Step 1: Randomly choose k∈Zq*, and compute P0= 
(Pv)k mod p and W= gk mod p. 

Step 2: Randomly choose ai∈Zq and bi∈Zq*, and 
forge the ElGamal signature (αi, βi) on the 
randomly message mi by computing (αi, βi, 
mi)= G(ai, bi, Pi) for i= 0, 1, 2, …, n and i≠s. 

Step 3: Randomly choose ki'∈Zq*, and compute ci= 
h(gki' mod p, M) and Σi= (gki'P-ci) mod p, for 
i=1, 2, …, n and i≠s. 

Step 4: Randomly choose ks'∈Zq*, compute cs= 
h(gks' mod p, M), and find σs such that σs≡ 
ks'− csSs (mod q).  Construct (Σs, cs)= (gσs 
mod p, cs) and keep the evidence σs in 
secrecy. 

Step 5:Construct X= {(Σ1 , c1), (Σ2 , c2), (Σ3 , c3),…, 
(Σn , cn)}, and compute D= h(M, P0, P1, 
P2, …, Pn, X, W). 

Step 6: Randomly choose V∈Zq*,  
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Vs+1 (mod n+1)= h(D, V),  
Vs+2 (mod n+1)= h(D, ms+1 (mod n+1)♁Vs+1 (mod 

n+1)) 
…  

Vs+n (mod n+1)= h(D, ms+n−1 (mod n+1)♁Vs+n−1 

(mod n+1)),  
Vs= h(D, ms+n (mod n+1)♁Vs+n (mod n+1)). 

Step 7: Compute ms= Vs♁V and the ElGamal sig-
nature (αs, βs) on the message ms. 

Finally, the ring signature on the message M is 
δ= (P0, P1,…, Pn, r, Vr, m0, m1, …, mn, (α0, β0), (α1, 
β1), …, (αn, βn), X, W), where r is an integer ran-
domly chosen between 0 and n. 
R-Ver(δ, Sv): 

After receiving the ring signature δ= (P0, P1,…, 
Pn, r, Vr, m0, m1, …, mn, (α0, β0), (α1, β1), …, (αn, 
βn), X, W) and the message M, the designated ve-
rifier Uv verifies the ring signature δ in the follow-
ing. 
Step 1: Verify the trapdoor information (αi, βi) on 

the corresponding message mi by the equ-
ation gmi= Pi

αiαi
βi mod p for i= 0, 1,…, n.  

If some of the (αi, βi) are illegal, then stop. 
Step 2: Compute D= h(M, P0, P1, P2, …, Pn, X, 

W). 
Step 3: Validate the ring signature δ by verifying 

the verification equation Vr= h(D, mr+n (mod 

n+1)♁h(D, mr+n−1(mod n+1)♁h(D, mr+n−2 (mod 

n+1)♁…♁h(D, mr+n−(n−1) (mod n+1)♁h(D, mr

♁Vr))…))). 

Step 4: Validate the correctness of P0 and W by 
the equation P0≡ WSv (mod p). 

Step 5: Verify the promise (Σi, ci) on the message 
M by the equation ci= h(Σi×Pi

ci mod p, M) 
for i= 1, 2,…, n.  

If the ring signature δ can pass previous five 
steps, then outputs “accept”; otherwise, outputs 
“reject”. 
Admission(δ, σs): 

Suppose that the given ring signature δ= (P0, 
P1,…, Pn, r, Vr, m0, m1, …, mn, (α0, β0), (α1, β1), …, 
(αn, βn), X, W) on some message M passes the ve-
rification of R-Ver.  The actual signer Us provides 
the actual evidence σs to guard against the forgery 
of the designated verifier.  After getting the σs 
from Us, the witness or Uv is able to verify σs by 
the equation gσs≡ Σs (mod p).  If gσs≡ Σs (mod p) 
holds, then the witness or Uv accepts that Us is the 
actual signer. 

IV. SECURITY ANALYSIS 

The security analysis of our ring signature 
scheme with strong designated verifiers is given by 
discussing five properties: correctness, strong des-
ignated verifiers, unforgeability, signer ambiguity, 
and signer anonymity. 

A. Correctness 

Theorem 2: A ring signature generated by R-Sign 
algorithm must be accepted by R-Ver algorithm. 
Proof: The three major verifications used in Algo-
rithm R-Ver are used to verify the trapdoor infor-
mation, the ring equation, and the correctness of P0 
and W.  These three proofs are given one by one. 
1. Verify the trap-door information: In our 
scheme, the trapdoor information (αi, βi) on the 
corresponding message mi is validated by gmi≡ 
gaiβi≡ Pi

αi×gaiβi×Pi
biβi≡ Pi

αi×(gai×Pi
bi)βi≡ Pi

αiαi
βi (mod 

p) for i= 1, 2, …, n and i≠s.  Since the signature 
(αs, βs) is a legal ElGamal signature on the message 
ms, gms≡ Ps

αs×αs
βs (mod p) holds. 

2. Verify the ring equation: Consider the first case 
that s>r.  In order to validate the correctness of (Vr, 
m0, m1, …, mn), the verifier performing the fol-
lowing computations. 
Vr+1 (mod n+1)= h(D, mr (mod n+1)♁Vr (mod n+1)) 

Vr+2 (mod n+1)= h(D, mr+1 (mod n+1)♁Vr +1 (mod n+1)) 

… 
Vs+1 (mod n+1)= h(D, ms (mod n+1)♁Vs (mod n+1))= h(D, 
V) 
Vs+2 (mod n+1)= h(D, ms+1 (mod n+1)♁Vs+1 (mod n+1)) 
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…. 
Vr  (mod n+1)= h(D, mr-1 (mod n+1)♁Vr-1 (mod n+1)). 

Since the second case that s<r is similar to the 
first case, by similar reasoning, (Vr, m0, m1, …, mn) 
passes the verification of the ring equation. 
3. Validate the correctness of P0 and W: The cor-
rect pair (P0, W) should satisfy P0≡ (Pv)k≡ (gSv)k≡ 
WSv (mod p). 

B. Strong Designated Verifiers 

In order to specify the verifier, in our scheme, 
Lemma 1 shows that no one can verify the ring 
signature except the signer and the designated ve-
rifier. 

Lemma 1:  

Given W= gk mod p and P0= gkSv mod p, except 
the signer and the verifier, no one can determine 
whether or not P0= (W)Sv mod p= (g)kSv mod p.  

Proof: Given W= gk mod p, Pv and P0= gkSv mod p, 
to determine whether or not P0= (W)Sv mod p= 
(Pv)k mod p= gkSv mod p is equivalent to the Deci-
sion Diffie-Hellman Problem (DDHP).  Therefore, 
no one solve it efficiently. 

C. Unforgeability 

The unforgeability proof of our ring signature 
scheme consists of two cases.  One case is that the 
unforgeability for the designated verifier while 
another is that the unforgeability for anyone, expect 
the designated verifier. 
Case1: The designated verifier is able to forge the 
ring signature δ, but cannot forge the evidence σs. 

Consider a ring signature δ= (P0, P1,…, Pn, r, Vr, 
m0, m1, …, mn, (α0, β0), (α1, β1), …, (αn, βn), X, W) 
on some message M.  The designated verifier eas-
ily forges all components without knowing the 
evidence σs.  The designated verifier first chooses 
the random integer k, and computes P0= (Pv)k mod 
p and W= gk mod p.  Then the private key of P0= 
gkSv mod p is S0= k×Sv mod q.  Since Sv is the 
designated verifier’s private key, only the desig-
nated verifier can find the value of S0. 

Then the receiver constructs the ring signature 
on the message M by the following way.  Ac-
cording to the forgery in Session II-A, the promise 
set X= {(Σ1 , c1), (Σ2 , c2), (Σ3 , c3),…, (Σn , cn)} is 
easily forged without knowing the evidence σs.  
Then the designated verifier forges the ElGamal 
signature (αi, βi) on the randomly generated mes-
sage mi by computing (αi, βi, mi)= G(ai, bi, Pi) for 
i= 1, 2, …, n.  The designated verifier also choos-
es another two random integers V and W, and 
computes D= h(M, P0, P1, P2,…, Pn, X, W).  Then 
the designated verifier computes 
V1 = h(D, V), 
V2 = h(D, m1♁V1), 

… 
Vn = h(D, mn-1♁Vn-1), and  

m0 = V♁Vn. 

The ElGamal signature (α0, β0) on m0 can be 
forged since the designated verifier knows the pri-
vate key S0.  Finally, the ring signature δ= (P0, 
P1,…, Pn, r, Vr, m0, m1, …, mn, (α0, β0), (α1, β1), …, 
(αn, βn), X, W) on some message M is forged 
without generating the evidence σs. 

If the designated verifier can forge the ring sig-
nature δ on some message with knowing the evi-
dence, then the forgery algorithm can be used to 
forge Schnorr signature on any message. 

Lemma 2:  

The unforgeability of the ring signature δ with 
the evidence σs by the designated verifier is based 
on the unforgeability of Schnorr signature scheme. 
Proof: This proof is obvious.  Suppose that an al-
gorithm Ring-FV can be used to forge the ring sig-
nature with the evidence by the designated verifier.  
Then the algorithm Ring-FV can be used to forge a 
Schnorr signature scheme on the public key P and 
message M'.  Let Ps= P and M= M'.  Then the 
forged ring signature δ= (P0, P1,…, Pn, r, Vr, m0, 
m1, …, mn, (α0, β0), (α1, β1), …, (αn, βn), X, W) 
with the evidence σs, where the promise set X= 
{(Σ1 , c1), (Σ2 , c2), (Σ3 , c3),…, (Σn , cn)}.  With 
the help of (Σs, cs) and σs, the Schnorr signature (σs, 
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cs) on the message M' is forged successfully. 
Case2: Except the designated verifier, anyone can-
not forge the ring signature δ for the unforgeability 
of the ElGamal signature. 
Unforgeability-game: Assume the T generates the 
system parameters and sends them to A.  To win 
the game, A performs the queries, H-oracle and 
Ring signing oracle below many times. 

After a period of time, A outputs a tuple (M*, 
δ*), where M* was not queried for the signature as 
shown above.  The adversary A wins the game if 
δ* is a valid ring signature on the message M*. 

H-oracle 

Assume that a list LH keeps track of answers to 
the hash queries on the H-oracle.  To simulate the 
hash function H, T checks the list LH.  If the 
query was made by the adversary A previously, T 
returns the same answer as that in LH.  If the 
query is a new one, T randomly chooses a number 
and inserts it into LH as a new entry.  The detailed 
method is described as follows.  Since A is poly-
nomial-time bounded, let the input is xi for the ith 
query.  Note that the output of the H-oracle, Hi= 
h(xi).  The new entry of LH for the ith query is the 
tuple of {xi, Hi}.  If the query is given from the 
ring signing oracle with designated input (D, m', V'), 
V, and ms, then H-oracle returns the h(D, m'⊕V')= 
V⊕ms. 

Ring Signing Oracle SO 

Step 1: Randomly choose k∈Zq* and compute W 
= (g)k mod p and P0 = Pv

k mod p. 

Step 2: Randomly choose ki'∈Zq*, and compute 
ci= h(gki' , M) and Σi= (gki'p-ci) mod p, for 
i= 1, 2, …, n. 

Step 3: Construct X= {(Σ1 , c1), (Σ2 , c2), (Σ3 , 
c3),…, (Σn , cn)} and D = h(M, P0, P1, 
P2,…, Pn, X, W). 

Step 4: Randomly choose ai∈Zq and bi∈Zq*, and 
forge the ElGamal signature (αi, βi) on the 
randomly generated message mi by com-
puting (αi, βi, mi)= G(ai, bi, Pi) for i= 0, 1, 
2, …, n. 

Step 5: Randomly choose V∈ Zq*, and compute 
Vs+1 (mod n+1)= h(D, V), Vs+2 (mod n+1)= h(D, 
ms+1 (mod n+1)♁Vs+1 (mod n+1)), …, Vs+n (mod 

n+1)= h(D, ms+n−1 (mod n+1)♁Vs+n−1 (mod n+1)). 

Step 6: Find h(D, ms+n (mod n+1)♁Vs+n (mod n+1))= 
Vs= V♁ms by sending hash query with 
the designated input (D, ms+n (mod n+1), Vs+n 

(mod n+1)), V, and ms. 

Ring signature δ= (P0, P1, P2, …, Pn, r, Vr, m0, 
m1, m2,…, mn, (α0, β0), (α1, β1), (α2, β2), …, (αn, 
βn), X, W), where r is an integer randomly chosen 
between 0 and n. 

Lemma 3:  

Our ring signature scheme with strong desig-
nated verifiers is secure against adaptive chosen 
message attack.  In other words, if adversary A 
wins the unforgeability-game by forging the ring 
signature, then T can adopt A to forge an ElGamal 
signature on the designated message m′ without 
known the signer’s private key Ss. 
Proof: Assume that the adversary A wins the un-
forgeability-game by forging ring signatures.  In 
the following, an algorithm T on the public key P 
and the message m' is designated to forge an El-
Gamal signature on m' without known the private 
key of P. 

First of all, let Ps= P.  The algorithm T ran-
domly generates the message M, the public key Pv, 
and the public keys Pi for i= 1, 2,…, n and i≠ s.  
Then (P1, P2,…, Pn), Pv, and the message M is the 
input of the adversary A.  By utilizing the ring 
signing oracle SO, the adversary A is able to collect 
the number of the ring signatures on some messag-
es chosen by A. 

When the adversary A wants to forge the ring 
signature on the message M, then T controls 
H-oracle such that Vs= h(D, ms+n(mod n+1)⊕Vs+n(mod 

n+1))= V⊕m' for the designated input (D, ms+n(mod 

n+1), Vs+n(mod n+1)), V, and m' from the adversary A.  
After A querying H-oracle, A successfully forges 
the ring signature (P0, P1, P2,…, Pn, r, Vr, m0, m1, 
m2,…, mn, (α0, β0), (α1, β1), (α2, β2),…, (αn, βn), X, 
W) on the message M.  Since ms= m', T obtains 
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the ElGamal signature (αs, βs) on the designated 
message m' without the signer’s private key Ss. 

D. Signer Ambiguity 

Our scheme provides signer ambiguity for the 
designated verifier.  At the starting point, since k 
is taken randomly from Zq*, so P0 and W are dis-
tributed uniformly over Zp*.  To generate ElGam-
al signatures, because ai randomly choose from Zq 
and bi randomly choose from Zq*, then the forged 
ElGamal signature (αi, βi) and the corresponding 
message mi are also distributed uniformly.  To 
generate the promises of Schnorr signature, since 
ki' and ks' are randomly chosen from Zq*, the 
promise of Schnorr signature (Σi, ci) and X= {(Σ1 , 
c1), (Σ2 , c2), (Σ3 , c3),…, (Σn , cn)} are distributed 
uniformly.  Therefore, for fixed l, M, and the des-
ignated verifier, any Ui in {U1, U2,…, Un} has the 
same probability to generate the ring signature. 

E. Signer Anonymity 

The signer anonymity is used to provide the 
privacy protection of the signer for anyone.  By 
Lemma 1, only the designated verifier Uv can veri-
fy P0 = WSv mod p.  Therefore, no one is able to 
validate the ring signature except the designated 
verifier.  Lemma 4 shows that the ring signature is 
forgeable if the relation among P0, Pv, and W is not 
validated. 

Lemma 4: 

Because nobody except the designated verifier 
Uv can verify the relation among P0, Pv, and W, 
anyone even is not the ring member can forge the 
ring signature on the message M with help of the 
non-existent public key P0. 
Proof: Anyone can forge the signature with the 
nonexistent signer P0 by follow steps. 
Step 1: Randomly choose k∈Zq*, and compute W 

= (g)k mod p. 
Step 2: Randomly choose S0∈Zq*, and compute 

P0 = gS0 mod p. 

Step 3: Randomly choose ki'∈Zq*, and compute 
ci= h(gki' , m) and Σi= (gki'p-ci) mod p, for 

i= 1, 2, …, n. 
Step 4: Construct X= {(Σ1 , c1), (Σ2 , c2), (Σ3 , 

c3),…, (Σn , cn)} and D = h(M, P0, P1, 
P2,…, Pn, X, W). 

Step 5: Randomly choose V∈RZq* 
V0+1 (mod n+1)= h(D, V),  
V0+2 (mod n+1)= h(D, m0+1 (mod n+1)♁V0+1 (mod 

n+1)) 
…  

V0+n (mod n+1)= h(D, m0+n−1 (mod n+1)♁V0+n−1 

(mod n+1)), 
V0= h(D, m0+n (mod n+1)♁V0+n (mod n+1)). 

Step 6: Compute m0= V0♁V and construct the 
ElGamal signature (α0, β0) on the message 
m0 by using the private key S0. 

Finally, the ring signature on the message M is 
δ= (P0, P1,…, Pn, r, Vr, m0, m1, …, mn, (α0, β0), (α1, 
β1), …, (αn, βn), X, W), where r is an integer ran-
domly chosen between 0 and n. 

Consider the signer ambiguity from the view-
point of the designated verifier Uv.  First, because 
P0 = (Pv)k mod p, only the designated verifier Uv 
can validate whether or not P0 is forged.  In other 
words, only Uv confirms that the actual signer must 
be one of {U1, U2, U3,…,Un} because the private 
key S0 of P0= (Pv)k mod p is unknown for anyone 
except Uv.  Second, because ai, bi, and mi are all 
random chosen, so they are uniform distributed.  
The probability of guessing the actual signer is 1/n, 
so the signer ambiguity is satisfied. 

Consider the signer anonymity from the view-
point of the others except the designated verifier Uv.  
Anyone cannot verify the relation among P0, Pv, 
and W, so nobody knows whether or not the ring 
signature is forged.  Then the probability of 
guessing the actual signer is 1/max. because ring 
signatures may be forged by anyone instead of the 
n members U1, U2, U3,…, and Un.   Therefore 
signer anonymity is satisfied. 
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V. CONCLUSIONS 

To provide the signer anonymity among all 
possible signers, the ring signature scheme with 
strong designated verifiers is proposed.  In our 
scheme, since the actual signer is hidden among all 
signers for the other users except the designated 
verifier, the actual signer is protected by signer 
anonymity.  Only the designated verifier can vali-
date a ring signature with strong designated verifi-
ers as an ordinary ring signature.  So only the 
designated verifier is convinced that the actual 
signer is one member among the ring.  For this 
signer ambiguity, the actual signer’s identity is 
protected and the designated verifier is also con-
vinced.  Our scheme provides the best anonymous 
protection for the actual signer and the most con-
vince for the designated verifiers.  On the other 
hand, the two proposed ring signature schemes with 
strong designated verifiers only provide signer am-
biguity protection to hide the actual signer’s identi-
ty.  Moreover, only our scheme provides the sign-
er admission algorithm to enable the actual signer 
to show who the actual signer is.  The security 
proof is provided to show that our scheme satisfies 
correctness, signer anonymity for any verifier ex-
cept the designated verifier, signer ambiguity for 
designated verifiers, and unforgeability against 
adaptive chosen message attacks in the random 
oracle model.  However, the other two proposed 
scheme do not provide the formal security proof.  
Our scheme with provable security is better than 
the other two proposed schemes because only our 
scheme provides signer anonymity for the others 
and signer admission. 
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