A Patch Protocol for SHK Secret Transfer Scheme

Tian-Lung Lu⁺ Jen-Chun Chang^{*} Hsin-Lung Wu^{*}

Abstract

Saied Hosseini Khayat proposed a scheme (SHK scheme) in 2008 to transfer a secret from sender to receiver such that the receiver cannot decrypt the secret without the consent of a group of trustees. This scheme is simple and excellent since it does not require any key exchange among sender, receiver, or trustees. But there is a problem in this scheme that the secret will be exposed when the private keys of the sender, receiver, and trustees are chosen improperly such that any one of some bad relations among the keys happens.

In this paper, a patch protocol for the SHK scheme is presented such that the private keys are guaranteed to be chosen properly and the privacy of all private keys is also assured.

I. Introduction

The commutative property of encryption function has been explored and used in cryptography widely. For example, Shamir's keyless secret communication [3] is a good sample. Shamir also explored the power of commutativity in [5]. Agrawal [1] and Clifton [2] used the commutative property for security applications in distributed databases and data mining, respectively. Many related topics are surveyed and collected in Weis's MIT PhD dissertation [6].

Based on the commutative property of encryption, Saied Hosseini Khayat [7] considered the following situation. Suppose that Alice wants to transfer a secret to Bob securely such that bob cannot decrypt the secret unless a group of trustees agree. Though all involved parties can be trusted to follow a prescribed protocol, the communication channels are insecure. Furthermore, the secret must be protected not to be revealed to the trustees, nor to anyone but Bob. This situation often arises in many practical applications in commercial or military environments. At the first thought,

^{*}Department of Computer Science and Information Engineering, National Taipei University, Taipei Country 237,Taiwan. E-mail: {jcchang, hsinlung@mail.ntpu.edu.tw}. This work was supported in part by the National Science Council of Taiwan under contract NSC-97-2218-E-305-001-MY2.

⁺ Graduate Institute of Computer Science and Information Engineering, National Taipei University, Taipei County 237, Taiwan. E-mail: drake.lu@msa.hinet.net.

this problem seems easy to be solved by Shamir's threshold secret sharing scheme [4]. But in order to transfer the shares of the parties securely, the scheme normally requires some key exchange operations. It is inconvenient.

Saied Hosseini Khayat [7] proposed a scheme for the above problem. This scheme is very simple and excellent since it does not require any key exchange among sender, receiver, or trustees. But there is a problem in the scheme that the secret will be exposed if any bad relation among the private keys of the sender, receiver, and trustees occurs. The SHK scheme and the details of the secret leakage problem will be introduced in the next section.

In this paper, we design a patch protocol for the SHK secret transfer scheme. It is efficient and secure. When it is applied with/before the SHK scheme, the secret leakage problem is solved and all private keys are kept secret.

II. The SHK secret transfer scheme

We briefly introduce the SHK scheme here. For readers want to know the details, please refer to [7]. Let p be a large prime which can be published to all (even adversaries). The secret owner (Alice) is denoted by P_0 . The recipient of the secret is denoted by P_n . The trustees are denoted by $P_1, P_2, ..., P_{n-1}$. That is, there are n + 1 parties in total. The SHK protocol has three phases described below.

Setup:

Make a large prime *p* public. P_0 has a secret $s \in Z_p$. For each $i \in \{0, 1, 2, ..., n\}$, party P_i has his/her own private key pair (a_i, b_i) such that $a_i, b_i \in Z_p$, $gcd(a_i, p - 1) = 1$, and $a_ib_i = 1 \pmod{p-1}$.

Locking (means "encryption"): The secret is locked by all parties sequentially.

- 1. P_0 locks the secret *s* by computing $c_0 = s^{a_0} \pmod{p}$ and sending c_0 to P_1 .
- 2. For i = 1, 2, ..., n 1 do

 P_i locks the secret by computing $c_i = c_{i-1}^{a_i} \pmod{p}$ and sending c_i to P_{i+1} .

- 3. P_n locks the secret by computing $c_n = c_{n-1}^{a_n} \pmod{p}$ and sending c_n to P_0 .
- 4. P_0 removes her lock the secret by computing $s' = c_n^{b_0} \pmod{p}$ and sending s' to P_n .

Unlocking (means "decryption"): The secret is unlocked by all trustees in an arbitrary order, and then unlocked by P_n finally.

- 1. P_n sends *s*' to a trustee P_i , $i \in \{1, 2, ..., n-1\}$.
- 2. Each trustee P_i , in $\{P_1, P_2, ..., P_{n-1}\}$ (in an arbitrary order), removes his lock by computing $f(x) = x^{b_i} \pmod{p}$ on his received data and sends the result to the next trustee. The last trustee removes his lock and sends the result to P_n .
- 3. Finally, P_n removes his own lock by computing $f(x) = x^{b_n} \pmod{p}$ on his received data and then finds the secret out.

The correctness and security based on discrete logarithm problem (DLP) have been shown in [7]. But, as the author said, there is nonzero possibility (though the probability is low) that the secret is exposed in the locking phase when the private keys are improperly selected such that any one of the following condition happens.

> $a_0a_1 = 1 \pmod{p-1}$, or $a_0a_1a_2 = 1 \pmod{p-1}$, or ... = ... $a_0a_1...a_n = 1 \pmod{p-1}$.

To solve the secret leakage problem, we want to make sure that

$$a_0a_1 \neq 1 \pmod{p-1}$$
, and
 $a_0a_1a_2 \neq 1 \pmod{p-1}$, and
 $\dots \neq \dots$
 $a_0a_1\dots a_n \neq 1 \pmod{p-1}$.

If any above inequality is not true, we must coordinate someone to change his private key pair until all above inequalities are true. Note that during the checking of inequalities and the coordination of changing keys, each private key should be prevent from exposing to others.

III. Our proposed patch protocol

In this section, we will introduce a patch protocol to completely prevent the secret leakage problem in the locking phase. First, the secret leakage problem can be reformulated as follows.

Environment:

A large prime *p* is public. For each $i \in \{0, 1, 2, ..., n\}$, party P_i has his/her own private key pair (a_i, b_i) such that $a_i, b_i \in Z_p$, $gcd(a_i, p - 1) = 1$, and $a_ib_i = 1 \pmod{p-1}$. *Q* is a proposition defined as follows.

$$Q = \begin{cases} a_0 a_1 \neq 1 \pmod{p-1}, & and \\ a_0 a_1 a_2 \neq 1 \pmod{p-1}, & and \\ & \cdots, & and \\ a_0 a_1 \cdots a_n \neq 1 \pmod{p-1}. \end{cases}$$

Objectives:

- 1. Check and make sure that proposition Q is true. If Q is false, try to change some private keys securely until Q becomes true.
- 2. During the checking of Q and changing of private keys, the privacy of all private key pairs should be maintained.

Our patch protocol is given below.

Our SHK Patch Protocol

Begin

1. P_0 chooses a random number r in Z_p and compute $l_0 = r^{a_0}$.

2. For
$$i = 1, 2, ..., n$$
 do

 P_0 sends l_{i-1} to P_i .

 P_i replies $l_i = l_{i-1}^{a_i}$ to P_0 .

 P_0 stores l_i to A[i], the *i*-th cell of the array A.

}

3. P_0 checks whether there is an *i* such that A[i] = r.

If there is no *i* such that A[i] = r, the protocol stops and *Q* is true, else

```
{
```

 P_0 selects a new private key pair (a_0^*, b_0^*) . P_0 recomputes $A[i] \leftarrow (A[i])^{b_0 a_0^*} \mod p$, for each *i*. P_0 updates the private key pair $(a_0, b_0) \leftarrow (a_0^*, b_0^*)$. Go to Step 3 to recheck. End

}

Figure 1 is a diagram to illustrate the communication flow among the parties. In addition, the contents of the array of P_0 are also given in Figure 2. When no element of the array is equal to the random number initially selected by P_0 , the proposition Q must be true. Thus the correctness of the patch protocol is straight-forward. In the next section, we will give a brief analysis for the security and efficiency of our patch protocol.

Figure 1: The communication flow among the parties.

From P_1	From P_2	From P_3	 From P_n
$l_1 = r^{a_0 a_1}$	$l_2 = l_1^{a_2}$	$l_3 = l_2^{a_3}$	 $l_n = l_{n-1}^{a_n}$

Figure 2: The contents of the array of P_0 .

IV. Security and Efficiency

Security:

The security of our patch protocol relies on the computational hardness of discrete logarithm problem (DLP). For an adversary, even partial break to find out the private key (a_i or equivalently b_i) of one party is not easy.

Efficiency:

The efficiency can be discussed from two kinds of cost: the communications cost and the computation cost. The communication cost is low. Except that party P_0 needs to send out *n* messages, each party needs to send out one message only. The computation cost of our patch protocol mainly depends on the number of times to execute Step 3. And this number is always equal to one plus the number of times for P_0 to reselect a new private key pair. Let *T* be the expected number of times for P_0 to re-select his key pair (The initial selection of his key pair is not included). Consider the set $S = \{(a_1)^{-1} \pmod{p-1}, (a_1a_2)^{-1} \pmod{p-1}, \dots, (a_1a_2...a_n)^{-1} \pmod{p-1}\}$. If a_0 is not in *S*, proposition *Q* must be true. Since the strategy we use is to fix (a_i, b_i) for $i \in \{1, 2, ..., n\}$ and randomly re-choose a_0 (or equivalently b_0) in Z_{p-1}^* when necessary, the probability $\Pr\{Q \text{ is false}\}$ is at most $|S| / |Z_{p-1}^*| \le n / \phi(p-1)$, where ϕ is the Euler function. Let $q = n / \phi(p-1)$, this should be a very small value in practical settings. We thus have the following inequalities.

Pr{Q is true} ≥ 1 - q,
Pr{Q is false} ≤ q,
T ≤ 0(1-q) + 1q(1-q) + 2q²(1-q) + 3q³(1-q) + ... =
$$\frac{q}{1-q} = \frac{n}{\phi(p-1)-n}$$

Since in practical situations $\phi(p-1)$ is far greater than *n*, so *T* is far less than 1. That is, the expected number of times to re-select the private key pair of P_0 in our protocol is far less than one. Therefore, except P_0 , each party needs one modular exponentiation only. The expected number of modular exponentiations needed by P_0 is $1 + 2nT = 1 + 2n^2 / (\phi(p-1) - n)$, which is very close to one. This is very efficient.

V. Conclusion

In this paper, we proposed a patch protocol for the SHK secret transfer scheme to overcome the possible secret leakage problem. The patch protocol can be used with/before the original SHK protocol. From another point of view, our patch protocol checks a proposition defined over private keys of some parties and coordinates to change some key until the proposition is true. The privacy of all keys is always maintained during the checking of proposition and the coordination of key changing. In conclusion, our patch protocol has the following advantages.

- 1. It prevents the secret leakage problem in the locking phase of the SHK scheme.
- 2. The privacy of all private keys is maintained.
- 3. The communication cost is low. Except that party P_0 needs to send out *n* messages, each party needs to send out one message only.
- 4. The computation cost is also low. Except P_0 , each party needs one modular exponentiation only. The expected number of modular exponentiations needed by P_0 is $1 + 2n^2 / (\phi(p-1) n)$, which is very close to one.

References

- Agrawal, R., Evfimievski, A., and Srikant, R., "Information sharing across private databases," International Conference on Management of Data (ACM SIGMOD), ACM Press, pp. 86-97, 2003.
- [2] Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., and Zhu, M. Y., "Tools for privacy preserving distributed data mining," SIGKDD Explorations 4, 2, pp. 28-34, Jan. 2003.
- [3] Menezes, A., Oorschot, P., Vanstone, S., "Handbook of Applied Cryptography," CRC Press, pp. 500, 1997.
- [4] Shamir, A., "How to share a secret," Communications of the ACM, Vol. 22, No. 11, pp. 612-613, Nov. 1979.
- [5] Shamir, A., "On the power of commutativity in cryptography," ICALP80, pp.582-595, July 1980.
- [6] Weis, Stephen A., "New Foundations for Efficient Authentication, Commutative Cryptography, and Private Disjointness Testing," MIT Phd Dissertation, pp.1, May 2006.
- [7] Saied Hosseini Khayat, "Using commutative encryption to share a secret," http://eprint.iacr.org/2008/356.pdf, Aug. 2008.