g R\ ERER AR

An Adaptive Control Mechanism for Management of Networked

Information Consistency

Mintang Lin Chungnan Lee
Department of Institute of Computer and
Management Information Information Bngineering
Systems National Sun Yat-Sen
Chin Min College University
Miaoli, Taiwan Kaohsiung, Taiwan
E-mail: B-mail:
milin@cse.nsysu.edu. tw cnlee@mail nsysu.edu.tw

Abstract

To automnatically maintain appropriate level of inierested
information for a large number of participanis in nesworked
virtual environments is of paramount imporiance. In this
Ppaper we propose an adaptive control inechanism to inanage
the information consistency and control the dynamic shared
state for a large-scale virtual environment. The approach
uses three major techniques for dynamic shared siate
maintenance - the shared repository technique, blind
broadcasting method, and dead reckoning model io throttle
the data-transmission over the network. Depending upon the
system load, the approach can automatically switch from
one level to another level 1o maimain maximum
performance in server. Performance evaluation on the
proposed adaptive control mechanism, the three-level
consistency approach, and the shared repository technique
were conducied. Performance evaluation results show thar
both the proposed wmechanism and the three-level
consistency approach can maintain low system load over a
wide range of participanss, bui the adaptive control
mechanism can adapt to the state of server load and provide
a benter service quality.

Keywords: Dynamic shared state; Networked virtual
environment; Information consisiency; Blind broadcasting;
Distributed interactive simulation; Dead reckoning model
(DRM)

1 Introduction

The primary consideration for a flexible networked virtval
environment (NVE) [3,5] is to adapt to a variety of
participants wsing an appropriaie strategy and contvol the
consistency of the information. However, the common NVE
systems encounter several problems as the number of
participants or clients grows, such as managing information
consistency among servers and clients, guaranteeing
real-time interactivity [13], and contending with limited
network bandwidth. Therefore, many research agencies
devote their energies to the design of workable protocols,
such as the Distributed Interactive Simulation (DIS) [9], the
High Level Architecture (HLA) [6), and the VR-protocol [7),
to maintain the information consistency. Some typical
systems are the Shastra system [1], the VBOS system [2,8],
and NPSIET [18], and so on. The Shastra sysiem developed
at Purdue University is a collaborative environment using a
shared repository to provide the absolute consistency. The
VEOS system developed at the University of Washington
uses the blind broadcasting method ito reduce message
overheads. The NPSNET research group has developed a
large-scale virtual environment (LSVE) based on DIS. The

B-517

Tainchi Lu Hung-Che Shen
Instimte of Computer and Institate of Computer and
Information Engineering Information Engineering
National Sun Yat-Sen MNational Sun Yat-Sen
University University

Kaohsiung, Taiwan Kaohsiung, Taiwan

B-mail:
telu@cse nsysu.edu.tw

E-mail:
heshen@cse.nsysu.edu.iw

NPSNET uses the dead reckoning model io reduce network
traffics. The goal of the LSVE is to study and develop the
technologies for generating real-time and interactive
networked virtual worlds for military simulations. They
focus on the complete breadth of human-computer
interaction and software technology for implementing the
LSVE. Basically the systems mentioned above use only one
type of dynamic shared state techniques to send messages.

Generally speaking, participants may not join an NEV
through the network simultaneously. When there are only a
few participants or a light load in the NVE, high overheads
and network bandwidth limitations will not be the major
problems for NVE. Hence, it is possible for an NVE server
to provide absolute consistency and to maintain reasonable
network latency at the same time. Absolute consistency has
the advantage of providing an identical view of the project to
all client hosts. When the server load becomes heavier in the
networked virtual environment, it becomes impractical to
maintain absolute information consistency. Under the

~ circumstances, some absolute consistency can be sacrificed

in order to maintain high interaction. Hence, we use the
blind broadcasting method to update those less important
shared objects and adopt the broadcasting approach to
update those more important shared objects in the NVE. In
order to further reduce the frequency for transmitting
updates in the entire NVE, we may consider the DIS dead
reckoning model (SIMNET [12] was the spawning of a
standard networking protocol, known as DIS), which is used
to predict the true staie of virtual space in client hosis.
Conceptually, this model is suitable for a large-scale NVE
with a large number of participants. Actually, it is not easy
for an NVE to atiract so many simultaneous participants all
day long. In addition, the dead reckoning model does not
guarantee that all client hosts will share the identical state, It
requires participants to tolerate and accept potential
discrepancies. So it is inappropriate to adopt dead reckoning
model for the NVE when there is only a few participants or a
light server load.

Based on the considerations mentioned above, we had
proposed the three-level consistency approach to maintain
the information consistency of an NVE in previous research
[11). This approach adopted a predefined threshold to enable
switching from one level to another level based on the
maximum participant's number derived from the
approximate Poisson discrete disiribution. The main
consideration for switching mechanism in the three-level
consistency approach is the number of participants. When
the number of participants that joined the networked virtual
environment exceeds the predefined range, the MVE server
switches from one level to another. The advantage of the
approach is simple to switch and implement for the NVE

developers. Unfortunately, the state of networked virtual
environment such as the load of an NVE server cannot be
always judged from the amount of participants. Although the
number of participants may influence on the load of the
NVE server, it is not the only factor to determine the load of
the NVE server. For example, few participants with
frequently activity may cause a heavy load of the NVE
server or network traffic; on the confrary, many participanis
with few activities may not always cause a heavy load. Since
the amount of participants in the NVE cannot always
guarantee the right timing to switch to a proper level. In this
paper, we use the load of the NVE server to enable the
switching control in the control mechanism.

The remainder of the paper is organized as follows.
Overview of information consistency techniques is
presented in Section 2. In Section 3, we describe the
proposed adaptive control mechanism. Section 4 presents
performance evaluation, simulation design, and resulis. In
the last section some conclusions are given.

2 Overview of Information Consistency
Techmnigues

In this section, we first describe the information flow of the
proposed NVB infrastructure using the control mechanism.
As shown in Figure 1, participants can connect to the NVE
server via the Internet and download the himl, applets, and
consistency vehicle (i.e. an applet that is responsible for
sending the information updates o the server) from the
server. Based on the control mechanism within the NVE
server, the proposed approach can dynamically swiich to an

- appropriate level to maintain the information consistency. It

is an adaptive and flexible mechanism to meet the
requirements for different levels of information consistency.
Thereafter, we adopted dynamic shared state techniques to
raise the consistency-thronghput tradeoff issues, and
propose the adaptive mechanism to dynamically maintain
the state of the shared objects in a networked virtnal
environment. Bach level of the fundamental concept will be
briefly reviewed. The performance characierization of each
dynamic shared state technique will be given in Section 3.

Shared Virtual

eritcy Hn

&

I. Downioad HIML + Appt + Ceon

et \C cle
e/ B BB

5. Manage dynamic sharsd siats.
thres—-lavel conslstancy app.

Bhared Repoo

'y Level 1T Kaep the a
| consiatency witn 14
participants :

@
. UVzse the arad
raposiltoryiito

e.é.ou Tagas:

2 Ev; .ﬁ
4 Level 2: Use blind
] to auppott mozre poxi:

q 4. Accerdi to
?t.dd.ce.d.v‘ Bdem

)

Vehiclo Y the state ehe
6, BEnd OB system IZoa the

infem gt 1 8 period D) level manafisr
: st He aftine 7‘3% J w2ll changeijte a

B s :
| 7. Use the previous recaeived | nevei 37 Adope tne P" .Px;oaiizlie z
| wpdate information t& predict :{ specialized predictioh i -
the sharad eobject s iouvrrent t::“pfuutﬁ:" pa ‘
stata - t:cquancy T

2.1 The First Level: Absolute Consistency

In the first level, the major assessment is to achieve absolute
consistency, including accurate dynamic shared state,
identical view, low network latency, and high reliability.
Particularly, the accurate dynamic shared state is
fundamental to creating realistic environments. In order to
provide accurate information and absolute conmsistency
throughout the neiwork, each client host must send updaie
information o the seiver when the shared objecis are
modified; then the server notifies other clients immediately.
In the implementation, we used Java language to build a
shared repository in the server and spawn the Java server
thread for each participating client to listen the client's
requests. The shared repository contains the current value
for the shared state used in the NVE and stores the NVE's
current state in a centralized database. Consequently, the
shared repository guarantees that each participant can see
the updaies in the same order and maintain absolute
consistency among the participating client hosts. A typical

B-518

Figure 1. The information flow of the control mechamsm

example of using a shared repository to provide absolute
consistency is the Shastra system, which was developed at
Purdue University and uses a central server in the
collaborative environment.

2.2 The Second Level: Information Interefst
Management

When the load of an NVE server is heavy and network
latency is high, the NVE encounmiers a nasty problem,
because the NVE can not afford the high communications
overhead to support absolute consistency and identical view
at all client hosis. In such a situation, this is the time to
switch from the first level io the second level to maintain the
dynamic shared state. In the second level, we use the blind
broadcasting approach [4] to send and receive the update
information through the network for those less imporiani
objects. The blind broadcasting approach has been used to
support many critical NVE applications. A typical sxample
of using blind broadcasting can be found in the VEOS

system {[2,8], that was developed at the University of
Washington and uses an “epidemic” approach to reduce the
broadcasting message overheads.

2.3The Third Level: Predictive Simulation

" TEEE Standard 1278.1 [8] defines the protocol data units
(PDUs) of Distributed Interactive Simulation (DIS). The
DIS proiocol uses 27 different kinds of messages (i.e. PDUs)
to exchange information among simulation nodes. The DIS
uses a predictive algorithm, known as the dead reckoning
algorithm. It transmits state update packets less frequently
and approximates the true shared state based on previously
received update information. A dead reckoning model
consists of two major components, a prediction technigue
and a convergence technique. The prediction technique is
used to estimate the future value of the shared state by
referring to the past and current update informiation. As for
the convergence technique, it is used to correct the predicted
state without incurring visual distortion. Generally speaking,
a second-order polynomial prediction is the most popular
prediction technique for the dead reckoning model. For
example, each client host predicts the next position of the

shared objects by using the equation, X = xotvgHtd 1, 2o
2

where x' is the next position, x4 is the initial position, v, is
the velocity, and @ is the acceleration. We can obtain the
initial position xo, velocity vq, and acceleration @ from the
pervious update information of this shared object.

3 The Proposed Adapiive Conirol Mechanism

In this section, we describe the proposed mechanism to
automatically switch from one level to another level
depending on the load of an NVE server. It maintains the
information consistency and allows maximum participants
to join the networked virtual environment simultaneously.
The main functions of this mechanism are to analyze and
estimate the load of NVE server in order to determine the
timing to switch the level. The load of the NVE server can be
characterized by the process service time [14], the process
waiting time in a quene, and the length of the queue [15]. In
other words, we nse a quening model to serve as the analysis
and estimation model. We define the switching criteria for
three levels based on the load of the NVE server. In the
following, we describe the analysis and estimation modeling
confirming the NVE server in Subsection 3.1 and present the
adaptive control mechanism in Subsection 3.2.

3.1 Analysis and Estimation of an NVE Server
Load

We use a ceniralized system consisting of one CPU with
shated memory as an NVE server {16,7]. Client hosts
communicate with the server using massege passing through
the network. A server is modeled as a quening system, such
as M/M/1, M/D/1, and so forth. We denote that A is the mean
arrival rate, p is the mean service rate, traffic intensity p is
the ratio of A, L is the expected quene length (excluding
the current executed task) and W, is the waiting time
(including the service time) in the NVE server. Once both A
and p are given, the values of L; and W, can be calculaied
from Little's formula [10). Let Ly(t) be the mean queue size
and W(t) be the mean waiting time, which are estimated
from the system load at time t. In order to quantify these
notations, we designate two values L and H, where
0< L < H .Both L and H are arbitrary values, which refer to

B-519

the ratio of L,(¢) and W(1), and they are the sysiem
L, - W
parameters to be set by the system designer based upon the
capacity of an NVE server.
Definition of the Range for Three Levels
Currently, we use three types of dynamics shared state
techniques that are used to support different information
consistency. We use L and H to divide the range and define
the relationships among these three Jevels.
Definition 1: The first level is “Absoluie Consistency,”
denoted as AC, if L,,(t)SL and W’(USL'
L, W,
Definition '2: The second level is “Information Interest
Management,” denoted as [M, if L< L) <H and

9
W.(t) .
L<—2—<H
Wx

Definition 3: The third level is ‘Predictive Simulation,”
denoted as PG, if He< L,(¢) and H< W,(t).

'q s
The basic concept for the three definitions is to measure the
current server's mean queue size Ly(t) and mean waiting
time W,(t) and then compare them with the predefined L,
and W that are calculated from the system parameters A and

[T
When the load of the NVE server is light, the absolute
consistency is used to provide accurate dynamic shared state.
Under the circumstances, the mean queue length and the
mean waiting time should be short in the NVE server at time
t. In other words, the values of L,(¢) and W(«) are much

L W

7 3
lower than L in the first level. In contrast to the first level, we
adopt the predictive simulation approach in the networked
virtual environment, when the load of an NVE server is
much heavy. In other words, the values of L,(#) and W)

L, W,
are much higher than H in the third level. In general, the load
in the second level is between the levels of absolute
consistency and of the predictive simulation,

Definition of the Server Load Function
In addition to the predefined range of three levels, we need
to determine the values of threshold for different cases in the
adaptive conirol mechanism. Because when we determine
the level switching based on Definitions 1, 2, and 3, some
conditions may be ambiguous. For example, there are
(L,,(t)>Landw,(r)SL)or(L,(t)SL and "?;')>L)i"
9 3 9 32
the first level, Hence, we further define a server load
function LOAD() that is a function of the waiting time,
queue length, Ly and W, as follows: ‘
Li) w N
e '8,
" + m

m=H or L

. where

LOAD{L (4)W,(5)m)=

Fuarthermore we define two thresholds for LOAD() as X,
where m=L or H. When LOAD(L, (), W,(),m) < X, » it
means that the mean server load is smaller than the threshold
K. So the conirol mechanism can switch to a lower level or
has no change. In other words, it can maintairi a higher
information consistency as the server has a light load. When

LOAD(L ()W, (t),m)>X the mean load of the server
system is higher than the threshold X,,. Hence, the control

- mechanism can switch the current level to a higher level or

no change.

32 The
Mechanism

The First Level: Absolute Consistency
In Table 1, we list the principle for the first level by
substituting parameter L for m in equation (1). There are two
possible cases as defined in the following:
L) wio)

Primciple of Adaptive Control

L W eeesreseessins 2
LOAD (L (¢} W, (¢)L)= 1: M R

L,(¢) w,(r) 3)
LOAD (L (s)}W () L)= 'Z’ +—WT'-> £,))

When the condition of LOAD(-) satisfies equation (2), it
means that the server load is light, and queue length and
waiting time are short in the NVE server. So the NVE server
can have capacity to maintain absolute consistency. When
the condition of LOAD(-) is defined by equation (3), it
means that the sefver load is higher. Therefore, the NVE
server cannot maintain absolute consistency. Then, the
control mechanism needs to switch the level from the first to
the second by adopting blind broadcasting approach o
handle the dynamic shared state in the networked virtual
environment.

Table 1. The control principle using the function LOAD(")
and parameter X; in the first level.

Waiting time
ratio LA LAV
Quene | w, W,
ratio :
[X0) <L ' LOAD()" X, ¢
L, LOAD()Xy, #
Ls(l) SL LOAD()" Xy, ! 5
L, LOAD(»Xy,t &

The Second Level: Information Interest Management
In Table 2, we list the control principle for the second level
by substituting parameter L or H for m in equation (1). There
are three possible cases as defined in the following:
. L) w (o)

LOAD (L (5)W, (1)L)= —— b i S X,

L) wir)
LOAD(L,(r),W,(:),L)z_%_+_':a_> X,

and
L) wio) 5
TL Tw e, 5
LOAD(L(6)W,(1),H y=——r—— S X,
L(e) we)
T T eeeeeeennnndd (6)
LOAD (L (¢}LW (s} H)= H' + H, > Xy

In the first case, when ihe condition of LOAD(-) satisfies
equation (4), it means that the server load is light. In other
words, the amounis of network message traffics decrease
and the waiting time in server reduces. Therefore, the
conirol mechanism can switch from the second level back to
the first level to maintain absolute information consistency.
In the second case, when the condition of LOAD() is
defined by equation (5), it does not change the level by
Definition 2. In the third case, when the condition of
LOAD() is defined by equation (6), it means that the server
load is very heavy. The server cannot use the information
interest management to maintain the information
consistency. So the control mechanism needs to switch from
the second level to the third level by adopting dead
reckoning approach to maintain the dynamic shared state in
the networked virtnal environment.

B-520

Table 2. The control principle using the function LOAD()
and two parameters, X; and Xy, in the second level.

Yaiiog time | 1) w,(t) W(r) W(1)
satio A
Ay D 2 —_
Queue on W, , W SH W, >H
ratio
' TOAD(" Ko,
9 : LOAD()>X,
§
LOADO)" Yo,
lf t) oL #D(!) L
’ Loapesx, [F
L 4
L
Lo . LOAD:)' Yo
b LOAD(SXu | °
$ s

The Third Level: Predictive Simulation
In Table 3, we list the control principle for the third level by
substituting parameter H for m in equation (1). There are two
possible cases as defined in the following:

L,(¢) W (1)

i)
LOAD (L (¢)W (¢} H)= H" S Xy

L,(t) W,(t)

i ®
LOAD (L, (¢JW (¢} H)= S > X

When the condition of LOAD(.) is defined by equation (7),

it means that the value of the server load function is lower
than the threshold X and the server can use information
interest management to maintain information consistency.
So the control mechanism needs to switch from the third
level to the second level. In conirast, when the condition of
LOAD(") is defined by equation (8), the server load is still
very heavy. So the control mechanism should remain in the
third level.

Table 3. The control principle using the function LOAD(")
and parameter Xg in the third level,

Waiting time
mtio W) oy W) g
Queue length w
ratio ’ ’

LYy s LOAD()" Xn$ 4

L, LOAD()>Xy, §
L) LOAD()® Xp$ § R

" LOADG)>X §

Parameters L and H play an important role to determine the
accuracy of dynamic shared siate in the conirol mechanism.
The values of L and H will affect the probability to adopt the
first level and the third level. And the difference between L
and H will also affect the probability to adopt the second
level. Therefore, according to the capacity of the server, one
can define appropriate values for L and H io be the lower
bound and the upper bound. For simulation in the next
section we let 1=0.3 and H=0.7 for our NVE server.

The value of X; and Xy can be calculated by Definitions 1, 2,
and 3 in the following:

1. From Definition 1 :

and

LAC YY)

L,(¢)
LAY
P W,

9
L(0) q W

an
L' <t __"Ka_.<1
L L

L,(¢) W, (t)

L w .
LOAD (L (:)W (£)L) =t —2—<2=X,

L L
2. Prom Definition 2 ;

and
L<£7Lt—)SH L<—vf’—(‘—)SH
L, :
Ly(s) L,(¢) w,(t) W)
(- or —p— Jand(=~ or 7~)
>1 <1 —] —te—g}
L H L - H
L) wie)
L, W
LOAD (L, ()W, (¢} L)=——t —j—>2=X,
or
L(s) w.(e)
LOAD (L (¢ LW, (¢)H)= I.:; + P:; $2=X,
3. From Definition 3 :
and
gkl T W)
. s
I.>1 —dem>
H H
L) w,(e)
L, W .
LOAD (L, (s hW (s H)= — 522X,

H
Hence, the value for both Xy and X should be equal to 2
from the description above.

4 Performance Evaluation

This section presents performance characterization of three
types of dynamics share state techniques and performance
gvaluation of the proposed control mechanism, the
three-level consistency approach, and the shared repository.
As we have known, the length of server queue and waiting
time of the jobs in the server are uncertain parameters in the
networked virtual environment. Based on the discussion in
Section 3, we assume that the simulation model is based on
the (M/M/1) : (FCFS/% /%) model.
Environment
2

BothL,=—__ andW,=

1-p p-p)
Little's formula. We plot the relationships of Ly and p, W,
and p in Figures 2 and 3. From Figures 2 and 3, we can see
that Ly, W,, and p have positive relationships. When the
value of the traffic intensity p is low, Ly and W,, could
approach to zero, because the job arrival rate is much lower
than the job service rate. As a result, the queue size L, and
the waiting time W, are small, and the server load is light.
When p is large (i.e. p approaches to 1), the job arrival rate is
almost equal to the job service rate. The values of both L
and W,, and the server load will be very high. In our
simulation, we let p be 0.7 and & be 4, then the L, and W,
can be calculated from p and
&

are calculated from

9
8
7
) /
] /
3. /
3 {
2
1 ‘/@,
, e
0.1 ' 0.2 0.3 0.4 0.5 0.6 0.7
Rho

s
byl
e bi=2
= / /

e

0.§

Figure 3. The relationship between W, and Rho (Rho=p,
Mu=p).
Parameters and Load Models

The parameters used to evaluate the performance are the
types of control mechanisms and the types of server load
models, which are related to the number of clients, service
time, and broadcast time. When the number of clients
increases, it will increase the number of threads spawned by
the server. At the same time, the service time and broadcast
time will be also increased. We use two types of load models.
The first one assumes that the load increases in proportional
to the number of joined clients. The first load model is (1 +
3*n%). It means that for each new joined client it will
contribute three percent of the original load. The second load
model assumes that the load increasing rate is less than the
first one and is modeled as (1+ 0.056 *n>%). The curves
of two load models are shown in Figure 4. We use these two
load models to evaluate the performance of three dynamic
shared state techniques and two control mechanisms. To
emulate the information interesi management using the blind
broadcasting approach, we assume that the updated rate will
be delayed. In other words, we reduce the frequency to send
the update information to clients. The reduction rate is 15 %
of the quantity of that of the shared repository. We further
reduce the updated rate to emmulaie the predictive simulation
using the dead reckoning model. The reduction rate is 15 %
of the quantity of that of the blind broadcasting. The server
load variation under two load models for three dynamic
shared state techniques is shown in Figure 5. Depending on
the server capacity, the load of server increases
exponentially as the number of participant client hosts
increases. Under the second load model the server load

increases less dramatic. This explains that the supporting of

a large number of participants is a big problem for all NVEs.

3
=
3]
>
Qo
l 2 3 4 35 6 7 8 9 1000 12 13 M U3 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I3 34 35 35 37 38 3% 40 4l 42 43 M 43 46 47 48 43 SO
Number of Participanting Client Host
Figure 4. The overhead vs. the number of client hosts for two differsnt load models.
"
16
i1
i
o.
=11
sl
Q
A
%
A T N R - AR I Y - AR R S R T
Number of Participanting Client Hosts

Figure 5. The resulis of performance characterization of three types of dynamics share state techniques under two different load

models.

Performance Evaluation Using the First Load Model
In the first experiment we use the first server load model to
simulate the load behavior in the server, when the number of
participanis increases in the networked virial environment.
We have experimented on thrée approaches — the shared
repository technique, the three-level consistency approach
{11}, and the adaptive control mechanism. The resulis are
shown in Figure 6, where the vertical axis is the value of the
server load and the horizontal axis is the number of
pariicipanis. We can see that the overhead of the shared
repository technique increases very significantly as the
number of participant increases. But, both of the three-level
consistency approach and the adaptive control mechanism

B-522

maintain very low server load for a large number of
participants. They not only can control levels of information
consistency bui also refer to the server load o provide more
accurate dynamic shared state. The vertical dash lines divide
the intervals of the level of information consisiency for the
three level consistency approach. The threshold values are
10 and 25. The solid vertical lines indicate the change of the
level of information consistency for the adapiive control
approach. We observe that the adaptive conirol mechanism
using the state of the server load provides higher information
consistency than the three-level consistency approach using
the number of participants does.

-]
8
.:-J ~. &‘
S 9 & J’
% 8 12z 321812 21312 3#13 2 3 t2§312] 3 |2 13 i;

7 |t P

s Vi el

5

=
: == 7
- @ e P

8 hev 2,

2

1

. S I B I B

1 2 3 4 686 7 8 9 1011129314 151617 18 19 20 2122 23 24 25 26 27 28 2930 31 32 33 34 35 36 37 38 30 40 41 42 43 44 4546 47 48 49 50

Number of Participanting Client Hosis

Figure 6. Server load versus the number of simultaneous participants in the server site.

Figure 7, we show the service quality of shared repository
and two control approaches, the vertical axis is the rate of
information consistency and the horizontal axis is the
number of participants. Though the shared repository cannot
support too many participants, it always provides the best
information ¢onsistency all the time. Hence, we use it as
reference to talculate the rate of information consistency

provided by two types of control mechanisms. Since the
shared repository is the reference, it maintains 100% for all
range of the number of participants. The curves show that
the rate of information consistency using the adaptive
conirol mechanism is better than that of the three-level
consistency approach.

120%

1600%

804

608

The Rate of Information Consistency

[

123 45 67 B 9 10 1112 1315 1516 17 18 1930 27 22 29 27 25 36 77 28 29 30 31 32 33 34 35 36 37 38 39 40 43 42 41 44 43 46 47 48 45 50

Humber of Participanting Cliemt Hosts

Figure 7. The rate of information consistency versus the number of sinmitaneous participants in the server site.

@ Performance Evaluation Using the Second Load Model

In the second experiment we use the second server load
model to simulate the server load behavior. In this
experiment the client’s behavior is different. In this case the
load does not linearly increase with the number of
participants. The performance results are shown in Figure 8.
Figure 8 shows the service quality of shared repository and
two types of control mechanisms. It shows that the
estimation of the adaptive control mechanism can provide

B-523

the highest information consistency as the shared repository
until the number of participants is 30, but the evaluation of
the maximum simultaneous participants’ approach only can
support the same level information consistency for 10
participants. The rate of information consistency using the
estimation of the server load is better than that of the
evaluation of the maximum simulianeous participants.

120%

100%

80% |

60%

40%

The Rate of Information Conslistency

20% ’-

0% —_

12 3 4 5 6 7 8 9 1011121324151617 16192021 222324925 26272829 30313233 343536 37363940 414243 44

Number of Participanting Client Hosts

Figure 9. The rate of information consistency versus the number of simultaneous participants in the server site.

Discusslon

The experiments show that both control mechanisms can
significantly improve in the management of the number of
participants and the level of information consistency. The
three-level consistency approach has the advantages of
simple in implementation and low overhead in switching.
Though the adaptive control mechanism using the
estimation of server load performs betier, it may have
oscillation problem, when the variation of the number of
participants is very frequent. It also has a higher overhead
due to estimating the server load.

5 Conclusions

Puiting reality into a virtual environment requires
collaborative interactions among humans and machines.
From the above concept, in this paper we have presented an
adaptive control mechanism to maintain information
consistency and control the dynamic shared state for a
large-scale virtual environment. Two types of load models
are used to evaluation the performance of the shared
repository technique, the three-level consistency approach,
and the adaptive conirol mechanism. Evaluation resulis
show that the proposed approach and the three-level
consistency approach maintain lower server load than the
shared repository technique over a larger number of
participants. However, the adapiive conirol mechanism
makes level switching based on the statues of a realistic
virtual environment and can provide a better service quality.

References

[1} Anupam, V. and Bajaj, C. “Shastra: An Architecture for
Development of Collaborative Applications.”
International Journal of Intelligent and Cooperative
Information systems (UICIS), Vol. 3, No. 2, pp.
155-166, 1994,

{2} Bricken, W. and Coco, G “The VEOS Project.”
Presence: Teleoperators and Virtual Environments, Vol.
3, No. 2, pp. 30-39, 1994.

[3] Bridges, A. and Charitors, D. “On Architeciural Design
in Virtual Bnvironments.” Design Studies, Vol. 18, No.
2, pp. 143-154, 1997.

{41 Carlsson, C. and Hagsand, O. “DIVE - A Platform for
Multi-User Viral Environment.” Computers &
Graphics, Vol. 17, No. 6, pp. 663-669, 1993,

[5] Cremer, J., Kearney, J. and Ko, H. “Simulation and

B-524

Scenatio Support for Virtual Environments.”
Computers & Graphics, Vol. 20, No. 2, pp. 199-206,
1996.

(6] Department of Defense Modeling and Simulation
Office “High Level Architecture Interface Specification
Version 1.3 1998. Available through the Internet:
http://www.dmso.mil/.

{71 - Duenyas, L., Gupta, D., and Olsen, T. L. “Control of a
Single-server Tandem Queuing System with Setups.”
Operations Research, Vol. 46, No. 2, pp. 218-230, 1998.

[8]. Escobar, J., Partridge, C. and Deutsch, D. “Flow
Synchronization Protocol.” IEEE/ACM Transaction on
Networking, Vol. 2, No. 2, pp. 111-121, 1994,

9] Imstitute for Electrical and Electronics EBngineers
“IEER Standard for Distributed Interactive Simulation -
Application Protocols.” IEEE Standard 1278.1, 1995.

[10] Kleinrock, N. Queuning Systems, Vol. 1, 1976, New
York: John Wiley & Sons.

{11 Lu, T. C, Lin, M. T, and Lee, C. N. “Control
Mechanism for Large-Scale Virtual Bnvironments.”
Journal of Visual Languages and Computing, Vol. 10,
No. 1, pp. 69-85, 1999.

[12] Miller, D. and Thorpe, J. A. “SIMNET: The Advent of
Simulator Networking.” In Proceedings of IEEE, Vol.
83, No. 8, pp. 1114-1123, 1995,

[13] Pullen, J. M. “Networking for Distributed Virtual
Simulation.” Computer Networks and ISDIN Systems,
Vol. 27, pp. 387-394, 1994,

[14] Rommel, C.G “The probability of load balancing
success in a homogeneous network.” IEEE
Transactions on Software BEngineering, Vol. 17, pp.
922-933, 1991. :

[15] Shivaratri, N.G, Krueger, P,, and Singhal, M. “Load
distributing in locally distributed systems.” IBBE
Computer, Vol. 25, pp. 33-44, 1992,

[16] Sritam, M.G and Singhal, M. “Measures of the.

Potential for Load Sharing in Distributed Computing
Systems.” IEBE Transaction on Software Engineering,
Vol. 21, No. 6, pp. 468-475, 1991.

[17] Taylor, D. “The VR-Protocol and What It Offers HLA.”
In Proceedings of the 1997 Spring Simulation
Interoperability Workshop, Vol. 2, pp. 665-672, 1997.

(18] Zyda, M. et al. “NPSNET — Large-Scale Virtal
Environment Technology Testbed.” In Proceedings of
International Conference on Artificial Reality and
Tele-Existence, pp. 18-26, 1997.

45 46 47 40 45 50

