
 1

An Efficient Web Cluster with Content-Aware

Request Distribution for Streaming Service

Cheng-Wei Lin

Department of Information Management

National Chi Nan University

Email: s96213514@ncnu.edu.tw

Mei-Ling Chiang

Department of Information Management

National Chi Nan University

Email: joanna@ncnu.edu.tw

Chen-Yu Yang

Department of Information Management

National Chi Nan University

Email: s97213503@ncnu.edu.tw

Abstract―As the advance of the web and multimedia

technologies, the web sites usually can provide not only static

and dynamic web page services but also multimedia stream-

ing services. To serve various types and huge amount of ser-

vice demands, nowadays the web cluster system has been

popularly deployed because of the advantages of cost effec-

tiveness, load sharing, scalability, and high availability.

Traditionally, for providing the multimedia streaming ser-

vice, the server needs to establish a streaming connection with

the client at first and then transmits the streaming data. The

servers need to maintain the connection until the entire

streaming service is finished. In the process of providing

streaming service, the servers cannot handoff the existing

connection to the other server to continue the streaming ser-

vice. This might cause load unbalance among servers and

degrade the performance of the whole web cluster. In this

paper, we have proposed and implemented the RTSP Handoff

mechanism. Using our proposed mechanism, a long runtime

film can be logically partitioned into several sections and

each section of the film can be served by different real server.

During the process, the client would not sense the change of

servers. In this way, a web cluster can achieve better load

balance when providing the streaming service.

We have implemented our mechanism in the Linux kernel

of the LVS-CAD web cluster. Experimental results demon-

strate that the LVS-CAD web cluster with our proposed RTSP

Handoff mechanism can reduce 34.35% average response

time and achieve 37.19% better throughput than the one

without our proposed mechanism when providing multiple

web services.

Index Terms: Web Cluster, Multimedia Streaming, Con-

tent-aware Request Distribution

1. Introduction

With the fast development of internet and the

advance of the web and multimedia technologies,

the web services become more diverse. The web

services are not limited to static pages, dynamic

pages, and streaming services. To provide multiple

web services needs more hardware resources, so

the traditional single server is not sufficient to han-

dle such heavy workload. The web cluster that is

composed of a front-end request dispatching server

and several back-end request-handling servers has

become a cost-effective way to serve huge amount

of service demands, because of the advantages of

load sharing and load balance, high performance,

scalability, and high availability.

For providing the multimedia streaming service,

the streaming server needs to establish a streaming

connection with the client and then starts to trans-

mit the streaming data. In general, no matter how

long the movie runtime is, the server has to main-

tain the connection with the client until the entire

streaming service is finished. For example, if a

movie runtime is an hour, the streaming server

needs to provide the streaming service and main-

tain the connection for an hour. However, the

streaming server might be overloaded with heavy

streaming workload from lots of clients. In the

process of providing streaming service, the servers

cannot handoff the existing connection to the other

server to continue the streaming service. This might

cause load unbalance among servers and degrade

the performance of the whole web cluster.

In this paper, we have proposed a new mechan-

ism named RTSP Handoff. Using our proposed

mechanism, a long runtime film can be logically

partitioned into several sections and each section of

the film can be served by different real server.

During the process, the client would not sense the

change of servers. In this way, a web cluster can

 2

achieve better load balance when providing the

streaming service.

We have implemented the proposed RTSP Han-

doff mechanism in the LVS-CAD web cluster [1,2].

The LVS-CAD web cluster is a Linux-based clus-

ter-based web server system which originally pro-

vides only static and dynamic web pages. By ap-

plying the proposed mechanism, LVS-CAD web

cluster can efficiently support streaming service.

Experimental results demonstrate that the

LVS-CAD web cluster with our proposed RTSP

Handoff mechanism can achieve 10.99-37.19%

better throughput under the heavy streaming work-

load, and 12.85-29.55% better throughput under the

synthetic workload than the one without using our

proposed mechanism. Besides, the average re-

sponse time of the LVS-CAD web cluster when

using our proposed RTSP Handoff mechanism can

be reduced by 15.54-34.35% under the heavy

streaming workload, and reduced by 6.94-34.59%

under the synthetic workload than the one without

using our proposed mechanism.

2. Background and Related Work

This section introduces the system background

and related work.

2.1 Streaming Service Protocol

2.1.1 Real Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) is a

one of network control protocol for real-time

streaming data based on TCP protocol. It was de-

veloped by the Multiparty Multimedia Session

Control Working Group (MMUSIC WG) of the In-

ternet Engineering Task Force (IETF) and pub-

lished in RFC 2326 in 1999. The RTSP protocol is

used to configure the sessions between client and

server. It does not encode any content of message.

It’s only responsible for settings and control mes-

sage, similar to HTTP. All RTSP requests are re-

quest-response pair to complete every communica-

tion. The functionalities of RTSP protocol are de-

scribed in the following and Figure 1 shows the

packet flow of the streaming service.

Client
Streaming

Server

RTSP-TEARDOWN

RTSP-PAUSE

RTP-Audio

RTP-Video

RTSP-PLAY

RTSP-SETUP

RTSP-DESCRIBE

RTSP-Session Description

RTCP

Client
Streaming

Server

RTSP-TEARDOWN

RTSP-PAUSE

RTP-Audio

RTP-Video

RTSP-PLAY

RTSP-SETUP

RTSP-DESCRIBE

RTSP-Session Description

RTCP

Figure 1. Packet flow of the streaming service

(1) DESCRIBE: The RTSP-DESCRIBE request

includes film name, format, language, and

player version from the request made by client.

Then the streaming server finds the corres-

ponding information including film length,

track types and IDs. The player on client will

set film according to this information.

(2) SETUP: Because each video and audio data

have their own track number included in RTP

packet transmitted by the streaming server. The

RTSP-SETUP request is used to inform the

streaming server of the receive port number

with corresponding track number. The stream-

ing server would return its port number, path of

film source and a session number of the con-

nection.

(3) PLAY: After the previous two steps, the client

could make the RTSP-PLAY request time to

start playing the film. It includes the initial and

terminal time. When receiving the

RTSP-PLAY request, the streaming server will

return the timestamp that fills in the film track

ID, and the initial sequence number of the RTP

packet. After that, the streaming server trans-

mits the streaming data on the RTP protocol.

(4) PAUSE is used to suspend a playing movie.

 3

(5) TEARDOWN request can terminate a

streaming connection.

2.1.2 Real Time Transport Protocol (RTP)

This protocol is defined by the Audio-Video

Transport Working Group of the IETF and first

published in 1996 as RFC 1889 and superseded by

RFC 3550 in 2003. It carries streaming media

based on the UDP protocol to the client by the way

of unicast, multicast or broadcast. Using the RTP

protocol can obtain better efficiency and avoid the

delay of movie playing. The RTP protocol does not

provide the control mechanism for transmitting the

streaming data. For this reason, the RTP Control

Protocol (RTCP) could provide the control me-

chanism for the RTP packet flow. The client can

send the RTCP packets periodically to inform the

streaming server to change transfer rate dynamical-

ly. Figure 2 illustrates the RTP header format.

Figure 2. The RTP header format

Some important fields are listed as follow:

(1) Payload type field

This field indicates the data format of RTP pack-

et and determine the decoding method of RTP

packet. The payload type of the video streaming

data is 96 and the payload type of the audio

streaming data is 97. When receiving the RTP

packet, the multimedia player will distinguish the

payload type corresponding to its value to decode

it.

(2) Sequence number field

This field presents the order of RTP packets sent

by streaming server. The initial value of the se-

quence number is generated in random and incre-

mented by one when each RTP packet is sent. The

clients could use the sequence number to detect lost

packets and reorder the order of RTP packets.

(3) Timestamp field

This field is used to make the client to playback

the received RTP packet at appropriate time inter-

vals. The streaming server gives the timestamp

corresponding to the time value in the film for each

RTP packet. Because the RTP is a real-time transfer

protocol, all received RTP packets must be

processed immediately. If the timestamp value of

the received RTP packet is delayed, the RTP packet

would be dropped by client.

2.1.3 Real Time Control Protocol (RTCP)

The RTP Control Protocol (RTCP) is used to

control the RTP packet flow. Its basic functionality

and packet structure are defined in RFC 3550 su-

perseding its original standardization in 1996 (RFC

1889). When the streaming connection is estab-

lished, the client will open two ports, one is used to

receive the RTP packets, and the other is used to

receive the RTCP packets. The client will periodi-

cally send RTCP packets to inform DSS the status

of receiving video data, which includes the amount

of packets received and the amount of lost packets.

DSS can use the information to change transfer rate

dynamically.

2.1.4 MPEG-4 Part 14 (MP4) File Format

MPEG-4 Part 14 is a multimedia container for-

mat standard specified as a part of MPEG-4 by

ISO/IEC, which is based on Apple’s QuickTime

container format. A MP4 file is basically comprised

of video and audio streams.

Note that before the streaming server start to

transmit the media data, it must be encapsulated to

streaming packets with a hint track. A hint track

stores corresponding information into the packet

with appropriate size and then sends to the client.

Figure 3 shows the MP4 file structure.

 4

ISO File

moov

other atoms track(video)

track(audio)

hint

mdat

Interleaved, time-ordered,

video, audio frames, and

hint instructions

Figure 3. The MP4 file structure diagram with a
hint track

2.2 DSS System Overview

DSS stands for Darwin Streaming Server also

called QuickTime Streaming Server (QTSS) [6],

which is released by Apple Computer Inc. in 1999.

This is the first open-source software of streaming

server. DSS can install on many operating systems

such as Linux, Solaris and Windows. It also sup-

ports MPEG-4 video format, so the service of Vid-

eo on Demand and live service can use it to trans-

mit multimedia data.

InternetInternet

Client

Protocol Layer

UDP/TCP Layer

Video

Decoder

Audio

Decoder

IP Layer

RTSP/RTCP

Layer

Media

Synchronization

Streaming Server

Storage Device

Compressed

Video

Compressed

Audio

Protocol Layer

RTSP/RTCP/RTP

Layer

UDP/TCP Layer

IP Layer

Raw

Audio

Raw

Video

Video

Compression

Audio

Compression

Figure 4. The client-server communication ar-
chitecture in DSS

Figure 4 illustrated the client-server architecture

in DSS. At first, the client makes a RTSP request to

initialize a streaming connection to the DSS. After

the connection is established, the client could send

different RTSP methods to play, pause and stop the

playing movie [5]. Subsequently, the DSS returns

the streaming data by RTP packets. While the film

is playing, the client sends the RTCP packets to the

DSS, including the number of packets received or

lost periodically. According to this information, the

DSS could change the transfer rate in transmission.

2.3 Web Cluster System

Since a single server cannot efficiently handle

huge amount of requests, a web cluster system is a

good deployment to handle this situation. We will

briefly discuss some aspects we have used.

2.3.1 Linux Virtual Server (LVS)

LVS [4] is one of the most popular web cluster

system which contains a set of independent Li-

nux-based servers and acts as a single server. It is

composed of a front-end server and multiple

back-end servers. The front-end server is a layer-4

web switch which can perform only content-blind

request distribution that cannot parse the content of

the HTTP request (i.e. URL) in dispatching re-

quests from clients to back-end servers.

LVS supports three types of packet forwarding

techniques, network address translation, IP tunne-

ling and direct routing. In this paper, we choose

direct routing as our environment of experiment,

because it’s the most efficient mechanism.

In the direct routing mechanism, the front-end

server and back-end servers have the same virtual

IP address (VIP). The front-end server routes a

packet to the selected back-end server directly by

modifying MAC address. Therefore, all servers

must be linked in continuous LAN segment. The

direct routing mechanism belongs to one-way

packet rewriting architecture, in which the

back-end servers respond all requests to clients di-

rectly. The front-end would not become a bottle-

neck because it processes only incoming packets.

In order to prevent both of the front-end server and

back-end servers from returning the ARP response

packets to clients at the same time, back-end serv-

ers should disable the ARP response. Figure 5

shows the packet forwarding flow of LVS with di-

rect routing.

 5

2.3.2 Layer-7 Web Switch Mechanism

The layer-7 web switch which works at applica-

tion level can support content-aware routing which

is more sophisticated than content-blind request

distribution to make the back-end servers achieve

better load balancing. This routing mechanism is

less efficient than the layer-4 web switch because it

has to parse the content of the requests. In order to

conduct content-aware request distribution, the

front-end server needs to do three-way handshaking

with the client for receiving the packet containing

the HTTP content.

Client
Front-end

Server

Back-end

Server

SYN

SYN

SYN,ACK

ACK

ACK
PSH,ACK

PSH,ACK

ACK

PSH,ACK

ACK

ACK

Figure 5. Packet forwarding flow of LVS with
direct routing mechanism

2.4 LVS-CAD Web Cluster

2.4.1 Content-Aware Request Distribution

Policy

Our front-end server uses the content-aware dis-

patching policy named Grouped Client-Aware Pol-

icy (GCAP) [3] to select a back-end server to pro-

vide the streaming service. When the front-end

server receives the notification packet which is sent

by the original back-end server to handoff the cur-

rent streaming service, it uses the same dispatching

policy to select the next back-end server for con-

tinuing the streaming service.

The concept of GCAP is based on CAP [7]. Be-

cause different types of requests need different re-

sources, CAP classifies the requests from clients

into four types including normal (N), CPU bound

(CB), disk bound (DB), and disk and CPU bound

(DCB) services. Each type of requests from clients

will be dispatched to the proper back-end server by

using the Round-Robin (RR) policy, so the

back-end servers would handle each type of re-

quests evenly. In order to distinguish the processing

capabilities of the back-end servers, the GCAP was

proposed in our early work to limit the request

types that each server could process. GCAP dis-

patches different types of requests to back-end

servers with Weighted Round-Robin (WRR) sche-

duling, and each back-end server processes only its

own types of requests.

Figure 6 shows an example of GCAP policy. We

assume there are three back-end servers in the

cluster, and both server A and server B can serve

type-1 requests while server C can serve only

type-2 requests. When the front-end server receives

the type-1 requests, it dispatches the type-1 re-

quests to the server A and server B based on WRR

policy. Therefore, the server A and server B would

handle type-1 requests evenly. Because only server

C can serve type-2 requests, so the seventh, eighth,

and ninth requests are handled by back-end server

C.

A

B

C

BE

FE

A

BB

CC

BE

FE

2

Clients

Request Sequence

Dispatch Result

11112 12 1

1

1

2

1

1

2 2

1

1

BA

C

Type of Requests

that Servers serve

1

2

BBAA

CC

Type of Requests

that Servers serve

1

2

12

1

3456789

1

2

3

4

5

6

7 8 9

Figure 6. Request sequence and dispatching re-
sult of GCAP

2.4.2 The architecture of LVS-CAD

Figure 7 shows the architecture of our LVS-CAD

 6

[1,2] (LVS with Content Aware Dispatching) cluster.

To improve content-aware request distribution ef-

fectively, we designed a fast handshaking [1] by

IPVS-CAD module on the front-end server and the

TCP Rebuilding mechanism on each back-end

server. The fast handshaking mechanism can do

TCP three-way handshaking at IP layer instead of

TCP layer to gain better performance than the

original three-way handshaking.

Figure 7. The architecture of LVS-CAD

3. Design and Implementation of a Web Clus-

ter Supporting Streaming Service

This section describe how we design and imple-

ment a web cluster to support a variety of web ser-

vices including static, dynamic web pages and mul-

timedia streaming service. In order to make our

front-end server effectively to distribute the loading

of multimedia streaming service while the other

services are running, we proposed the RTSP Han-

doff mechanism on our LVS-CAD web cluster sys-

tem. For this purpose, we additionally propose the

RTSP rebuilding method and RTSP handoff request

method to support the RTSP Handoff mechanism.

3.1 System Overview

We have constructed the LVS-CAD web cluster

as our experiment platform of streaming service.

For this purpose, we installed the DSS on all

back-end servers.

Now, the client wants to watch a film and make a

RTSP request to the front-end server. As shown in

Figure 8, the front-end server directs the request to

one of back-end servers, and uses the RTSP Han-

doff mechanism to migrate this on-line connection

to the next back-end server that is in lighter work-

load. Then the next back-end server would rebuild

the connection with the client by the RTSP Re-

building manner.

Client

Front-end

Back-end 1

RTSP

request

Back-end 2

RTSP

Rebuilding
RTSP

Handoff

Solicit

RTSP

Handoff

RTP

packets

RTP

packets

Client

Front-end

Back-end 1

RTSP

request

Back-end 2

RTSP

Rebuilding
RTSP

Handoff

Solicit

RTSP

Handoff

RTP

packets

RTP

packets

Figure 8. The architecture of our proposed

RTSP Handoff mechanism

3.1.1 Processing Flow of RTSP Request

The processing flow of RTSP request is illu-

strated in Figure 9. The front-end server established

a connection efficiently with the client by means of

fast handshaking. Then the front-end server for-

wards the RTSP request to the back-end server ac-

cording to its designated scheduling algorithm.

When receiving the RTSP request, the back-end

server uses the TCP Rebuilding mechanism [1] to

rebuild the existing TCP connection by changing

PSH flag. Finally, the back-end server returns the

RTSP reply packet to the client directly (Figure 9).

If a subsequent request which belong to the same

streaming connection comes in, it would be for-

warded to the same back-end server.

Internet

Requests

Web cluster

Front-end Server

Internal Network

Real Server 2

Real Server 3

Real Server n

Real Server 1

Clients

Responses

Internet

Requests

Web cluster

Front-end Server

Internal Network

Real Server 2

Real Server 3

Real Server n

Real Server 1

Clients

Responses

 7

Figure 9. Processing Flow of RTSP Request

3.1.2 Processing Flow of RTP Request

After the streaming connection is set, the client

would send the RTSP PLAY request to inform the

back-end server to start providing the streaming

service, and the back-end server replies the RTSP

PLAY response packet to the client. At last, the

back-end server transmits the video and audio data

in RTP packets separately (Figure 10).

Client
Front-end

Server

Back-end

Server

RTP-Video

RTP-Audio

RTSP DESCRIBE

RTSP DESCRIBE reply

RTSP DESCRIBE

RTSP PLAY

RTSP PLAY reply

RTSP PLAY

RTSP SETUP

RTSP SETUP reply

RTSP SETUP

Figure 10. Processing Flow of RTP Request

3.2 Front-end Server Implementation

Due to the streaming connection cannot be dis-

connected before entire film finished, this may

cause load imbalance when the back-end server is

in heavy workload. For this reason, we design a

method of the front-end server is to logically parti-

tion a film into several parts and handoff among

back-end servers for lightening their workload.

In principal, establishing a streaming connection

only depends on the RTSP DESCRIBE and RTSP

PLAY packets. The front-end server uses the client

source IP address and port number to insert entries

into the RTSP hash table, and determines whether

the streaming connection needs to be migrated by

the length of the selected film, i.e. whether the film

needs to be partitioned.

Figure 11 demonstrate the operation of migrating

the existing streaming connection. Before the han-

doff occurs, the old back-end server sent a notifica-

tion packet to inform the front-end server to select

a new back-end server to continue the streaming

service. The notification packet includes the current

client source IP address and source port number.

Then, the front-end will copy the two packets and

send them to the new back-end server for rebuild-

ing the existing connection. According the content

of RTSP PLAY packet, the new back-end server

can transmit the film with the modified time range

of the playing movie to the client. The client would

not feel any interrupt during the whole process. The

workflow of RTSP Handoff mechanism shows in

Figure 12.

Internet

Requests

Web cluster

Front-end Server

Internal Network

Real Server 2

Real Server 3

Real Server n

Real Server 1

Clients

Responses

Internet

Requests

Web cluster

Front-end Server

Internal Network

Real Server 2

Real Server 3

Real Server n

Real Server 1

Clients

Responses

1.
RTSP re

qu
est

2 H
an

do
ff

de
man

d

3. The copied

RTSP packets

Web cluster

cli
en

t IP
, p

ort

nu
mbe

r

Figure 11. The operation of migrating the exist-

ing streaming connection

 8

Ignore
NO

YES

Fetch the packet from

network

Copy the RTSP

packets

in RTSP hash table

 Does the RTSP packet need

RTSP Handoff?

Send to the selected

back-end server

Does the notification

packet come from

the back-end server?

NO

Look up the

RTSP hash table

YES

Get the copied RTSP

packets

Scheduled by

distribution policy

Modify the time range

of the movie playing

in the RTSP PLAY

packet

CASE 1

CASE 2

Figure 12. The flow of RTSP Handoff

3.3 Back-End Server Implementation

When the RTSP SETUP packet comes in, the

DSS will generate a session key for identifying

streaming connection which the received RTSP re-

quest belongs to. Note that the DSS is located at the

application layer. While RTSP handoff occurs, the

new back-end server receives the copied RTSP

SETUP packet, it will generate a new session key

for rebuilding connection. However, the subsequent

copied RTSP PLAY packets are still going with the

old session key of the original back-end server. In

order to make this copied RTSP PLAY packet be

treated as legal, the new back-end server needs to

replace the old session key with the new one at the

kernel layer, and then passed it to the application

layer. At the same time, the client would not detect

that the front-end server has migrated the streaming

connection because the back-end server has already

dropped the reply packets of the copied RTSP

packets. So the client will not receive the extra

RTSP reply packets.

When fetching the RTSP SETUP reply packet at

the kernel layer, the back-end server uses the

client’s IP address and the RTSP port number to

create a RTSP hash table entry, where the RTSP

port number is used to receive the RTSP packets by

clients. Then the back-end server stores the RTP

port number and the new session key into the entry.

The RTP port number is used to receive the RTP

packet by the client. RTSP PLAY further uses the

RTP port number to create the RTP hash table for

the RTP Handoff request method.

When the new back-end server receives the co-

pied RTSP PLAY packet with the old session key, it

could use the client source IP address and the RTSP

port number to look up new session key from the

RTSP hash table, and then replace the old session

key with the new one in the packet. It means that

RTSP Rebuilding is successful.

Figure 13 shows the RTSP packet flow in func-

tion ip_rcv() in Linux kernel. At first, the incoming

packet (step 1) has to be examined whether it is the

stored RTSP packet. If it’s not, the packet is deli-

vered to the upper layer (step 2.a). Otherwise (step

2.b), if the RTSP packet has the session key (step

3.b), the back-end server should find out the entry

in RTSP hash table (step 4) to get the new one. If

the RTSP packet has no session key, it is delivered

to the upper layer (step 3.a). If the back-end server

cannot find the entry in the RTSP hash table, it

would drop the RTSP packet (step 4.b). Finally

(step 4.a), the back-end server replaces the old ses-

sion key with new one to the packet (step 5), then

the packet is passed to the upper layer.

Kernel Layer

Application Layer

1

Darwin Streaming Server

Is it the stored

RTSP packet?
Is there a session key

in the RTSP packet?

Find the entry

in

RTSP hash table

Replace

the session key

Yes

Yes

3.b

Yes

4.a

5

Modified ip_rcv()

No

2.a

No

3.a

No

4.b

drop

2.b

Kernel Layer

Application Layer

1

Darwin Streaming Server

Is it the stored

RTSP packet?
Is there a session key

in the RTSP packet?

Find the entry

in

RTSP hash table

Replace

the session key

Yes

Yes

3.b

Yes

4.a

5

Modified ip_rcv()

No

2.a

No

3.a

No

4.b

drop

2.b

Figure 13. Packet flow in ip_rcv() function in the

back-end server

 9

We also added the checkpoint by modifying

function ip_finish_output() in Linux kernel for

RTSP rebuilding as shown in Figure 14. The in-

coming packet (step 1) has to be examined to

whether it is a duplicate RTSP reply packet. If it’s

not, the packet is delivered to the client (step 2.a).

Otherwise (step 2.b), if it is the RTSP SETUP reply

packet (step 3.b), the back-end server should create

a RTSP hash table entry then store the new session

key and RTP port number. In order to avoid return-

ing the duplicate reply packet to the client, the

back-end server drop it at all (step 3.a or 4).

Kernel Layer

1

Is a duplicated

reply packet?
Is the RTSP SETUP

reply packet?

Creat a RTSP

hash table entry,

store new session key and

RTP port number

Drop the

reply packet

Yes

Yes

3.b

Yes

4

Modified ip_finish_output()

No

2.a

No

3.a

2.b

drop

Multimedia Player

InternetInternet

Client

Back-end

server

Kernel Layer

1

Is a duplicated

reply packet?
Is the RTSP SETUP

reply packet?

Creat a RTSP

hash table entry,

store new session key and

RTP port number

Drop the

reply packet

Yes

Yes

3.b

Yes

4

Modified ip_finish_output()

No

2.a

No

3.a

2.b

drop

Multimedia Player

InternetInternet

Client

Back-end

server

Figure 14. Packet flow in ip_finish_output()
function in the back-end server

3.3.1 Handoff the Existing Streaming Ser-

vice

As the back-end server initializing a RTP

streaming connection to transfer the film, it will

generate a corresponding initial sequence number

in the first sent RTP packet. Because of the length

of films are fixed, we can easily know the end se-

quence number of the last RTP packet. Actually, the

client could get the initial number by the RTSP re-

ply packet. Thus, the back-end server fetches the

RTSP PLAY reply packet at the kernel layer, it uses

the RTP port number to create the RTP hash table

entry and then store initial sequence number of the

RTP packet into the RTP hash table.

The back-end server uses the end sequence

number of the RTP packet to determine whether it

should send a notification packet to the front-end

server or not. When the sequence number of the

packet approaches the end sequence number of the

RTP packet, the back-end server would send the

notification packet to the front-end server to han-

doff the existing streaming connection. The content

of the notification packet includes the client IP ad-

dress and the RTSP port number.

4. Performance Evaluation

4.1 Benchmark and Workload of SPECweb2005

SPECweb2005 is a performance benchmark tool

developed by the Standard Performance Evaluation

Corporation (SPEC). It is composed of three sys-

tems: a web server, an application server, and over

than one web client simulators. The benchmark is

run on many clients that use port 80 to send HTTP

requests to the web server. All clients are controlled

by one prime client that is also a normal client. In

our experiment, we construct a web cluster instead

of a single server to serve clients’ requests. In addi-

tion, we use the simulator servers to simulate the

application servers, such as database servers.

SPECweb2005 benchmark generates a number

of client connections that correspond to the setting

of the number of simultaneous sessions in the con-

figuration files. The clients will continuously send

requests to web cluster system. A new user session

starts as soon as the previous user session is over,

and this process continues until the whole bench-

mark is completed.

There are three frames of SPECweb2005 work-

load: Banking, e-Commerce, and Support. They are

designed to measure the performance of static and

dynamic web services, and we selected SPEC-

web_Ecommerce as our workload. This workload

was developed by analyzing log files as actual

E-commerce sites, as well as browsing popular web

stores to gather statistics such as average page size,

access frequencies, and capturing form data that a

customer typically fills out when purchasing prod-

ucts. As using the E-commerce workload in

SPECweb2005, the server has to hold session in-

formation. For this purpose, we set up a cache

server by Memcached software on the front-end

server to share the session information with

 10

back-end servers. Therefore, our front-end server

can efficiently cache the session information, such

as user identify ID, items of shipping cart, and

browsing history of clients in the main memory.

Because the SPECweb2005 benchmark does not

provide the streaming requests, we add streaming

type of requests into our workload in the experi-

ments. We installed the DSS in our back-end serv-

ers to handle the streaming type of requests. The

clients use port 554 to send streaming type of re-

quests to our web cluster. Each client uses the VLC

media player to watch the streaming films, and a

new streaming request is sent to our web cluster as

soon as the previous streaming service finishes.

4.2 Experimental Environment

We construct our cluster with eight back-end

servers and one front-end server which acts as a

cache server. Two simulator servers are used to si-

mulate the application servers, such as database

servers. In addition, ten computers are clients to

make HTTP and streaming requests. All computers

are connected in1Gbps Ethernet LAN by ZyXEL

Dimension GS-1124 switch. The environment is

shown in Table 1.

Table 1. Hardware / Software environment

 Front-end Back-end Simulator Clients

CPU (Hz) P4 3.4G
P4 2.4G

P3 800M

RAM(DDR) 1G 384MB 1GB 256MB

NIC(Mbps) Intel Pro 100/1000

D-Link

DGE-530

T

Realtek

RTL8139

Intel

Pro100/1000

D-LinkDGE-5

30T

IPVS 1.21 X X X

Streaming

Server
X

DSS

5.5.5
X X

Media

Player
X X X VLC 0.9.9

Benchmark X X
SPEC-

web2005
SPECweb2005

Num of PCs 1 8 2 10

4.3 Performance Evaluation Results

During our experiments, we found a limitation of

the LVS and the TCP connection would be expired

over two minutes. Therefore, we set the run-time of

all films to two minutes. During the short runtime,

the front-end server cannot determine whether the

current streaming connection needs to be handoff if

a longer film is playing. For evaluating the perfor-

mance of using out proposed RTSP mechanism, we

adjust the ratio of films which needs to be handed

off. In the following experiments, we assumed two

scenarios which are synthetic workload and heavy

workload. Then we presented the results of expe-

riments of the LVS-CVD web cluster using the

RTSP Handoff mechanism and GCAP policy.

4.3.1 Synthetic Workload

In this experiment, besides the Ecommerce

workload of SPECweb2005, each client only

watches one streaming movie at the same time, and

it will send a new streaming request to our web

cluster as soon as the previous streaming service is

finished. The SPECweb2005 benchmark needs

about thirty minutes for running a phase of experi-

ment. All films’ runtime which a client requests is

two minutes. For processing the streaming requests

constantly, each client will send a total of fourteen

streaming requests during one phase of experiment.

Besides, for avoiding too much overhead caused by

the frequent handoff of the streaming connection

for our web cluster, we set the playing time of the

movie which needs handoff to one minute. In other

words, the old back-end server would provide the

first one minute of the movie data, and the remain-

ing one minute of the movie data is provided by the

new back-end server.

Figure 15 shows the experimental results of the

LVS-CAD using the RTSP Handoff mechanism

with GCAP policy and different settings. The per-

centage means that the handoff ratio of all films.

For example, “without RTSP Handoff” means the

LVS-CAD web cluster provides all films without

using our proposed RTSP Handoff mechanism,

“50% Handoff” means that there are a half of all

films which need to be handed off in the web clus-

ter, and “100% Handoff” means the LVS-CAD web

 11

cluster provides all films with our proposed RTSP

Handoff mechanism. The X-axis denotes the num-

ber of clients simultaneously issuing requests in

each phase of experiment. The Y-axis denotes the

total amounts of web files transferred on MBytes in

each phase of experiment.

In this experiment, the web cluster using our

proposed RTSP Handoff mechanism with “50%

Handoff” can achieve the best performance, and

outperforms the one without using RTSP Handoff

mechanism by 12.85-29.55%. We also found that

excessive RTSP Handoffs could degrade the per-

formance of the whole web cluster.

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

Number of Clients

T
o
ta

l
a
m

o
u
n
t

o
f

w
e
b
 f

il
e
s

tr
a
n
sf

e
rr

e
d
 (

M
B

)

without RTSP Handoff 50% Handoff 100% Handoff

Figure 15. Performance of the LVS-LAD under
synthetic workload

0

2

4

6

8

10

12

14

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

Number of Clients

R
e
sp

o
n

se
 T

im
e
(s

e
c
)

without RTSP Handoff 50% Handoff 100% Handoff

Figure 16. Average response time of LVS-CAD
under synthetic workload

Figure 16 shows the average response time of

LVS-CAD using the RTSP Handoff mechanism,

CAP policy, and different settings. The X-axis

means the number of clients simultaneously issuing

requests in each phase of experiment. The Y-axis

means the average response time (second) in each

phase of experiment. In this experiment, the web

cluster using our proposed RTSP Handoff mechan-

ism with “50% Handoff” can obtain the smallest

average response time, and outperforms the one

without using RTSP Handoff mechanism by

6.94-34.59%. Excessive RTSP handoffs could also

increase the average response time of requests dur-

ing the experiment.

4.3.2 Heavy Streaming Workload

For demonstrating the web cluster can gain bet-

ter performance using our RTSP Handoff mechan-

ism while processing the heavy streaming workload,

we increase the amount of streaming requests in the

synthetic workload used in previous section in this

experiment. Each client watches two streaming

movies at the same time, and it will send a new

streaming request to our web cluster as soon as the

previous streaming service is finished. Therefore,

each client will send a total of twenty-eight

streaming requests during one phase of experiment.

All films’ runtime which a client requests is two

minutes. We set the playing time of the movie

which needs handoff to be one minute.

Figure 17 shows the experimental results of the

LVS-CAD using RTSP Handoff mechanism, GCAP

policy, and different settings. In this experiment,

there are one third of all films which need to be

handed off in the web cluster. In this experiment,

the web cluster using our proposed RTSP Handoff

mechanism can achieve the better performance, and

outperforms the one without using RTSP Handoff

mechanism by 10.99-37.19%.

Figure 18 shows the average response time of

LVS-CAD with the RTSP Handoff mechanism,

CAP policy, and different settings. In this experi-

ment, the web cluster using our proposed RTSP

Handoff mechanism can achieve the less average

response time, and outperforms the one without

using RTSP Handoff mechanism by 15.54-34.35%.

 12

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

Number of Clients

T
o

ta
l
am

o
u

n
t
o

f
w

eb
 f

il
es

 t
ra

n
sf

er
re

d
 (

M
B

)

LVS-CAD without RTSP Handoff LVS-CAD with RTSP Handoff

Figure 17. Performance of the LVS-CAD under
heavy streaming workload

0

1

2

3

4

5

6

7

8

9

10

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

Number of Clients

R
es

p
o
n
se

 T
im

e
(s

ec
)

LVS-CAD without RTSP Handoff LVS-CAD with RTSP Handoff

Figure 18. Average response time of LVS-CAD
under heavy streaming workload

5. Conclusions and Future Work

We have designed and implemented a web clus-

ter that can support not only static and dynamic

web requests but also streaming requests. To

achieve better load balance in our web cluster while

providing multiple web services, we proposed and

implemented the RTSP Handoff mechanism in our

web cluster. Experimental results show that the

LVS-CAD web cluster with our proposed RTSP

Handoff mechanism can achieve 37.19% better

throughput under the heavy streaming workload,

and 29.55% under the synthetic workload than the

one without our proposed mechanism. Besides, the

average response time of the LVS-CAD web cluster

when using our proposed RTSP Handoff mechan-

ism can be reduced by 34.35% under the heavy

streaming workload, and 34.59% under the syn-

thetic workload.

We are now evaluating LVS-CAD web cluster

with our proposed RTSP Handoff mechanism using

more long runtime films in our experiments. Based

on the LVS-CAD platform, other issues could be

further explored or enhanced, such as supporting

secure sockets layer, providing session affinity, and

content placement and management.

References

[1] Ho-Han Liu, Mei-Ling Chiang, and Men-Chao
Wu, “Efficient Support for Content-Aware
Request Distribution and Persistent Connection
in Web Clusters,” Software Practice & Expe-
rience, Volume 37, Issue 11, Pages 1215-1241,
Sep. 2007.

[2] Mei-Ling Chiang, Yu-Chen Lin, and
Lian-Feng Guo, “Design and Implementation
of an Efficient Web Cluster with Con-
tent-based Request Distribution and File
Caching,” Journal of Systems and Software,
Vol. 81, Issue 11, pp. 2044-2058, Nov. 2008.

[3] Chun-Hung Wu, “A Kernel Mechanism for Ef-
ficiently Supporting Quality of Service in Web
Cluster System”, Master Thesis, Department of
Information Management, National Chi-Nan
University, Nantou, Taiwan, July 2008.

[4] Wensong Zhang, “Linux Virtual Servers for
Scalable Network Services,” OTTAWA Linux
Symposium, July 19-22, 2000, Canada.

[5] Po-Kai Chiu, “Design and Implement a MP4
Video-on-Demand System based on PC Clus-
ter”, Master Thesis, Department of Computer
Science and Information Engineering, National
Cheng Kung University, Taiwan, 2003.

[6] Wei-Yuan Lin, “Design and Implementation of
A PC Cluster-Based QuickTime Streaming
Server”, Master Thesis, Department of Com-
puter Science and Information Engineering,
National Cheng Kung University, 2003.

[7] Emiliano Casalicchio and Michele Colajanni,
“A Client-Aware Dispatching Algorithm for
Web Clusters Providing Multiple services”,
WWW10, May 1-5, 2001, Hong Kong.

