
Web Services Gateway

Proxy mode routing
service

Routing
handler

Service provider

SILVER

Service

GOLD

Service

Level?

Service

Client routing
handler

Initial

sender

Figure 1. Web service gateway structure provided by
IBM's website [4]

Web Service Deployment and Management with
UPnP

Abstract―Web service gateway [1] developed by IBM
Corporation provides a single point of access and
validation of web service requests. However, it doesn't
reduce the complexity of web services deployment and
management from the intranet’s point of view. It is
necessary to let web service gateway knows what happens
to the supporting web service servers in the intranet to
archive rapid deployment of web services. Therefore, a
mechanism using UPnP protocol [2] to exchange
information between web service gateway and web service
server is proposed. With this mechanism, web services can
be deployed rapidly and flexibly as the number of intranet
business applications is growing now a day. Besides, web
services load balance will be automatically achieved with
this mechanism. Furthermore, this idea can also be
applied on the SOA-based (Service-oriented architecture)
[3] system. SOA components will spontaneously find
available bindings in the intranet without complex
configurations and even combine other SOA components
to a new integrated service self-acting.

Index Terms―UPnP, Web Service Gateway, SOA.

I. INTRODUCTION
Web service gateway can be a bridge between

web service servers and outside users. It offers an
integrated thought of all provided web services in
the intranet and transmits the entire requests from
outside users to the corresponding web service
server inside. The most important is it just loses a
little performance which we will prove in chapter 4.
However, the status of web service can’t be
updated automatically when the service provider
joins, leaves or even some events occur. In other
words, the status information in the web service
gateway is not in real time because the
corresponding settings have to be modified by web
service manager. Therefore, we need to provide a
tunnel between web service servers and web
service gateway for message exchange. UPnP is the
mechanism we used and we will explain how to do
it and show if it works well.

II. DEPLOY AND MANAGE WEB SERVICES WITH

UPnP
Web service gateway developed by IBM

Corporation provides a single point of access and
validation of web service requests. However, web
service gateway permits only the connection from
the client outside the firewall to the web server
inside the firewall smoothly and centralizes the
deployment from web service requesters' point of
view. Briefly speaking, it doesn't reduce the
complexity of web services deployment from the
intranet’s point of view. Person who is in charge of
the web service deployment and management still
has to talk to the web service gateway. Therefore, a
mechanism using UPnP protocol to exchange
information between web service gateway and web
service server is proposed. With this mechanism,
web services can be deployed rapidly and flexibly
as the number of intranet business applications is
growing now a day.
A. Web Service Gateway

The concept of web service gateway was
brought up by IBM and implemented in IBM
WebSphere application server in several years ago.
The structure of web service gateway is as
following figure.

Wei-Lun Huang (黃偉倫)
National Taiwan University, Taiwan, R.O.C.

Email: d97922012@csie.ntu.edu.tw

Chiao-Szu Liao(廖喬思)
National Taiwan University, Taiwan, R.O.C.

Email: r97922085@csie.ntu.edu.tw

Tzao-Lin Lee (李肇林)
National Taiwan University, Taiwan, R.O.C.

Email: tl_lee@csie.ntu.edu.tw

In the intranet

GOLD service

UPnP
server

SILVER service

UPnP
server

IRON service...

UPnP
server

Web service
gateway

UPnP
controller

UPnP protocol bus

Figure 2. The architecture of web service

The main idea of web service gateway is to
route the outside web service request to the
corresponding web service server inside and returns
the response. For example, as in figure 1, there are
several web service servers as the service providers
in the intranet. If the client wants to send requests
to the SILVER service, this client sends its requests
to the gateway, then the gateway will check its
routing table, route the request to the SILVER
service server and return the response from the
SILVER service server. However, every time the
service provider inside creates or drops a web
service, it is necessary to modify the settings in the
routing table of the web service gateway and export
the modified WSDL file. This deployment won't be
done automatically because the gateway knows
nothing about the situations in the intranet.

B. Deployment and Management with UPnP
Using web service gateway is great but there

are some problems to be solved. It is necessary to
let web service gateway know what happens to the
supporting web servers in the intranet. In order to
solve this problem, every web services provider in
the intranet is equipped with an UPnP server and
the web service gateway is equipped with an UPnP
controller. During the UPnP discovery phase, the
gateway as the UPnP controller will find all web
service servers as the UPnP servers in the intranet
with the UPnP protocol. During the description
phase, every web service server describes its web
services, so the gateway can import all WSDL files
from all the web service servers to generate a new
WSDL file in order to provide the list of all
available services to the client from internet. After
these two phases, the gateway will know the
routing table automatically. Deployment of web
services will be done spontaneously. The
architecture graph is shown below.

This is nice, but it's not over yet. What if some
web services be turned off or turned on as time
goes by? What if a new web services server will be
added to the intranet after these two phases? Don't
worry about it. UPnP protocol has a flexible
mechanism to solve all of the above problems.
Every web services server can monitor the status of
its own web services and provides UPnP event
notification which can also be subscribed by the
web service gateway. Therefore no matter what the
status is changed by the web services server, the
gateway will be notified and can update its routing
table on line. The gateway will always be updated
with the current status of the intranet, so it can
respond to the route request more correctly.

Distributed deployment is achieved. However,
how about centralized management? Can
centralized management be possible with the help
of UPnP protocol? The answer is yes, and the
solution is straightforward. Web services server
should export the command like “Start” or “Stop”
of its own services as UPnP action. During the
UPnP description phase, the gateway gathers all the
actions for the entire web services servers from the
intranet. Henceforth the gateway can control those
web services on demand.

With this mechanism, the only one deficiency
is that since all requests by the web service client
from the internet must be sent to the web service
gateway and forwarded to the designated web
services server, the bottleneck appears be in the
gateway. But in fact, with this mechanism there are
no restrictions on the number of web service
gateway. Therefore, many gateways can be added
as necessary without copying the settings from one
gateway to another. When another gateway is
online, deployment will be done by the UPnP
procedures again.

III. IMPLEMENTATION ISSUES

A. Deployment with UPnP
It's important that web services servers should

export the WSDL files during the UPnP description
phase to archive zero configuration. So, every web
services server will be augmented with an UPnP
action named “GetWSDL” as in the following:

......
<action>

<name>GetWSDL</name>
<argumentList>

<argument>
<name>WSDL</name>
<direction>out</direction>
<relatedStateVariable>

thisWSDL
</relatedStateVariable>

</argument>
</argumentList>

</action>
......
<stateVariable sendEvents="yes">

<name>thisWSDL</name>
<dataType>string</dataType>

</stateVariable>
......

......
<message name="thesameRequest">

<part name="request" type="xs:string"/>
</message>
<message name="thesameResponse">

<part name="response" type="xs:string"/>
</message>
<portType name="thisport">

<operation name="thesameFunction">
<input message="thesameRequest"/>
<output message="thesameResponse"/>

</operation>
</portType>
......

fuction string echo(string p)
{

return p;
}

fuction int sumof(int p)
{

int sum=0;
for(int i=0; i<p; i++)

sum+=i;
return sum;

}

Using this action, the gateway can get all the
WSDL files from the web services servers to
generate a new WSDL file. We can notice that the
“sendEvents” attribute of stateVariable named
“thisWSDL” is set to “yes”. Therefore, when a web
services server modify its service status, the
gateway will be notified and get the current WSDL
again on line.
B. Management and Control with UPnP

Beside the “GetWSDL”UPnP action, web
services server must export more actions like
“Start/Stop service” in order to provide a way for
the web service gateway to control web service.
Thus, the management of all the web services can
be done by the gateway itself. Furthermore, the
web services server can provide extra actions to
describe the status like CPU loading or memory
usage. With these extra actions the gateway will
know the health condition of each web services
server. And the gateway can manage these web
services more efficiently. It’s reasonable to
conclude that, the more the gateway knows the less
the configuration is needed by the developer. The
centralized management is made possible with the
help of UPnP protocol.
C. Achieving Web Services Load Balance

This UPnP mechanism can also provide a
solution to achieve the load balance among the web
services servers. If the web service gateway finds
the web services provided by different web service
servers with the same name ,the same parameters
and even the same namespace from two WSDL
files such as the following provided by different
web service servers from the intranet:

It is transparent that these two web service
servers provide totally the same functional web
service. When the request of this web service are
sent to the gateway, the gateway can route it to
different web service servers alternately in order to
reduce the workload of more heavily loaded server.
Furthermore, the gateway can not only route it
alternately but with the detection of the status of
web services server the gateway can route the
request to the not so busy server. By this way, the
web services load balancing is realized
automatically. Again, the more the gateway knows,
the less the configuration required.

IV. PERFORMANCE EVALUATION
We construct a simple web service gateway

system and implement our UPnP mechanism in it
for performance evaluation.

In the first evaluation, two different kinds CPU
load web services (High/Low) are created. The
testing web service pseudo codes are as following:

Low CPU load web service pseudo code:

High CPU load web service pseudo code:

0

50

100

150

200

250

300

350

us

High CPU Loading Web
Service

Low CPU Loading Web
Service

Performance Evaluation 1

With Web Service Gateway

Without Web Service Gateway

Figure 3. The average response time with/without
web service gateway architecture.

0

50

100

150

200

250

300

350

us

High CPU Loading Web
Service

Low CPU Loading Web
Service

Performance Evaluation 2

With Web Service Gateway
Auto Load Balance

Without Web Service Gateway

Figure 4. The average response time with/without
web service gateway auto load balance.

Then, 1000 times web service requests are
simulated with/without web service gateway
architecture to test the impact of the performance
on web service gateway in different situations. The
response time result graph is as following figure.

We can notice that the average response time is
almost similar even if the web service gateway
exists whether in high or low CPU load web
service. Briefly, web service gateway will not lose
a lot of performance.

Next, we test the performance of the
automatically archived web service load balance
described in 3.3. In this test, web service gateway
will automatically find there are two web service
servers providing the same web service and route
the requests to them. In the low CPU load web
service condition, the efficiency is not improved if
we used web service gateway. This is because the
cost of routing request is almost similar with
providing service. However, In the high CPU load
web service condition, the response time of with
web service gateway is shorter than without it
shown in left part of Figure 4 which tells us that the
automatically archived web service load balance
can deal with requests more quickly in high CPU
load web service.

V. CONCLUSION
As shown in this paper, the UPnP mechanism

we proposed really makes web service gateway
architecture more flexible and intelligent in
deployment and management. Furthermore, the
idea we proposed can be applied on the SOA-based
system. With this mechanism, SOA components
will automatically find available bindings in the
intranet without complex configurations and even
combine other SOA components to a new
integrated service spontaneously. Therefore, the
information exchanged by SOA components makes
SOA-based system deployment and management
more efficient.

REFERENCE

[1] Chandra Venkatapathy and Simon Holdsworth,
“An introduction to Web Services Gateway,”
http://www.ibm.com/developerworks/webservi
ces/library/ws-gateway/, May 2002.

[2] Universal Plug and Play Forum,
http://www.upnp.org/.

[3] OASIS Reference Architecture for Service
Oriented Architecture 1.0, Public Review Draft
1, Apr. 23, 2008.

[4] Michael Ellis, “Employ the IBM WebSphere
Web Services Gateway,”
http://www.ibm.com/developerworks/webservi
ces/library/ws-routing/, Sep 2004.

