
Covert Communication with Authentication via
Software Programs Using Invisible ASCII Codes ---

A New Approach

I-Shi Lee
Dept. of Computer Science, National Chiao Tung University,

Hsinchu, Taiwan 30010
Dept. of Management Information, Technology and Science

Institute of Northern Taiwan, Taipei, Taiwan 11202
Email: gis87809@gmail.com

Wen-Hsiang Tsai
Dept. of Computer Science, National Chiao Tung University,

Hsinchu, Taiwan 30010
Dept. of Computer Science and Information Engineering, Asia

University, Taichung, Taiwan 41354
Email: whtsai@cis.nctu.edu.tw

Abstract―A new covert communication method by
hiding messages in source programs is proposed. Each
binary message, after being encoded by certain ASCII
codes and inserted at specific C++ program locations,
becomes invisible in the source code editors of Visual C++
and C++ Builder under Windows OS environments,
creating an effect of steganography. A scheme for
tamper-proof authentication of the embedded message has
also been proposed. Experimental results show the
feasibility of the proposed method.

Index Terms―authentication, covert communication,

data hiding, invisible ASCII codes, source program.

I. INTRODUCTION

Information hiding [3] is a promising approach
to covert communication because it yields a
steganographic effect which enhances
communication security. So far, data hiding in
computer programs is mainly for copyright
protection. Also, the source program is seldom used
as the cover media.

A survey about watermarking in programs can be
found in Zhu, et al. [8]. Two approaches have been
identified: static and dynamic. The former inserts
and extracts watermarks in program codes without
running the program while the latter does the same
in the execution state of a software object. Two
respective examples are Venkatesan, et al. [7] and
Collberg and Thomborson [2]. There exist other
methods with digital text, sentence syntax, text
typos, e-mails [1, 3-6] as cover media.

However, embedding message in software
programs in source form has not been studied yet.
In this paper, a new covert communication method
by embedding messages in source programs is
proposed. A binary message, after being encoded
into some ASCII control codes and embedded into
certain C++ program locations, becomes invisible
in the source code editors of Visual C++ and C++
Builder under some Windows OS environments,
creating a steganographic effect. Invisibility of such
ASCII control codes is a finding of this study
through a systematic investigation of the visibility
of all the ASCII codes. In the rest of the paper, the
source program into which information is to be
embedded will be referred to as cover program, and
the result of the embedding as stego-program.

A stego-program still can be compiled and
executed to perform the function of the original
source program, and each source program may be
selected arbitrarily, thus enhancing the
steganographic effect.

To improve the security protection effect further,
we propose additionally a tamper-proof
authentication scheme for the embedded message.
The protection capability is carried out with the
provision of a secret random key through the use of
certain mathematical operations. Without a correct
secret key it is impossible to pass such an
authentication process with a modified
stego-program.

 1

P2P101
矩形

In the sequel, we describe how invisible ASCII
codes are found and used for data hiding, and
propose the secret hiding, recovery, and
authentication processes in Sections II and III,
respectively. Experimental results are presented in
Section IV, followed by a conclusion.

II. DATA HIDING BY INVISIBLE ASCII CODES

ASCII codes, expressed as hexadecimal numbers,
were designed to represent 8-bit characters for
information interchange. It is found in this study
that some ASCII codes, when embedded in certain
locations in C++ programs, become invisible in the
source code editors of Visual C++ and C++ Builder
under certain Windows OS environments. This
phenomenon may be utilized for data hiding. Two
types of invisible codes are identified, one
appearing as nothing like being non-existing, and
the other as spaces just like the ASCII space code
20. We call the former null code and the latter
spacing code. Inserting invisible codes into a
program do not change its function.

Such invisibility was found in fours
environments formed by Microsoft Visual Studio
(MVS) .NET 2003 and Borland C++ Builder
(BCB), version 6, in Windows XP Service Pack 2
and its Chinese version, which will be called the
English and Chinese OS, respectively, subsequently.
The details are summarized in Table 1.

In type-1 environment with the MVS in the
English OS, four null codes, 1C, 1D, 1E, 1F, were
found, which are invisible when inserted between
two characters in a comment in a program. One
spacing code, A0, has been found, which appears as
a space when inserted between two words in a
comment. Also found as a spacing code is the
tab-control code 09, which in default appears as
four spaces when inserted before the end of a
program line, i.e., before the code pair, 0D0A, for
carriage return and line feed. The codes, A0 and 09,
will be called between-word and line-end spacing
codes, respectively.

For the other three environment types, invisible
codes also exist and are listed in Table 1 except that
type-2 environment has no null code. Also, 09
appears to be eight spaces in BCB instead of four
as in MVS.

We conduct data hiding using invisible codes in
three ways as follows.
A. Alternative space coding

Whenever a space represented by 20 appears
between two words in a comment, it may be
replaced by a between-word spacing code, like A0
for type-1 environment, without causing visual
difference in a source code editor. When there are
2n−1 between-word spacing codes C1, C2, ..., C2n−1,
by regarding 20 as C0 we may embed n bits b1,
b2, ..., bn as follows:

if b1b2....bn = m, replace 20 by Cm

which we call alternative space coding.
For the first two environments in Table 1, 1-bit

alternative space coding is applicable. And for the
latter two, there are 14 and 23 spacing codes,
respectively and so 3-bit and 4-bit alternative space
coding are applicable, respectively.
B. Line-end space coding

We may place multiple line-end spacing codes
before each program line end without causing
visual difference in a source code editor because
such codes appear just like background spaces in
the window of the editor. Since the code 20 may be
used as well to create spaces, when there are 2n−1
line-end spacing codes C1, ..., C2n−1, by regarding
20 as C0 we may embed n bits b1, b2, ..., bn as
follows:

if b0b1...bn = m, embed Cm before the line end
which we will call line-end space coding.

For the first two environments, there is only one
line-end spacing code 09, so 1-bit line-end coding
is applicable. For the latter two, since there are
three such codes 09, 0B, and 0C, 2-bit coding can
be implemented.

Line-end space coding may be repeated
unlimited times before the each line end to increase
the data hiding rate. But to avoid creating long lines
which reduce the steganographic effect, we require
that each processed program line should not appear
to be longer than the longest original program line.
C. Null space coding

Except for type-2 environment, there are four
null codes, 1C, 1D, 1E, 1F. Let them be represented

 2

P2P101
矩形

by C0 through C3, respectively. We can embed a bit
pair b0b1 as follows:

if b0b1 = m, insert Cm between two characters
 in a comment

which we call null space coding.
Null space coding may be applied repetitively

unlimited times as well. In practice, we embed
message bits evenly into all between-character
spaces among the comments so that the times will
be limited.

III. SECRET HIDING, RECOVERY AND

AUTHENTICATION

The proposed data hiding process essentially is
to apply alternative, line-end, and null space coding
in order. Since the three schemes are applied to
distinct locations in a program, the data may be
recovered without ambiguity. As an example, we
describe in the following an algorithm for type-1
environment. To facilitate data recovery, we prefix
to the beginning of the input binary string of the
message a binary number specifying the length of
the input, resulting in an extended bit string S.
1. At each between-word space coded by 20,

remove the leading bit b from S, and replace 20
by A0 if b =1.

2. Find the maximum Lmax of all program line
lengths.

3. For each program line, repeat the operations of
removing the leading bit b from S and inserting
before the line end the code 09 if b = 1; or 20 if
b = 0, until the length of the line, as it appears in
the source code editor, reaches Lmax.

4. Count the number M of all between-character
positions in the comments, as well as the number
L of the remaining bits in S; compute the ceiling
value ⎡L/M⎤; add 1 to it to make it even if it is
not; and denote the final value as q.

5. For each between-character position in the
comments, take q leading bits from the
remaining bits in S, and for every two bits b0b1
of them, insert Cm into the position if b0b1 = m,
where Cm is one of C0 through C3 representing
1C, 1D, 1E, and 1F, respectively.
The proposed data recovery process, after

extracting from the input string the leading bits

which specify the length of the original message,
performs essentially the reverse versions of the
three coding schemes involved in the data hiding
process. The details are omitted due to the page
limit.

In the proposed authentication scheme, we use a
L-bit key K and the input message string to
generate an authentication signal A which is then
embedded in the stego-program as well using null
space coding. The signal is computed as the
modulo-K value of the sum of the key value and the
L bits of every two characters in the input message
string. Then, in the data recovery process, the
embedded authentication signal A is extracted to
match with an authentication signal A' computed
similarly from the extracted message content and
the key. If the embedded message content has not
been tampered with, then A and A' will match. If
not, then the message must have been modified. In
such a way, even when the data hiding algorithm is
known to the public as is usually assumed, without
the secret key it is impossible to pass such an
authentication process with a modified
stego-program.

IV. EXPERIMENTAL RESULTS

One of the experiments we conducted for type-1
environment is reported here. A message “This is a
new covert communication method” is embedded
into a cover program, part of which is shown in Fig.
1(a). The binary form of the message is obtained
from the ASCII characters representing the
message. It is 00000001 01100000 01010100
01101000... in which the first 16 bits specify the
length of the message string, and the remaining
ones represents T, h, and so on. And the encoding
result of it is 20 20 20 20 20 20 20 A0 20 A0 A0 20
20 20 20 20 ... The stego-program seen in the
source code editor is shown in Fig. 1(b), which
looks no difference from Fig. 1(a). And the real
content of the program seen in the UltraEdit editor
is shown in Fig. 1(c), in which the hidden invisible
codes can be seen with those for the first 16 bits
being enclosed by rectangles. The recovered
message is shown in Fig. 1(d). As a demonstration
of authentication, we show in Fig. 2(a) a modified
version of the stego-program of Fig. 1(b) in the
UltraEdit editor, in which the codes fro the 8th and

 3

P2P101
矩形

9th bits of the message have been modified. The
authentication result is shown in Fig. 2(b) in which
a warning message issued by the data recovery
process is seen.

V. CONCLUSION

A new approach to covert communication via
C++ source programs using invisible ASCII codes
has proposed. A binary secret message is encoded
by some special ASCII codes, which are then
embedded in a cover program. Such codes are
invisible in the source code editors of Visual C++
and C++ Builder under Windows OS environments,
creating a good steganographic effect without
changing the original function of the cover program.
To enhance security, tamper-proof authentication of
the stego-program content using a secret key has
also been proposed. Without the key, false
messages cannot pass the authentication process.
Experimental results show the feasibility of the
proposed approach. Future works may be directed
to applying the proposed data hiding technique to
other applications.

ACKNOWLEDGEMENTS
This work was supported partially by the NSC

Advanced Technologies and Applications for Next
Generation Information Networks (II) –
Sub-project 5: Network Security, Project No.
NSC-96-2752-E-009-006-PAE. And partially by
the NSC project NSC96-2422-H-009-001.

REFERENCES

[1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,
“Techniques for data hiding,” IBM System

Journal, vol. 35, nos. 3 & 4, 1996.
[2] C. Collberg & C. Thomborson,

“Watermarking, tamper-proofing, and
obfuscation ⎯ tools for software protection,”
IEEE Transactions on Software Engineering,
vol. 28, pp. 735-746, 2002.

[3] S. Katzenbeisser & F. A. P. Petitolas,
Information Hiding Techniques for
Steganography and Digital Watermarking,
Artech House, Boston, Massachusetts, USA,
2000.

[4] I. S. Lee & W. H. Tsai, “Data hiding in emails
and applications by unused ASCII control
codes,” Proceedings of 2007 National
Computer Symposium, Taichung, Taiwan,
2007.

[5] H. M. Meral, E. Sevinc, E. Unkar, B. Sankur,
A. S. Ozsoy, and T. Gungor, “Syntactic tools
for text watermarking,” Proceedings of SPIE
International Conference on Security,
Steganography, and Watermarking of
Multimedia Contents, San Jose, CA, USA,
2007.

[6] M. Topkara, U. Topkara, & M. J. Atallah,
“Information hiding through errors: a
confusing approach,” Proceedings of SPIE
International Conference on Security,
Steganography, and Watermarking of
Multimedia Contents, San Jose, CA, USA,
2007.

[7] R. Venkatesan, V. Vazirani, & S. Sinha, “A
graph theoretic approach to software
watermarking,” Proceedings of 4th
International Information Hiding Workshop,
Pittsburgh, Pennsylvania, USA, 2001.

[8] W. Zhu, C. Thomborson, & F. Y. Wang, “A
survey of software watermarking,”
Proceedings of IEEE International
Conference on Intelligence and Security
Informatics, Atlanta, Georgia, USA, 2005.

 4

P2P101
矩形

(a) Cover program seen in source code editor.

(b) Stego-program seen in source code editor.

Fig. 1 An experimental result.

 5

P2P101
矩形

(c) Stego-program seen in UltraEdit.

(d) Recovered message.

Fig. 1 An experimental result (cont’d).

 6

P2P101
矩形

(a) A modified stego-program of Fig. 1(b).

(b) A warning message issued by authentication process.

Fig. 2 An example of authentication results.

 7

P2P101
矩形

Table 1. Invisible codes under various environments.

Environment Null codes Between-word spacing codes Line-end spacing codes

Type 1: MVS
under English OS

1C-1F A0 09

Type 2: BCB
under English OS

None A0 09

Type 3: MVS
under Chinese OS

1C-1F 01-08, 0B-0F, 80 09, 0B, 0C

Type 4: BCB
under Chinese OS

1C-1F, 80 01-08, 0B-19, 1B 09, 0B, 0C

 8

P2P101
矩形

