A Novel and Economic Way to Fiber-to-the-Home (FTTH)

Don Liu
Division R\&D
Coretech Optical Co. Ltd.
don.liu@coretech-optical.com

Shu-Sen Tieh

ss.tien@coretech-optical.com

Hsi-Chien Liu Hsiang-Chen Hsu
Department of Mechanical and Automation Engineering, I-Shou University
show_coolboy@yahoo.com.tw hchsu@isu.edu.tw

Abstract

In the last mile of Optical Access Network, high fiber-to-the-home (FTTH) construction cost per subscriber has always been a concern for the Network Operators. In order to cost down the fiber and transceiver deployment, PONs are developed to replace Active P2P Network Access. Also the splitter placement problems are issued that make efforts to reduce fiber and splitters deployment cost. Cost down the Optical Components in PONs is one of the successful elements for building the business of FTTH. For an example, instead of traditional method, a 1×12 splitter module which is cascaded by one piece of 1×2 ($67 \%: 33 \%$ power ratio, $2.6 \mathrm{~dB}: 6.2 \mathrm{~dB}$ IL) and 10 pieces of 1×2 ($50 \%: 50 \%$ power ratio, 3.7 dB IL) splitters, the IL of module is $2.6+3.7 \times 3=13.7 \mathrm{~dB}$; an economical 1×12 splitter module could be cascaded just by one piece of 1×3 (IL: 5.4 dB) and 3 pieces of 1×4 (IL: 7.2 dB), the IL of module will be $5.4+7.2=12.6 \mathrm{~dB}, 1.1 \mathrm{~dB}$ less than the former. In the case of 1×36, an economic one is cascaded by 4 pieces of 1×3 and 9 pieces of 1×4 splitters (IL: 18dB) to replace the traditional one which is cascaded by 35 pieces of 1×2 splitters (IL: 19.9dB). Another case of 2×24, an economic one is cascaded by 1 piece of 2×2, 2 pieces of 1×3 and 6 pieces of 1×4 splitters (IL: 16.3 dB) to replace the traditional one which is cascaded by 1 pieces of $\mathbf{2 \times 2}$ and 22 piece of 1×2 splitters (IL: 17.4 dB). In conclusion, bundle with less Insertion Loss, the economical multi-output splitter module can be successfully built up by this novel fiber coupler manufacturing apparatus and method.

Index Terms-FTTH, PON, optical splitter, Insertion
loss IL, topology of cascade.

I. INTRODUCTION

In the last mile of Optical Access Network, high FTTH construction cost per subscriber has always been a concern for the Network Operators. In order to cost down the fiber and transceiver deployment, PONs (Passive Optical Networks) are developed to
replace Active P2P (Point to Point) Network Access. Also the splitter placement problems are issued that make efforts to reduce fiber and splitters deployment cost. Cost down the Optical Components in PONs is one of the successful elements for building the business of FTTH.

1x32 and 1x64 PLC (Planar Light-wave-guide Circuit) splitters could be specified for EPON (Ethernet PON) and GPON (Giga-bit PON), nevertheless those are not able to distribute optical power unevenly. Generally, a multi-port output splitter module is built up by cascading a group of 1 x 2 optical splitters. The more numbers of splitters we need the more Insertion Loss (IL) will take place. It is even harder to build such as $1 \times 12,2 \times 24$ and 1×36 splitters whose numbers of output ports are not equal to power series of 2. By the novel US patented Fused Fiber Coupling Machine in 2007 [1], monolithic 1x2, 1x3, 1x4 and 1x5 optical splitters were made, as well as a number of successful stories in Europe and Taiwan FTTH deployment cases came true.

II. Topology of Optical Splitter Cascading

Suppose there is a 1 xN optical splitter module with 1 input port and N output ports in the optical cable node. The splitter module is cascaded by $1 x \mathrm{~A}$ 1 xB 1 xC and 1 xD splitter elements. In addition, the priority of splitter elements selection is :

1 xA : the fist,
1 xB : the second
1 xC : the third
1 xD : the last.
and $N=\left(A^{a}\right)\left(B^{b}\right)\left(C^{c}\right)\left(D^{d}\right)$
then it is able to be proved by summation of power series that the number of splitter elements in are :

$$
\begin{aligned}
& 1 x A: N(A)=\left(A^{a}-1\right)\left(B^{b}\right)\left(C^{c}\right)\left(D^{d}\right) /(A-1) \\
& 1 x B: N(B)=\left(B^{b}-1\right)\left(C^{c}\right)\left(D^{d}\right) /(B-1) \\
& 1 x C: N(C)=\left(C^{c}-1\right)\left(D^{d}\right) /(C-1) \\
& 1 x D: N(D)=\left(D^{d}-1\right) /(D-1)
\end{aligned}
$$

Practically, the monolithic 1x2, 1x3, 1x4 and $1 x 5$ splitter elements can be made by the novel US patented Fused Fiber Coupling Machine as well as considering the optical performance and economic cost the priority of selection are $1 \mathrm{x} 4,1 \mathrm{x} 5,1 \mathrm{x} 3$ and 1 x 2 in order.

III. TRADITIONAL Splitter Module CAScADED

by 1x2 COMPONENTS

Traditionally, a piece of $1 \mathrm{x}\left(2^{\mathrm{n}}\right)$ optical splitter can be cascaded by ($2^{\mathrm{n}}-1$) pieces of 1 x 2 splitter as shown in Fig.3-1 to Fig.3-4. For example, a piece of $1 x 8$ splitter is cascaded by 7 pieces of $1 x 2$ splitter; a piece of 1×16 splitter is cascaded by 15 pieces of 1×2 splitter; a piece of 1 x32 splitter is cascaded by 31 pieces of 1×2 splitter; a piece of 1×64 splitter is cascaded by 63 pieces of $1 x 2$ splitter. Nevertheless, a piece of 1 xN splitter is not able to be cascaded by $1 x 2$ splitter only, while N (the number of output ports) is not equal to the power series of two.

Fig.3-1 1x8 splitter by 1 x 2 cascading (No. of 1 x 2 splitter in used:1+2+4=7).

Fig.3-2 1×16 splitter by 1×2 cascading (No. of 1×2 splitter in used: $1+2+4+8=15$).

Fig.3-3 1x32 splitter by 1×2 cascading (No. of 1×2 splitter in used: $1+2+4+8+16=31$).

Fig.3-4 1x64 splitter by 1×2 cascading (No. of 1 x 2 splitter in used: $1+2+4+8+16+32=63$).

IV. A Novel And Economic Way Of CascadING Splitter Module

By the novel US patented Fused Fiber Coupling Machine [1] developed 2007, monolithic 1x2, 1x3, 1×4 and 1×5 optical splitters are able to be made. In case the number N of a 1 xN optical splitter out-put-ports is a common multiple of 2; 3; 4 and 5, a novel economic cascading topology is implemented. Considering the factors of optical performance, reliability and market price, the priority of choice we have made is $1 \mathrm{x} 4,1 \mathrm{x} 5,1 \mathrm{x} 3$ and then 1 x 2 . It is found a piece of 1 xN optical splitter can be economically cascaded by $\mathrm{N}(4)$ pieces of 1 x 4 splitter; $\mathrm{N}(5)$ pieces of 1 x 5 splitter; $\mathrm{N}(3)$ pieces of 1 x 3 splitter and $\mathrm{N}(2)$ pieces of 1 x 2 splitter; where

$$
\begin{equation*}
N(4)=\left(4^{\mathrm{a}}-1\right)\left(5^{\mathrm{b}}\right)\left(3^{\mathrm{c}}\right)\left(2^{\mathrm{d}}\right) /(4-1) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{N}(5)=\left(5^{\mathrm{b}}-1\right)\left(3^{\mathrm{c}}\right)\left(2^{\mathrm{d}}\right) /(5-1) \tag{2}\\
& \mathrm{N}(3)=\left(3^{\mathrm{c}}-1\right)\left(2^{\mathrm{d}}\right) /(3-1) \tag{3}\\
& \mathrm{N}(2)=\left(2^{\mathrm{d}}-1\right) /(2-1) \tag{4}\\
& \mathrm{N}=\left(4^{\mathrm{a}}\right)\left(5^{\mathrm{b}}\right)\left(3^{\mathrm{c}}\right)\left(2^{\mathrm{d}}\right) \tag{5}
\end{align*}
$$

According to ITU-T G. 984 GPON Standard, the maximum number of splitter output ports is 64 . For a piece of 1 xN splitter module, while N is a common multiple of $2,3,4,5$ and less than 64, in Fig.4-1 to Fig.4-17, the topologies of 1x6, 1x8, 1x9, 1x10, $1 \times 18,1 \times 20,1 \times 24,1 \times 25,1 \times 27,1 \times 30,1 \times 32,1 \times 36$, $1 \times 40,1 \times 45,1 \times 50,1 \times 54,1 \times 60$ splitter cascading are shown.

Fig.4-1 An economic 1x6 splitter module.

From Fig.4-1, $\mathrm{N}=\left(4^{0}\right)\left(5^{0}\right)\left(3^{1}\right)\left(2^{1}\right)=6$.
Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{0}-1\right)\left(5^{0}\right)\left(3^{1}\right)\left(2^{1}\right) /(4-1)=0 \\
& 1 \times 5: N(5)=\left(5^{0}-1\right)\left(3^{1}\right)\left(2^{1}\right) /(5-1)=0 \\
& 1 \times 3: N(3)=\left(3^{1}-1\right)\left(2^{1}\right) /(3-1)=2 \\
& 1 \times 2: N(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Fig.4-2 An economic 1x8 splitter module.

From Fig.4-2, $\mathrm{N}=8=\left(4^{1}\right)\left(5^{0}\right)\left(3^{0}\right)\left(2^{1}\right)$
Comprising the bellow components:

$$
1 \times 4: N(4)=\left(4^{1}-1\right)\left(5^{0}\right)\left(3^{0}\right)\left(2^{1}\right) /(4-1)=2
$$

$1 \mathrm{x} 5: \mathrm{N}(5)=\left(5^{0}-1\right)\left(3^{0}\right)\left(2^{1}\right) /(5-1)=0$
$1 \times 3: N(3)=\left(3^{0}-1\right)\left(2^{1}\right) /(3-1)=0$
$1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{1}-1\right) /(2-1)=1$

Fig.4-3 An economic 1 x 9 splitter module.

From Fig.4-3, $\mathrm{N}=9=\left(4^{0}\right)\left(5^{0}\right)\left(3^{2}\right)\left(2^{0}\right)$
Comprising the bellow components:
$1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{0}-1\right)\left(5^{0}\right)\left(3^{2}\right)\left(2^{0}\right) /(4-1)=0$
$1 \mathrm{x} 5: \mathrm{N}(5)=\left(5^{0}-1\right)\left(3^{2}\right)\left(2^{0}\right) /(5-1)=0$
$1 \mathrm{x} 3: \mathrm{N}(3)=\left(3^{2}-1\right)\left(2^{0}\right) /(3-1)=4$
$1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{1}-1\right) /(2-1)=1$

Fig.4-4 An economic 1x10 splitter module.

From Fig.4-4, $\mathrm{N}=10=\left(4^{0}\right)\left(5^{1}\right)\left(3^{0}\right)\left(2^{1}\right)$
Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{0}-1\right)\left(5^{1}\right)\left(3^{0}\right)\left(2^{1}\right) /(4-1)=0 \\
& 1 \times 5: N(5)=\left(5^{1}-1\right)\left(3^{0}\right)\left(2^{1}\right) /(5-1)=2 \\
& 1 \times 3: N(3)=\left(3^{0}-1\right)\left(2^{1}\right) /(3-1)=0 \\
& 1 \times 2: N(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{1}-1\right)\left(5^{0}\right)\left(3^{1}\right)\left(2^{1}\right) /(4-1)=6 \\
& 1 \times 5: N(5)=\left(5^{0}-1\right)\left(3^{1}\right)\left(2^{1}\right) /(5-1)=0 \\
& 1 \times 3: N(3)=\left(3^{1}-1\right)\left(2^{1}\right) /(3-1)=2 \\
& 1 x 2: N(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Fig.4-8 An economic 1x25 splitter module.

From Fig.4-8, $\mathrm{N}=25=\left(4^{0}\right)\left(5^{2}\right)\left(3^{0}\right)\left(2^{0}\right)$
Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{0}-1\right)\left(5^{2}\right)\left(3^{0}\right)\left(2^{0}\right) /(4-1)=0 \\
& 1 \times 5: N(5)=\left(5^{2}-1\right)\left(3^{0}\right)\left(2^{0}\right) /(5-1)=6 \\
& 1 \times 3: N(3)=\left(3^{0}-1\right)\left(2^{0}\right) /(3-1)=0 \\
& 1 \times 2: N(2)=\left(2^{0}-1\right) /(2-1)=0
\end{aligned}
$$

Fig.4-9 An economic 1x27 splitter module.

From Fig.4-9 $\mathrm{N}=27=\left(4^{0}\right)\left(5^{0}\right)\left(3^{3}\right)\left(2^{0}\right)$
Comprising the bellow components:
$1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{0}-1\right)\left(5^{0}\right)\left(3^{3}\right)\left(2^{0}\right) /(4-1)=0$
$1 \mathrm{x} 5: \mathrm{N}(5)=\left(5^{0}-1\right)\left(3^{3}\right)\left(2^{0}\right) /(5-1)=0$
$1 \mathrm{x} 3: \mathrm{N}(3)=\left(3^{3}-1\right)\left(2^{0}\right) /(3-1)=13$
$1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{0}-1\right) /(2-1)=0$

Fig.4-10 An economic 1x30 splitter module.

From Fig.4-10, $\mathrm{N}=30=\left(4^{0}\right)\left(5^{1}\right)\left(3^{1}\right)\left(2^{1}\right)$
Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{0}-1\right)\left(5^{1}\right)\left(3^{1}\right)\left(2^{1}\right) /(4-1)=0 \\
& 1 \times 5: N(5)=\left(5^{1}-1\right)\left(3^{1}\right)\left(2^{1}\right) /(5-1)=6 \\
& 1 x 3: N(3)=\left(3^{1}-1\right)\left(2^{1}\right) /(3-1)=2 \\
& 1 \times 2: N(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Fig.4-11 An economic 1x32 splitter module.

From Fig.4-11, $\mathrm{N}=32=\left(4^{2}\right)\left(5^{0}\right)\left(3^{0}\right)\left(2^{1}\right)$
Comprising the bellow components:
$1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{2}-1\right)\left(5^{0}\right)\left(3^{0}\right)\left(2^{1}\right) /(4-1)=10$
$1 \mathrm{x} 5: \mathrm{N}(5)=\left(5^{0}-1\right)\left(3^{0}\right)\left(2^{1}\right) /(5-1)=0$
$1 \times 3: N(3)=\left(3^{0}-1\right)\left(2^{1}\right) /(3-1)=0$
$1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{1}-1\right) /(2-1)=1$
1×4
$1 \mathrm{x} 3: \mathrm{N}(3)=\left(3^{0}-1\right)\left(2^{1}\right) /(3-1)=0$
$1 \times 2: N(2)=\left(2^{1}-1\right) /(2-1)=1$
1x5

Fig.4-14 An economic 1x45 splitter module.

From Fig.4-14, $\mathrm{N}=45=\left(4^{0}\right)\left(5^{1}\right)\left(3^{2}\right)\left(2^{0}\right)$
Comprising the bellow components:

$$
\begin{aligned}
& 1 \times 4: N(4)=\left(4^{0}-1\right)\left(5^{1}\right)\left(3^{2}\right)\left(2^{0}\right) /(4-1)=0 \\
& 1 \times 5: N(5)=\left(5^{1}-1\right)\left(3^{2}\right)\left(2^{0}\right) /(5-1)=9 \\
& 1 \times 3: N(3)=\left(3^{2}-1\right)\left(2^{0}\right) /(3-1)=4 \\
& 1 \times 2: N(2)=\left(2^{0}-1\right) /(2-1)=0
\end{aligned}
$$

Fig.4-15 An economic 1×50 splitter module.

From Fig.4-15, $\mathrm{N}=50=\left(4^{0}\right)\left(5^{2}\right)\left(3^{0}\right)\left(2^{1}\right)$
Comprising the bellow components:
$1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{0}-1\right)\left(5^{2}\right)\left(3^{0}\right)\left(2^{1}\right) /(4-1)=0$

$$
\begin{aligned}
& 1 \times 5: N(5)=\left(5^{2}-1\right)\left(3^{0}\right)\left(2^{1}\right) /(5-1)=12 \\
& 1 \times 3: N(3)=\left(3^{0}-1\right)\left(2^{1}\right) /(3-1)=0 \\
& 1 x 2: N(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Fig.4-16 An economic 1×54 splitter module.

From Fig.4-16, $\mathrm{N}=54=\left(4^{0}\right)\left(5^{0}\right)\left(3^{3}\right)\left(2^{1}\right)$
Comprising the bellow components:

$$
\begin{aligned}
& 1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{0}-1\right)\left(5^{0}\right)\left(3^{3}\right)\left(2^{1}\right) /(4-1)=0 \\
& 1 \mathrm{x} 5: \mathrm{N}(5)=\left(5^{0}-1\right)\left(3^{3}\right)\left(2^{1}\right) /(5-1)=0 \\
& 1 \mathrm{x} 3: \mathrm{N}(3)=\left(3^{3}-1\right)\left(2^{1}\right) /(3-1)=26 \\
& 1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{1}-1\right) /(2-1)=1
\end{aligned}
$$

Fig.4-17 An economic 1×60 splitter module.
From Fig.4-17, $\mathrm{N}=60=\left(4^{1}\right)\left(5^{1}\right)\left(3^{1}\right)\left(2^{0}\right)$

Comprising the bellow components:
$1 \mathrm{x} 4: \mathrm{N}(4)=\left(4^{1}-1\right)\left(5^{1}\right)\left(3^{1}\right)\left(2^{0}\right) /(4-1)=15$
$1 \times 5: N(5)=\left(5^{1}-1\right)\left(3^{1}\right)\left(2^{0}\right) /(5-1)=3$
$1 \times 3: N(3)=\left(3^{1}-1\right)\left(2^{0}\right) /(3-1)=1$
$1 \mathrm{x} 2: \mathrm{N}(2)=\left(2^{0}-1\right) /(2-1)=0$

V. Three Successful Cases

Case 1: 1x12 splitter module deployed in Switzerland

Fig. 5-1 Traditional 1×12 splitter module cascaded by 1×2 components.

As shown in Fig.5-1, normally one piece of unevenly 1 x 2 splitter, optical power ratio: 67% / 33%; insertion loss IL: 2.6 / 6.2 dB and 10 pieces of evenly 1 x 2 splitter, optical power ratio: 50% / 50%; IL: 3.7 dB are required to be cascaded. In total, the IL of this 1 x 12 splitter will be 13.7 dB (2.6 $+3.7 \times 3=13.7$) and the market price is about 110 USD for reference.

Instead of above method, we used 1 piece of 1 x 3 (IL: 5.4 dB) and 3 pieces of 1 x 4 (IL: 7.2 dB), totally 4 pieces of splitter elements to cascade a 1x12 splitter module as shown in Fig.4-2, in which the $\mathrm{IL}=5.4+7.2=12.6 \mathrm{~dB}$. It is found that $13.7-12.6=1.1 \mathrm{~dB}$ of optical power is saved. The market price for reference is 80 USD, cost-down more than 20%.

Fig. 5-2 An economic 1x12 splitter module.

Case 2: 1x36 splitter module deployed in the UK

Fig. 5-3 Traditional 1x36 splitter module cascaded by 1×2 components.

Fig. 5-4 An economic 1x36 splitter module.

Case 3: 2x24 splitter module deployed in Taiwan.

Fig. 5-5 Traditional 2×24 splitter module cascaded by 1 x 2 components.
Fig.5-3 shows a traditional 1×36 in this case, the 350 USD is cascaded by 35 pieces of 1×2 splitters (IL: $2.6+6.2+3.7$ x3 $=19.9 \mathrm{~dB}$) can be replaced by a 260 USD economic one is cased by 4 pieces of 1 x 3 and 9 pieces of 1 x 4 splitters (IL: 5.4 $+5.4+7.2=18 \mathrm{~dB}$) as shown in Fig.5-4. 1.9dB of optical power is found and saves 90 USD.

In the case of 2×24, the 230 USD traditional is cascaded by 23 pieces of 1×2 splitters (IL: $2.6+3.7$ x $3=17.4 \mathrm{~dB}$) as shown in Fig. $4-5$ is replaced by a 170 USD economic one is cased by 1 piece of 2 x 2 , 2 pieces of 1 x 3 and 6 pieces of 1 x 4 splitters (IL: $3.7+5.4+7.2=16.3 \mathrm{~dB}$) as shown in Fig.5-6. 1.1 dB of optical power is found and saves 60 USD.

Fig.5-6 An economic $2 x 24$ splitter module.
VI. Results And Conclusions

In conclusion, this novel topology by cascading $1 \mathrm{x} 4,1 \mathrm{x} 5,1 \mathrm{x} 3$ and 1 x 2 splitter elements are more beneficial and effectively in both optical performance and cost compare to traditional model and PLC technology. Table 6.1 lists comparison.
Table 6.1 Comparison of splitter module cascade.

Splitter Module	Novel topology	Traditional 1x2 cascading	PLC technology
1×12 module	$\begin{aligned} & 1 \times 4(3 \mathrm{pcs}) \\ & 1 \times 3(1 \mathrm{pcs}) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \times 2(10 \mathrm{pcs} ; \\ 50 \% / 50 \%) \\ 1 \mathrm{x} 2(1 \mathrm{pcs} ; \\ 67 \% / 33 \%) \end{array}$	1x16(1pcs) 4 ports idle
Insertion Loss	12.6dB	13.7 dB	13.8 dB
Price	\$80	\$110	\$140
$\begin{array}{\|l\|} 1 \times 36 \\ \text { module } \end{array}$	$\begin{aligned} & 1 \times 4(9 p c s) \\ & 1 \times 3(4 p c s) \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \times 2(31 \mathrm{pcs} ; \\ 50 \% / 50 \%) \\ 1 \mathrm{x} 2(4 \mathrm{pcs} ; \\ 67 \% / 33 \%) \end{array}$	1x64(1pcs) 28ports idle
Insertion Loss	18dB	19.9 dB	20.5 dB
Price	\$260	\$350	\$450
2×24 module	$\begin{aligned} & 1 \mathrm{x} 4(6 \mathrm{pcs}) \\ & 1 \mathrm{x} 3(2 \mathrm{pcs}) \\ & 2 \mathrm{x} 2(1 \mathrm{pcs}) \end{aligned}$	$\begin{aligned} & \text { 1x2(20pcs; } \\ & 50 \% / 50 \%) \\ & 1 \mathrm{x} 2(2 \mathrm{pcs} ; \\ & 67 \% / 33 \%) \\ & 2 \times 2(1 \mathrm{pcs} ; \\ & 67 \% / 33 \%) \end{aligned}$	2x32(2pcs) 8 ports idle
Insertion Loss	16.3 dB	17.4 dB	17.2dB
Price	\$170	\$230	\$210

Reference

[1] "Optical fiber coupler and manufacturing apparatus and method thereof"; US Patent 7158712B2; Jan. 2, 2007

