PEREN AT RS

AT B L3 &

BLESBREREE S

Optimal Algorithms for Finding Cut Vertices and Bridges

on Trapezoid Graphs
RES EX P
Hon-Chan Chen Yue-Li Wang

CES Y far S 3 o X3 F S
Department of Information Management
National Taiwan University of Science and Technology
ylwang@cs.ntust.edu.tw

W E

EEEHP AP REASHE LRH G
MG REREE - ROVGRIE Tk O0) sy 8%
Rl A% 4t)& - % & EREW PRAM M EEA LR
On/log n) 18 % £ O(log n) 48513 PR -

MGEF HREE ML 5 - HYE - mEx
Abstract

In this paper, we will propose optimal algorithms for
Jinding cut vertices and bridges on trapezoid graphs.
Our algorithms can solve this problem in O(n) time, or
in O(log n) time by using O(n [log n) processors on the
EREW PRAM computational model,

Keywords: component, cut vertex, bridge, trapezoid
graph, algorithm

1. Introduction

LetG=(V,E)bea graph with vertex set ¥ and edge
setE. Agraph H= (V' Eisa subgraph of Gif V' v
and E'C E. If H is a maximal connected subgraph of G,
then H is a component of G. A vertex v is called a cur
vertex of G if k(G - v) > ©(G), where k(G) is the number
of components of G. Similarly, graph G - ¢, ¢ € E, is
the graph obtained by deleting e from E, and an edge e is
a bridge of G if (G - &) >xk(G).

The class of trapezoid graphs is introduced by Dagan
etal [4]. A trapezoid i is defined by four corner points
a, b, c, d, such that a; and b, are on the top channel
while ¢, and d, are on the bottom channel in the trapezoid
diagram. A graph G = (7, E) is a trapezoid graph if it
can be represented by a trapezoid diagram such that each
trapezoid corresponds to a vertex in I and LNHekEif
and only if trapezoids / and J intersect in the trapezoid
diagram. Figure 1 presents a trapezoid graph and the
corresponding trapezoid diagram.

;g?;g 4 a b boa b a a, by b a, b a % by ay by bya by
comn, . . — . j T
poins € € dyey e d, S dy ¢, d di ¢ ¢, d, AT d, 4,

(b)

Figure 1. (a) A trapezoid graph
(b) The corresponding trapezoid diagram.

Trapezoid graphs can be recognized in O(n?) time by
Ma and Spinrad's algorithm [10]. Applying their
algorithm, trapezoid diagrams can also be constructed,
It is easy to show that we can reconstruct a trapezoid
diagram into another one, corresponding to the same
trapezoid graph, such that each trapezoid has four
distinct comner points and no two trapezoids share
common corner points. Therefore, for simplicity, we
assume the corner points in our trapezoid diagram are all
distinct. We also assume that trapezoids are labeled in
increasing order of their 5 corner points for ease of
description. Thus, we know that for any three vertices /,
Jrand kof G, i <j < k, if i is adjacent to k, then j is
adjacent to i or £,

The problem of finding cut vertices and bridges on
graphs is well-known, It can be solved in O(n + m) time
by Depth-First-Search algorithm, where » is the number
of vertices and m is the number of edges. Some parallel
algorithms for this problem can be found in [1,6,11, 12,
131

Several efficient algorithms for trapezoid graphs were
proposed recently. In [8, 9], Liang gave sequential

E-T7

FEREN AT ZEH RS

algorithms for the dominating problem and the breadth-
first spanning tree problem on {rapezoid graphs. A
linear time algorithm for finding depth-first spanning
trees on trapezoid graphs was proposed by Chen et al.
“[2]. They also gave an efficient parallel algorithm for
construciing spanning trees on this class of graphs [3].

In this paper, we will present optimal algorithms for
finding cut vertices and bridges on trapezoid graphs.
Assuming the trapezoid diagrams are given, our
algorithms can solve this problem in O(n) time. Our
algorithms can also solve this problem in parallel on the
EREW PRAM model in O(log n) time using O(r/ log 1)
Processors.

The remaining part of this paper is organized as
follows. In Section 2, we introduce some notations and
the way to find the components of a trapezoid graph.
Algorithms for finding cut vertices and bridges are
presented in Section 3 and Section 4, respectively. The
parallelization of our algorithms is shown in Section 5.
Finally, in Section 6, we give the conclusion.

2. Preliminaries

We first introduce some notations. Let G be a
trapezoid graph of n vertices and let v be a vertex of G.
Denote N(v) the neighbors of v. The close neighbors
N[v] of v are N(v) U {v}. Define the maximum neighbor
of v, denoted by N_, [v], to be vertex i, i € N[}, such
that i 2 j for all j € N[v]. Similarly, define the minimum
neighbor N_. [v] of v to be vertex k, k € N[v], such that k
< j for all.j € N[v]. All maximum neighbors and
minimum neighbors can be found in O(n) time by
scanning the corner points [3].

Let 4 = (a,, a,, ..., a,) be an array of n elements. The
prefix maxima of A is the elements of the array P = (p,,
Pys - P,) Such that p, = max{a,, a,, ..., a;}, fori=1,2,
«p . Similarly, the suyffix minima of A4 is the elements of
the array 5= (s}, 855 - s,) such that s, = min{a, g, ;s ..
a}, fori=1,2,..,n Letpm, bethe prefix maxima of
W, [0, N 12, ..., N [i]) and sm; the suffix minima
of (N[, N [i+1], ., Noo[n]) fori=1,2,..,n.
The following theorem determines if any two
consecutive vertices of G are in different components.

Theorem 2.0. Let i and i+1, 1 £ i < n, be two
consecutive vertices of G. Then, i and i+l are in
different components of G if pm, < i+1 or i <sm, ;.
Proof. We only prove the part of pm, < i+1. The other
part can be shown in a similar way. If pm, < i+1, then
N1 < i+l for all j, 1 <j < i This means that no

veriex j, 1 € j < i, is adjacent to vertices which are
greater than i, By the definition of trapezoid graphs,

E-T8

vertices 7 and i+l are disconnected and they are in
different components of G. O

Using Theorem 2.1, we can find all components of G.
Since computing the prefix maxima and the suffix
minima of an array takes O(n) time, all components of a
trapezoid graph can be found in O(n) time.

3. Finding Cut Vertices

Assume G is connected. A pathof Gisa dominating‘
path if every vertex of G is in this path or adjacent to at
least one vertex of this path. There may be many
different dominating paths in G, however, a shoriest path
connecting vertices 1 and » must be a dominating path.
We call such a shortest path a shortest dominating path.
A shortest dominating path of a trapezoid graph can be
found in O(n) time [9].

An adjacent pair AP = (I, r] of G is composed of two
adjacent vertices / and r, in which / and » are called the
left vertex and the right vertex of AP, respectively.
Without loss of generality, assume / < . Two adjacent
pairs AP; = [/, r} and AP, = [/, rj], i < j, are consecutive
adjacent pairs if I, < lj, 1< andr; 2 lJ Let H=v~v,~
..—v,, be a shortest dominating path, where v, = 1 and v,,
= n. Itis easy to see that [v, v,,,] is an adjacent pair if v,
<v,, fori=1,2, .., m-1. The adjacent pairs which are

- obtained from H are called the dominating pairs (DPs)

of G. For example, the shortest dominating path in
Figure 1 (@) is H = 1-5-4-8-9-10. Thus, the
dominating pairs are DP, = [1, 5], DP, = [4, 8], DP, =
[8, 9], and DP, = [9, 10]. It is clear that obtaining the
dominating pairs can be done in O(n) time.

Let H be the set of vertices in a dominating path of G.
Then, any vertex v € G — H is not a cut vertex since G -
v remains connected. However, not all vertices in H are
cut vertices. The following paragraphs explain how to
determine if /, is a cut vertex for a dominating pair D, =
[Z, r}. With a similar argument, vertex r, can also be
determined.

At first we add two dummy vertices 0 and n+1, where
N,l01=N_, [0]1=0and N [n+1] = N _, [#+1] = n+l.
We also add two dummy dominating pairs DP = [0, 1]
and DP, | = [n, n+l1]. Let pmg, pm,, ..., pm, , be the
prefix maxima of (W [0], N (1], .., N [r+1]). By
Theorem 2.1, pm, 2 i+l for 1 Si<n To determine if /,
is a cut vertex, we let p,, p,, .., p,,, be the prefix
maxima of (N_ [0}, N_ [1], .. N_ [;-1}, O,
N_,[i+1], ..., N [n+1]) and check if there exists some
vertex j, 1 £j < n, such that p< J+¥l, where N_ [/]=0
is for the purpose of G - /. Since only N_ [/] is

FRREN A EHEREE

substituted by 0, p; 2 j+1 for 1 <j </, Moreover, sincé.
vertices in DP, ,, DP”Z, ey DP, are connected, p; 2 j+1

forl,, <j <n. We only need to check if p;<j+l for/.<
J<l,,. ltis obvious thatpj = pm; for0<j</ and P =

pry_y- Thus, Py Pya1s = Ply-1 is equal to the prefix

maxima of (prny 1> Npayll# b Nyt 21, o Ny Ll 1=

1]). We call sequence p;, p;.q4s Pha-1 the P-

sequence of DP,.

Lemma 3.1, Let DP=[l,r) 1sis< k, be a dominating

pair of G with its P-sequence. Then,
Case 1. i= 1. 1 is a cut vertex if there exists some

vertex j, I, <j <1,, such that p;<j+l.
Case2. 2<isk ljis a cut vertex if there exists some
vertex j, I, <j <1, such thatp <j+l.

Proof. Suppose i = 1. By Theorem 2.1, if there exists
some vertex j, I/, < j < I ,, such that p; < J+1, then

vertices j and j+1 are in dszerent components of G. The
reason of the disconnectivity is that we let l be not

adjacent to any vertices greater than /, then j+1 cannot
be connected to j without the adjacency of I, and j+1.
Thus, /, is a cut vertex. Now, suppose i =1. We need to
check if p, < j+1 for [, < j <1, since if p; < 2 but p, 2 j+1
for all j, 2 <j </, G is still connected. 0

A vertex is a pendant vertex if its degree is one. An
edge incident to a pendant vertex is called a pendant
edge. The following lemma applies Lemma 3.1 to find
pendant edges incident to /.

Lemma 3.2. Let DP,=[l,r), 1 i<k, be a dominating

pair of G with its P-sequence. Then,

Case 1. 1 i< k-1. Foreachvertexj,l,<j<l,,, zfpj |
<jandp ;< J+1, then (j, 1) is a pendant edge

Case2. i=k. Foreachvertexj,l <j<n, !ij_l <jand
p;< J*1, then (f, 1) is a pendant edge. Moreover, ifp,,
<n, then (l,, n) is a pendant edge.

Proof. By Theorem 2.1 and Lemma 3.1, if there exists
some vertex j, /; <j <1, such that p; , <jand p, <j+1,
then / is a cut vertex and j is isolated. This implies that j
is a pendant vertex of G which is adjacent to /, When i
=k, if p,_, <n, then] is a cut vertex and vertex n is
isolated. Thus, (/,, n) is a pendant edge. (]}

To determine r, of DP, 1 < i < k, we can apply the
above argument. Let smy, smy, ..., sm, , be the suffix

minima of (W, [0, N, [1],

nin vy N [+1]). Then, the S-
sequence s, 15 S, o o S, of DP,; is the sufﬁx

minima of (N [7, 1-i-l], Npil?ig 2L oees N [r 10,

min min min

Lemma 3.3. Let DP;=[l, r], 12i<k, be adominating
pair of G with its S-sequence. Then,

Case 1. 1<i<k~1. r,is acutveriex if there exists some
vertex j, r,_ <j S, such that j-1 < 5.

Case 2. i=k. r,is a cut vertex if there exists some
vertex j, r,_y <j <1, such that j-1 < 8

Lemma 3.4. Let DP,=[l, r], 1 <i<k, be adominating

pair of G with its S-sequence. Then,

Case 1. i=1. For eachvertexj, 1 <j < r,, ifj-1 <S_,

andj<s, 010 then (j, r)) is a pendant edge. Moreover, if 1
sy, then (1,.7)) is a pendant edge.

Case2. 2<i<k Foreachvertexj,v,_, <j<r,ifj-1<

and’ A RY then (j, r)) is a pendant edge.

Algorithm A uses the above lemmas to find all cut
vertices and pendant edges of a trapezoid graph.

Algorithm A (Finding cut vertices and pendant edges)
Input: N [iland N_, [i] of each vertex i, 1 <i<n.
Output: All cut vertices and pendant edges of G.
Method: _

Step 1. Find a shortest dominating path H of G.

Step 2. Transform H to the dominating pairs of G. Let
DP =[L,r]),DP,=[l, 1), ..., =[l,r]be
the dominating pairs.

Step 3. Add two dummy vertices 0 and s+1 as well as
two dummy dominating pairs DP,, = [0, 1] and
DP, ,=[n, nt+1].

Step 4. Let pmg, pmy, ..., pm, , be the prefix maxima of
WV, [0}, N (1), ..., N [n+1]) and sm,, sm,,

. sm, be the sufﬁx minima of (N [0},

min
Nmm[]], weey N [12+1]).
Step 5. Foreach DP,=[l,r),1<i<k do the following
substeps.

Step 5.1. Compute the P-sequence P> Ppars oo

pli -1 OfDP
Step 5.2. Use Lemma 3.1 to determine if /, is a cut

vertex.
Step 5.3. Use Lemma 3.2 to find pendant edges
which are incident to /.
Step 6. Foreach DP,=[l,r], 15i<k, do the following
substeps. :

FERENTAEZEHERESR

Step 6.1. Compute the S-sequence s, S+ S 420

s Sy OfDPi.
Step 6.2. Use Lemma 3.3 to determine if 7, is a cut

vertex.
Step 6.3. Use Lemma 3.4 to find pendant edges
~ which are incident to r,.

End of Algorithm

Figure 2 uses the example of Figure 1 to illustrate
Algorithm A. We take DP, = [1, 5] as an instance for

explaining how to determine if /1 is a cut vertex and how
to find pendant edges which are incident to /,. The P-
sequence p,, p,, p, of DP, is 0, 2, 6 which is the prefix
maxima of (pmgy, N_, [2], N [3]). Vertex 1 is a cut
vertex since p, < 3. Moreover, edge (1, 2) is a pendant
edge since p; < 2 and p, < 3. The cut vertices in our

example are vertices 1, 4, 8, and 9, while the pendant
edges are (1, 2) and (9, 10).

i |0t112|3]4151617]8}91{10}11
Nmax[i]052686689101011
pm; 10]5151618(8]|8|8]|9]|10{10|11
p; |0f0]2]16]6|616]|8]8]9]1011
@)
i012345678910-11
N Lo T pnj4)1)3|4(4(8(9]11
smp {OJ111]1|1}1|3]|4]4]18]9]1
s |03)3|3}4|8]9]l1|1]
(b)

Figure 2. (a) Finding cut vertices and pendant edges by left vertices.
(b) Finding cut vertices and pendant edges by right vertices.

Theorem 3.7. Algorithm A finds all cut vertices and
pendant edges of G in O(n) time.

Proof. The correctness of Algorithm A follows the
above lemmas. Since Steps 1 to 4 can be done in O(n)
time and since each DP, 1 < i < &, only uses its P-

sequence and S-sequence to do Steps 5 and 6, finding all
cut vertices and pendant edges takes O(») time totally. [J

4. Finding bridges

An edge (v, v) is a bridge of G if G - (u, v) is
disconnected. Pendant edges are certainly bridges, and
they can be found by Algorithm A. If bridge (», v) is not
a pendant edge, then both # and v must be cut vertices.
However, we cannot conclude that any edge incident to
both cut vertices is a bridge. The reason is that there

may exist a cycle of G containing this edge. Denote C, a
cycle of n vertices without any chords. By the definition

~ of trapezoid graphs, G can contain only C, and C, (see -

Figure 3). Note that any edge incident to both cut
vertices is an edge of the dominating path.

G Ca

Figure 3. The presentation of C, and C, in the trapezoid diagram.

Let DP, =[l,, n}, DP, =1, 1,), ..., DP, =[], 1,] be
the dominating pairs of G and H = [|~r ~L—r,~..~L,—r,
the dominating path, where I1 =1and r, =n. Then, (/,
r), 1 £i<k, is certainly an edge of H, and (r,, [;) is an
edge of Hif r,> 1., 1 <i<k-1. Lemmas 4.1 and 4.2
will find bridges by using the dominating pairs.

Lemma 4.1. Let (r,1,,), 1 i< k-1, be an edge of H
with cut vertices r;and I, Then, (r, .) is a bridge if
both of the following conditions hold:

O Ny lrid = N Ll = 15

)N <rforall jl<j<l,,.

Proof. Since (r, 1,,) is an edge, r, > [;. Consider the
following two cases.

Case 1. r;and [, , are contained in a C,. Then there

must exist a vertex j, N_. [/, ,] <j < N__ [r], such that j

minti+
is adjacentto r,and /, ..
i i+1

Case 2. r;and /., are contained in a C,. Then, there

must exist two adjacent vertices » and v such that each
of them is adjacent to different vertex of #, and /.

Without loss of generality, assume # < v, There are four
subcases that should be considered.

Case2.1. u<l, , <v<r, Then, path [,}—r~L-r,~.~I~
V= il il
contradicts that , is a cut vertex.

Case22. I, <u<v<r, Then, path ;-7 ~l,~r,—..~~

v=u-r, =~ —r, is also a dominating path which

w~l—r, is also a dominating path. It

contradicts that 7, and L ., are cut vertices.

Case2.3. I, <u<r;<v. Then, path ll—rl-'-lz—rz—...-li—

Peu=r, ——h-r, is also a dominating path. It

w1
contradicts that l,. ” is a cut vertex.

Case24. u<l <r;<v. In this case, both 7, and 7 |

can be still cut vertices if I,. <uandv< 7 Since u is

"
adjacenttov, N__ [u]2v>r,

E-80

hEERE N\ AEEHERER

In condition (i), since N _ [r] - Noinllig] = 1, there

exists no vertex j with N minllin] <J < N, [r]. This
implies that vertices r, and /. , are not contained in any
C;. In condition (ii), since N1 forall j, 1 <j<
li+l’
not contained in any C,. Thus, (s 1.,,) is a bridge of G
if both of the two conditions hold. O

Case 2.4 does not take place; vertices ryand [, | are

Lemma 4.2. Let (I,), |1 i<k, be an edge of H with
cut vertices I, and r,. Then, (I, r;) is a bridge if none of
the following conditions holds:

(i) there exists some vertex j, Py <J<
adjacent to both 1 candr;

(ii) there exist some vertex j and j+1, Py <J<1,-1

L

1

such that j is

such that j is adjacent to r; and j+1 is adjacent to Ly

(iii) there exists some vertex j, Fioy <J<l, s suchthatjis
adjacent to I, and N1 is adjacent to r, '
Proof. Observe the following two cases where / ;and r,
are contained ina C; andina C,.

Case 1. I and r; are contained in a C,. Then, there
exists a vertex j which is adjacent to I, and r, Two
subcases should be considered.

Case 1.1. J<r;,. Then, path L=r\~ly=ry=.~l,_ -1,
Fiw—h~r, is also a dominating path. A contradiction.
Case 1.2. 1, <j. Then, path L-ri=L-ry=.~l~j~1 ~
¥i—e—l1, is also a dominating path. A contradiction.
Thus, if /; and r; are contained in a C;, then condition (i)

holds,

Case 2. I, and r, are contained in a C,. Letu, v be two
adjacent vertices such that u, v, I, and r, form a C,
Without loss of generality, assume # < v. Then, it
< v <[,; otherwise, I, and r, cannot be cut vertices.
Since we assume l; and r; are contained in a C,, each
vertex j, r,y <j <1, is adjacent to either / or r,.

Case 2.1. u is adjacent to r;and v is adjacent to /. Ifv=

u+1, then condition (i) holds. Suppose v = u+1. If
vertex u+1 is adjacent to 1, then let vertex v be vertex

u+1 and condition (ii) holds; otherwise, let vertex u be
vertex u+1. Similarly, if vertex v~1 is adjacent to P

~ then let vertex u be vertex v—1 and condition (i) holds;
otherwise, let vertex v be vertex v-1. With the
argument, we can deduce v = »+1. Condition (ii) holds.

Case2.2. uis adjacent to /, and v is adjacent to r, Since

u is adjacent to v, v < N l¥]. Moreover, N [u] must
be less than l,,;; otherwise, r, is not a cut vertex. If
N 1¥] is adjacent to /, then v and N, [u] are in Case
2.1. Thus, N__ [is supposed to be adjacent to r, and
condition (iii) holds,

<u

E-81

Therefore, if /; and r, are contained in a C,, then one of
conditions (ii) and (iii) holds. -

By the above observation, we can conclude that if
none of the three conditions hold, (I, r) is a bridge of G.

O

The following is the algorithm for finding all bridges
of a trapezoid graph G.

Algorithm B (Finding all bridges)
Input: (1) N, [{]and N li] of each vertex i, 1 <i <
n
(2) The dominating pairs Dp =[l,,r],DP,=
Uy 1)), s DP, =1, 1] of G.
(3) Cut vertices of G.
(4) Pendent edges of G.

Output: All bridges of G.

Method:

Step 1. Let each pendant edge be a bridge of G.

Step 2. For each (rp 1) 15i<k-1, ifr,> l,,, and both
r;and [, | are cut vertices, then use Lemma 4.1
to determine if (r, /,,,) is a bridge.

Step 3. For each (/,r), 1 i<k, if both I, and r; are cut
vertices, then use Lemma 4.2 to determine if s
r,) is a bridge.

End of Algorithm

We use the example of Figure 1 again to illustrate
Algorithm B. The dominating pairs in this example are
DP, =1, 5], DP, = [4, 8], DP, =8, 9], and DP, = [9,
10], in which vertices 1, 4, 8, 9 are cut vertices. Since
(1, 2) and (9, 10) are pendant edges, (1, 2) and 9, 10)
are bridges. In Step 2, only (5, 4) is the edge of (rs 1))
Since vertex 5 is not a cut vertex, (5, 4) is not a bridge.
In Step 3, edges (1, 5), (4, 8), (8, 9), (9, 10) are the edges
of (I, r), in which (4, 8) and (8, 9) are incident to both
cut vertices. Edge (4, 8) is not a bridge since vertex 7 is
adjacent to vertices 4 and 8. Edge (8, 9) is a bridge since
none of the three conditions of Lemma 4.2 holds. Thus,
bridges in the example are (1, 2), (8, 9), and (9, 10).

Theorem 4.3. Algorithm B finds all bridges of G in
O(n) time.

Proof. The correctness of Algorithm B follows the
definition of pendant edges and Lemmas 4.1 and 4.2. In
Step 2, since each edge (v, /, 10> 1 i< k=1, only checks
vertices j for [, <j </, ,, Step 2 takes O(n) time totally.
Similarly, in Step 3, since each edge (pr), 1 i< k-1,
only checks vertices j for Fip <J<l,,, Step 3 takes O(n)
time totally. Thus, the complexity of Algorithm B is
O(n). a

hERE\AEEEH ER R

5. The Parallelization of Algorithms A and B

In this section, we will parallelize Algorithms-A and
B so that they can be done in O(log 1) time using O(n /
log n) processors on the EREW PRAM model.
At first, we need to find the maximum neighbor and
the minimum neighbor for each vertex of G. By the
prefix maxima computation [5, 7], they can be found in
O(log 1) time using O(n / log n) processors [3].
Let [i, N_, [{]] be an adjacent pair of G for each
vertex i, 1 £i < n. We compute the prefix maxima P =
@y Py or By) OFf Wy {11, Ny [2h s N[in
parallel. Then, let [1, N [1]] be a dominating pair of
G, and for 2 S i< m if p,, < pp let [i, N, [11] be a
dominating pair of G. In the example of Figure 1 (a),
the dominating pairs are DP = (1, 5}, DP, = [3, 6}, DP,
=[4,8],DP,=(8,9], and DP; = [9, 10]. We can use the
prefix maxima computation to find such pairs in parallel.
In the parallelization of Algorithm A, Step 5 needs to
use the prefix maxima computation. In Step 5.3, we let
X =Py andyj = j+1 for each vertex j, [, <j <1, then
detérmine if x; < j and p; < y; to avoid concurrent
reading. Similarly, we can use the suffix minima
computation to parallelize Step 6. Thus, Algorithm A
takes O(log n) time and O(n / log n) processors.
For parallelizing Algorithm B, Steps 2 and 3 need
some additional variables to avoid concurrent reading.
In Step 2, we let X=rp for each vertex j, [, <j </, ,, then
determine if N /] > x; for condition (ii) of Lemma 4.1.
In Step 3, let 5= l,and L=r for each vertex j, r,_; <j <
I, Then, letx; =1 if j is adjacent to s; and let x; = 0
otherwise. Similarly, lety, =1 if j is adjacent to Z; and let
= 0 otherwise. Moreover, let w; = 1if N_ [is
adjacent to L and let w; = 0 otherwise. Finally, let z=
xj“‘for each vertex j, r,_, <j < /,,~1. Thus, the three
conditions of Lemma 4.2 can be stated by the following.
(i) there exists some vertex j, 7, ; <j < l,,,» such that X =
1and =1
(ii) there exists some vertex j, 7, <j </,,-1, such that
y= 1 and z;= 1;

- (iii) there exists some vertex j, 7,_; <j <1, such that x;
=1and W, = L.

Since each step of Algorithm B can be done in O(log

#) time using O(n / log n) processors, Algorithm B takes
O(log n) time and O(n / log n) processors.

6. Conclusion

In this paper, we present algorithms for finding cut
vertices and bridges on trapezoid graphs in O(n) time

E-82

and in O(log n) time using O(n / log n) processors on the
EREW PRAM model. Since the lower bound of find cut
vertices and bridges on trapezoid graphs is Q(»), our
algorithms are optimal. '

References

[1] K. Arvind, V. Kamakoti; and C. P. Rangan, Efficient
Parallel Algorithms for Permutation Graphs, Journal of
Parallel and Distributed Computing, Vol. 26, 1995, pp.
116-124.

H.C.Chenand Y. L. Wang, A Linear Time Algorithm for
Finding Depth-First Spanning Trees on Trapezoid Graphs,
Information Processing Letters, to appear.

H. C. Chen and Y. L. Wang, An Efficient Parallel
Algorithm for Constructing Spanning Trees on Trapezoid
Graphs, ICS 1996 Proceedings of International
Conference on Algorithms, pp. 15-18.

2]

Bl

I. Dagan, M. C. Golumbic, and R. Y. Pinter, Trapezoid
Graphs and Their Coloring, Discrete Applied
Mathematics, Vol. 21, 1988, pp. 35-46.

J. JaJ4, Introduction to Parallel Algorithms, Addison-
Wesley,1992.

[6] T. W. Kao and S. J. Homng, Optimal Algorithms for
Computing Articulation Points and Some Related
Problems on a Circular-Arc Graph, Parallel Computing,
Vol. 21, 1995, pp. 953-969.

C. P. Kruskal, L. Rudolph, and M. Snir, The Power of
Parallel Prefix, IEEE Transactions on Computers, Vol.
34, 1985, pp. 965-968.

Y. D. Liang, Dominations in Trapezoid Graphs,
Information Processing Letters, Vol. 52, 1994, pp. 309-
315,

4]

51

7

(8

[9] Y. D. Liang, Steiner Set and Connected Domination in
Trapezoid Graphs, Information Processing Leiters, Vol.

56, 1995, pp. 101-108.

[10] T. H. Ma and J. P. Spinrad, On the 2-Chain Subgraph
Cover and Related Problems, Journal of Algorithms, Vol.
17, 1994, pp. 251-268.

{11JA. P. Sprague and K. H. Kulkarni, Optimal Parallel
Algorithms for Finding Cut Vertices and Bridges of
Interval Graphs, Information Processing Letters, Vol. 42,
1992, pp. 229-234.

[12]R. E. Tarjan and U. Vishkin, An Efficient Parallel
Biconnectivity Algorithm, SI4M Journal on Computing,
Vol. 14, 1985, pp. 862-874.

[13]1 Y. H. Tsin and F. Y. Chen, Efficient Parallel Algorithms
for a Class of Graph Theoretic Problems, SI4M Journal
on Computing, Vol. 13, 1984, pp. 580-599.

