
An Efficient JMC Algorithm for the Rhythm Query
in Music Databases

Ye-In Chang∗, Jun-Hong Shen†, Chen-Chang Wu∗, and Han-Ping Chou∗
∗Dept. of Computer Science and Engineering

National Sun Yat-Sen University
Email: changyi@cse.nsysu.edu.tw

†Dept. of Information Communication
Asia University

Email: shenjh@asia.edu.tw

Abstract—The rhythm query is the fundamental tech-
nique in music genre classification and content-based
retrieval, which are crucial to multimedia applications.
Recently, Christodoulakis et al. has proposed the CIRS
algorithm that can be used to classify music duration
sequences according to rhythms. In order to classify music
by rhythms, the CIRS algorithm locatesMaxCover which
is the maximum-length substring of the music duration se-
quence, which can be covered (overlapping or consecutive)
by the rhythm query continuously. However, this algorithm
will repeatedly generate unnecessary results during the
processing, resulting in the increase of the running time.
To reduce the processing cost in the CIRS algorithm,
we propose the JMC (Jumping-by-MaxCover) algorithm
which provides a pruning strategy to find MaxCover

incrementally. From our experimental results, we have
shown that the running time of our proposed algorithm
could be shorter than that of the CIRS algorithm.

Index Terms—music databases, music duration se-
quence, rhythm queries.

I. INTRODUCTION

In recent years, music becomes more popular due
to the evolution of the technology [1], [2], [3]. Vari-
ous kinds of music around us become more complex
and huge [4], [5]. This explosive growth in the mu-
sic has generated an urgent need for new techniques
and tools that can intelligently and automatically
transform the music into useful information and
classify the music into correct music group precisely
[6]. The rhythm query for music databases is the
fundamental technique in music genre classification
and content-based retrieval, which are crucial to
multimedia applications.

In [7], Christodoulakiset al. proposed a kind of
problem for rhythm queries. In the CIRS algorithm,
a rhythm is represented by a sequence of “Quick”
(Q) and “Slow” (S) symbols, which corresponds to
the (relative) duration of notes, such thatS = 2Q.
In order to classify music by rhythms, the CIRS
algorithm locates theMaxCover, which is the
maximum-length substring of the music duration
sequence which can becovered (overlapping or
consecutive) by the rhythm query continuously.

This algorithm uses the notated music data of
durations for the rhythm query. As compared with
the rhythm query using audio music data, the CIRS
algorithm can save a lot of time. Although the CIRS
algorithm has the above advantages, it does not
apply any pruning strategy to reduce the process-
ing cost. This is because that the CIRS algorithm
cannot decide how long one rhythm of “S”(slow)
is. Therefore, it needs to trace all different du-
ration values occurring in the duration sequence,
and regards each different duration value as one
rhythm of “S”(slow). So that, as the number of
different duration values increases, the processing
time of the CIRS algorithm increases. Therefore,
in this paper, we proposed the JMC (Jumping-by-
MaxCover) algorithm to avoid tracing all different
duration values, in order to speed up answering the
rhythm query. From our experimental results, we
have shown that the running time of our proposed
algorithm could be shorter than that of the CIRS
algorithm.

The rest of paper is organized as follows. In

Onset time:
 0 50 100 200 220

50 50 100 20
Interval:

S1

DSeq

Fig. 1. Two equivalent definitions of a musical sequence

Section 2, we present our proposed algorithm. The
experimental results are presented in Section 3.
Finally, we conclude this paper in Section 4.

II. THE JUMPING-BY-MAX COVER ALGORITHM

In [7], Christodoulakiset al. proposed a new
model for song classification based on dancing
rhythms. Although their CIRS algorithm can find
the interesting result (theq-cover), it takes long
time. Therefore, we propose an efficient algorithm
named Jumping-By-MaxCover (JMC), which re-
quires shorter time to solve the sameMaximal Cov-
erability problem. In this section, we first describe
formal definitions of duration sequences, the rhythm
representation,q-match,q-cover and theMaximal

Coverability problem [7], and then present the pro-
posed JMC (Jumping-By-MaxCover) algorithm.

A. Definitions

1) Duration Sequences:A musical sequence can
be thought of as a sequence of occurrences of
events [7]. Consider a music signal having 5 musical
events occurring at 0th, 50th, 100th, 200th and 220th
milliseconds. Then, sequenceS1 = [0, 50, 100, 200,
220] can be regarded as the corresponding sequence
representing the music signal under consideration,
as shown in Figure 1. Alternatively, we can repre-
sent the same music signal by stating the duration of
the consecutive musical events, instead of the start
time. In this algorithm, duration sequenceDSeq =
[50, 50, 100, 20] represents the same music signal,
as shown in Figure 1.

2) The Rhythm Representation:In particular,
there are two types of intervals in the rhythm of a
song: quick (Q) and slow (S). Quick means that the
duration between two onsets isq milliseconds, while
the slow interval is equal to 2q. For example, tango,
the dancing rhythm, is given as sequenceSSQQS.

Definition 1.: A rhythm Rhy is a stringRhy =
Rhy[1]Rhy[2]...Rhy[m], whereRhy[j] ∈ Q, S, for
all 1 ≤ j ≤ m.

 1 2 3 4 5 6 7

20 30 50 100 40 10 90

Solid

Q :

Fig. 2. The rule ofq-matching andsolid for q = 50

3) q-Match:
Definition 2.: Let Q represent an interval ofq ∈

N+ milliseconds, andS represent an interval of
2q milliseconds. Then,Q is said toq-match with
substringDSeq[i..i′] of duration sequenceDSeq, if
and only if

q = DSeq[i] + DSeq[i + 1] + ... + DSeq[i′],

where1 ≤ i ≤ i′ ≤ n. If i = i′, then the matching
is said to besolid. Similarly, S is said toq-match
with DSeq[i..i′], if and only if either one of the
following conditions is true

• i = i′ andDSeq[i] = 2q, or
• i 6= i′ and there existsi ≤ i1 < i′ such that

q = DSeq[i] + DSeq[i + 1] + ... + DSeq[i1] =
DSeq[i1 + 1] + DSeq[i1 + 2] + ... + DSeq[i′].

As with Q, the match ofS is said to besolid,
if i = i′. In a word, duration sequenceDSeqcan
be transformed toQ and S by accumulating the
consecutive ones.

For example, Figure 2 shows that duration se-
quencesDSeq[1..2] , DSeq[3] and DSeq[4..5] =
50 can be transformed toQ, becauseDSeq[1] +
DSeq[2] = 20 + 30 = 50 = q and so on. Moreover,
duration sequenceDSeq[3] is a solid S because of
DSeq[3] = 50 = q.

We use an example to illustrate theq-match for
a rhythm from the duration sequence. Consider
the duration sequence shown in Figure 3-(a). We
want to get theq-match for rhythmRhy = QSS

and q = 50 from this sequence. First, we need to
transform theDSeq to theQ S representation. We
haveDSeq[1] + DSeq[2] = 25 + 25 = 50 =q and
DSeq[3] = 100 = 2q, so we transformDSeq[1..2]
andDSeq[3] to Q andS, and so on. In fact, there are
many possible results of the transforming. Next, we
can find sequencesDSeq[1..5] and DSeq[5..8] are

Rhy

Rhy

S :

Q :

q
-cover

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

(a)

Rhy

Rhy

q
-cover

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

50

9

100

(b)

Fig. 3. q-cover ofRhy = QSS inDSeq, for q = 50: (a) overlapping;
(b) consecutive.

matched toRhy = QSS. That is, we have match
sequenceMatchSeq = (1, 5), (5, 8),

4) q-Cover:
Definition 3.: A rhythm Rhy is said toq-cover

substringDSeq[i..i′] of duration sequenceDSeq, if
and only if there exist integersi1, i′1, i2, i

′

2, ..., ik, i
′

k,
for somek ≥ 1, such that

• Rhy q-matchesDSeq[iℓ..i
′

ℓ], for all 1 ≤ ℓ ≤ k,
and

• i′ℓ−1
≥ iℓ − 1, for all 2 ≤ ℓ ≤ k.

In short, theq-coveringDSeqconsists of the over-
lapping or consecutiveMatchSeq’s.

In Figure 3-(a),MatchSeq’s are DSeq[1..5] and
DSeq[5..8]. Joining the overlappingMatchSeq’s be-
comes theq-cover. Therefore, we can find rhythm
Rhy = QSS q-coversDSeq[1..8] for q = 50. In
the same way, in Figure 3-(b), we can join the
consecutiveMatchSeq’s, resulting in theq-cover
DSeq[1..9].

5) The Maximal Coverability Problem:In this
paper, we focus on locatingMaxCover, the
maximum-length substring of the music duration
sequence, for rhythm queries. This is called the
Maximal Coverabilityproblem defined as follows
[7]:

Definition 4. (Maximal Coverabilityproblem):
Given a duration sequence DSeq =
DSeq[1]...DSeq[n], DSeq[i] ∈ N+, and a rhythm
Rhy = Rhy[1]...Rhy[m], Rhy[j] ∈ {Q, S}, find
the longest substringDSeq[i..i′] of DSeq that is
q-covered byRhy among all possible values ofq.

Moreover, the following restriction is applied on
the above problem.

Definition 5. (At least one event issolid.): For
each match ofRhy with a substringt[i..i′], there
must exists at least oneS in Rhy whose match
in t[i..i′] is solid; that is, there exists at least one
1 ≤ j ≤ m such thatRhy[j] = DSeq[k] = 2q,
i ≤ k ≤ i′, for some value ofq.

B. The Proposed JMC Algorithm

The basic idea of the JMC algorithm contains the
following five steps:

1) Finding all occurrence ofS.
2) Transforming the areas around all theS into

sequences ofQ andS.
3) Finding the Matchings.
4) Finding theMaxCover.
5) UpdatingCut-Sequence.

Our JMC algorithm does a while loop from Step 2
to Step 5, until thecut-sequence is empty.

First, we will describe a portion of our algorithm
which is similar to the CIRS algorithm to gener-
ate the maximalq-cover (MaxCover) by duration
sequenceDSeqand rhythm queryRhy. Next, we
will introduce our proposed data structure,cut-
sequence, which can prevent generating useless se-
quences. We introduce the detail of each procedure
in the following section.

1) Step 1: Finding All Occurrence ofS: In this
step, we use the procedure which is similar to the
first step in the CIRS algorithm [7]. We need to
find all occurrences ofS = DiffV [].V alue in
DSeq, whereDiffV [].V alue means the different
duration value inDSeq. According to the chosen
DiffV [].V alue, in Step 2, we can transform the
areas around each of those occurrences to sequences
of Q andS. Then, we have to repeat the above pro-
cess for every possible value ofDiffV [].V alue. A
single scan through the input string suffices to find
all occurrences ofDiffV [].V alue.

Basically, this step contains two parts: (a) finding
all different values and recording their locations;

DSeq: [25, 25, 100, 50, 50, 50, 50, 100, 50]

Rhythm : [Q, S, S]

DiffV : [100, 50, 25]

Input

Step 1

Step 2

Step 3

Step 4

Result
 MaxCover : 8

SeqQS: [QSQQQQSQ]

DiffV = 100

MatchSeq: [1, 5]

MatchSeq: [5, 8]

Cover: [1, 8]

Step 5

CutSeq: [25, 25] Ignored!

CutSeq: [50, 50, 50, 50] Ignored!

CutSeq: [50] Ignored!

(CutSeq.length <= Cover.length)

Location
 1
 2
 3
 4
 5
 6
 7
 8
 9

Fig. 4. A tracing example by using our JMC algorithm

TABLE I
THE RESULT OFSTEP 1

DiffV[].Value Location[]

100 3, 8
50 4, 5, 6, 7, 9
25 1, 2

(b) sorting all locations byDiffV [].V alue in
the descending order. Take musical sequenceDSeq

shown in Figure 4 as a running example. According
to the two parts mentioned above, we can get the
result as shown in Table I.

2) Step 2: Transformation:The task of this step
is to transform DSeq, which is a sequence of
integers, toSeqSQ, which is a sequence consisting
of Q and S, by the chosenDiffV [].V alue. Each
sequence belonging toSeqSQ is a sequence over
Q, S for the chosenq = (DiffV [].V alue / 2) .

In this step, our goal is to identify all the
q-matches ofRhy in duration sequenceDSeq.
For each occurrence of the current symbol
DiffV [].V alue = 2q = S, we try to convert the

area surrounding such anS into sequences or a tile
of Q. When we cannot continue to makeQ, we
check whether we can makeS instead.

Note that we first try to makeQ, and in case of
a failure, we try for oneS. ConsiderDSeq shown
in Figure 4. It is easy to observe that in this way,
we can only findS, if S is solid. The reason is
that according to the definition, we cannot haveS

that cannot be divided into two consecutiveQ’s. If
we cannot make either of them, we mark the end
of the sequence. Therefore, each sequenceDSeq ∈
SeqSQ consists of at least onesolid S.

This step spends the longest time in CIRS algo-
rithm [7]. By using the notion ofcut-sequencemen-
tioned in Step 5, our proposed algorithm reduces the
generation ofSeqSQ and increases the efficiency
for the later steps. Consider musical sequenceDSeq

shown in Figure 5, where we useDiffV [1].V alue

(= 100) to be 2q, i.e., q = 50. In Figure 5-(a),
the first solidS, DSeq[3] (= 2q), at location 3 is
located, and the transformation before this solidS is
then performed. After that, the transformation after
this solidS is performed as shown in Figure 5-(b).
Figure 5-(c) shows that the second solidS is located
and the remaining transformation is performed. The
transformed resultSeqSQ in the proposed JMC
algorithm is shown in Step 2 of Figure 4.

3) Step 3: Finding Matchings:During the match-
ing step, the following restriction ofq-match should
be obeyed [7]. OneS symbol in the rhythm query
can be regarded as two consecutiveQ symbols in
the duration sequence, but the two consecutiveQ

symbols in the rhythm query cannot be combined
as oneS symbol in the duration sequence.

In this step, we consider eachSeqSQ, for
DiffV [].V alue and identify all theq-matches of
Rhy in SeqSQ. To do that efficiently, we exploit
a bit-masking technique as described below. We
first define some notations that we use for sake
of convenience. We defineSs and Sr to indicate
an S in SeqSQ and Rhy, respectively.Qs and
Qr are defined analogously. We first perform a
preprocessing as follows. We constructSeq01 from
SeqSQ where eachSs is replaced by 01 and each
Qs is replaced by 1, as shown in Table II. We also
constructRhy’ from Rhy where eachSr is replaced
by 10 and eachQr is replaced by 0, as shown in
Table II. We then construct the “Invalid set”I for

(a)

(b)

: the finished part

: the processing part

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

Q
 S

Q
 S
 Q
 Q
 Q
 Q

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

Q
 S
 Q
 Q
 Q
 Q

(c)

Fig. 5. TransformingDSeqinto SeqSQ, for q = 50: (a) the processing
before the first solid S; (b) the processing after the first solid S; (c)
the processing after the second solid S.

TABLE II
THE BITMASKING TABLE

Ss Qs Sr Qr

01 1 10 0

Seq01, where I includes each position of “1” of
Ss in SeqSQ. This completes the preprocessing.
For example, ifSeqSQ = QSQQQQSQ, we have
Seq01 = 1011111011 andI = [3,9]. It is easy to
see that no occurrence ofRhy can start ati ∈ I.

After the preprocessing is done, at each positioni
∈ I of Seq01, we perform a bitwise “OR” operation
between Seq01[i..i + |Rhy′| − 1] and Rhy’. If the
result of the “OR” operation is all 1’s, then we have
found a match at positioni of Seq01. However,
we need to ensure that there is asolid S in the
match. To achieve that, we simply perform a bitwise
“XOR” operation between Seq01[i..i + |Rhy′| − 1]
and 1Rhy′

and only if the result of this “XOR”
returns a nonzero value, we go on with the “OR”
operation stated above.

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

Q
 S
 Q
 Q
 Q
 Q
 S
 Q

1
 01
 1
 1
 1
 1
 01
 1

0
 10
 1
 0
 (Match)

01
 0
 1
 0

0
 1
 0
 10
 (Match)

0
 1
 01
 0
S :

Q :

SeqSQ

DSeq

Seq01

Rhy'

Fig. 6. Finding matchings ofRhy = QSS(01010) inDSeq, for q

= 50

We now discuss the correctness ofq-match. Our
encoding obeys the restriction ofq-match. (Recall
that a match occurs when the result of the bitwise
OR operation is all 1’s.)

1) Qs(= 1) andQr(= 0) always matches: (1 OR
0 = 1).

2) QsQs(= 11) always matches withSr(= 10):
(11 OR 10 = 11).

3) SS(= 01) can only match withSr(= 10) : (01
OR 10 = 11).

4) Since Ss(= 01) cannot give a match with
QrQr(= 00): (01 OR 00 = 01).

According to Rhy = QSS, we can find the
matching sequences,MatchSeq’s, in DSeq[1..5]
andDSeq[5..8], as shown in Figure 6. In this step,
we use theDiffV [1].V alue = 100 to be2q. The
result is shown in Step 3 of Figure 4.

4) Step 4: Finding MaxCover:In this step, we
useMatchSeq’s generated in Step 3 to process the
q-cover. Checking the start and end location of
eachMatchSeq, we can combine the overlapping or
consecutiveMatchSeq’s. Overall, the running time
of this step is decided by the number ofMatchSeq’s.
Therefore, the running time of this step is shorter
than that of Step 2 and related to the sequence
generated in Step 2. Moreover, we maintain a global
variable MaxCover to keep track of the longest
cover so far.

Figure 7 showsMaxCover of the running ex-
ample for rhythmRhy = QSS and q = 50. In this
figure,MatchSeq’s DSeq[1..5] andDSeq[5..8] are
combined intoq-coverDSeq[1..8]. The result is the
length of MaxCover = 8, as shown in Step 4 of
Figure 4.

5) Step 5: Updating Cut-Sequence:In this step,
we constructcut-sequencesto prune the duration

MatchSeq

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

MatchSeq

Fig. 7. Finding covers ofRhy = QSS inDSeq, for q = 50

1

25

2

25

3

100

4

50

5

50

6

50

7

50

8

100

9

50

Input Duration

First

round

Second

round

Third

round

25
 25
 50
 50
 50
 50
 50

25
 25

Fig. 8. The cut-sequence for input in the different rounds

sequence according to duration sequenceDSeq and
DiffV [].V alue, the difference duration value of
DSeq, in each loop. We can observe that if there is a
value inDSeq that is larger thanDiffV [].V alue,
this value will not be transformed to anS or Q

rhythm in the following step. This value is a cut
point of DSeq. It cuts off DSeq into two or less
subsequences. Two larger values cut offDSeq into
three or less subsequences, and so on. We can ig-
nore all the cut-sequences, whose length are shorter
than that ofMaxCover, which is updated in each
round. After updating cut-sequences and pruning
impossible ones, the remaining cut-sequences are
the input data in the next round. Figure 8 shows the
cut-sequences in the different rounds.

Following the previous example, Figure 8 shows
that the inputDSeq’s for the next round, which are
generated by cut-sequenceCutSeq’s, are [25,25],
[50, 50, 50, 50] and [50]. All of the lengths of
DSeq’s are shorter thanMaxCover = 8 at present.
Therefore, we prune all ofDSeq’s, as shown in Step
5 of Figure 4. That is, there are no existingDSeq
for the next round. At this point, the processing of
the proposed JMC algorithm is completed. The final
result is as follows:

TABLE III
THE RHYTHM QUERIES[8]

Dancing rhythms SQ Representations

Bolero SQQSQQ

Cha-Cha SSQQSSSQQS

Foxtrot SSQQSSQQ

Jive SSQQSQQS

Mambo QQSQQS

Quickstep SQQSSQQS

Rumba SQSSQ

Tango SSQQS

Waltz SSS

• Given a duration sequenceDSeq = [25, 25,
100, 50, 50, 50, 50, 100, 50], and a rhythmRhy

= QSS, the length of the longest substring,
MaxCover, is 8 for q = 50.

III. PERFORMANCE

In order to evaluate the performance of our pro-
posed algorithm, we compare our JMC (Jumping-
by-MaxCover) algorithm with the CIRS Algorithm
[7]. We generate the synthetic data that are similar
to the duration sequence of the “ballroom dance”
music. Moreover, we use the duration sequence as
the input data to compare these two algorithms in
the total running time.

A. Generation of Synthetic Data

The musical sequences (e.g. a song) can be
considered as a series of onsets (or events) that
correspond to music signals, such as drum beats.
They are the intervals between those events, which
characterize the song. In order to obtain the reliable
results, we generate synthetic duration sequences as
one song. Therefore, we generate several different
duration sequences by using a set of different du-
ration values (DiffV). Moreover, we evaluate the
time of the algorithm for answeringMaxCover of
duration sequences, which is the maximalq-cover,
for the rhythm queries [8] shown in Table III.

The parameters used in the generation of syn-
thetic data are shown in Table IV.N means the
number of events in the duration sequence. For
example, N = 1000 means that there are 1000
duration events in the song.ND means the number
of different duration values (DiffV) in the duration
sequence. For example,ND = 3 means that the

TABLE IV
PARAMETERS USED IN THE EXPERIMENT

Parameters Meaning

N The number of events in the duration sequence

MC
The percentage ofMaxCover in the duration
sequence

ND
The number of different duration values (DiffV)
in the duration sequence

Rhy The rhythm query

duration sequence is created randomly from three
DiffV ’s. Rhy means the sequence of the rhythm
query, for example, the Tango rhythm is represented
by SSQQS. We choose nine of the most popular
rhythms, listed in Table III and compare the running
time of two algorithms by using each rhythm sepa-
rately. MC means the percentage ofMaxCover in
the duration sequence. According to the definition
of MaxCover, the correct rhythm query will be
repeated through the music. Therefore, the value
of MC is close to 100% with querying the rhythm
correctly. Beside, how to choose theDiffV ’s is
also an important issue. We describe the details as
follows:

• First, we define the duration of theQ rhythm,
i.e., Q = 50.

• Then, the duration of theS rhythm is regarded
as 2Q, i.e., S = 100.

• Other DiffV ’s must be combined as the du-
ration of oneQ rhythm. For example, we can
chooseDiffV = [25] (25 + 25 = 50) and
DiffV = [30, 20] (30 + 20 = 50).

Some examples ofDiffV under differentND’s
are shown in Table V. In the case ofND = 5, we
first defineQ = 50 andS = 100, and then we need
other threeDiffV ’s. Therefore, we chooseDiffV

= [25] (25 + 25 = 50) and the set ofDiffV ’s = [30,
20] (30 + 20 = 50) to be the other threeDiffV ’s.
Using DiffV which is assigned by the user, if we
also design an order to the duration sequence, we
can control the value ofMC.

Observing the form of the real music data, we
set the default values of parameters to generate
synthetic data that are similar to the real music data.
In our simulation, we define a base case as shown in
Table VI. According to the property of the duration
events that two adjacent events can be combined

TABLE V
AN EXAMPLE OF THEDiffV (UNDER DIFFERENTND)

ND DiffV

2 [50, 25]
3 [100, 50, 25]
4 [200, 100, 50, 25]

TABLE VI
BASE VALUES FOR PARAMETERS USED IN THE SIMULATION

Parameters Default values

N 10000
MC 100%
ND 3 (Different duration values are 100, 50 and 25)
Rhy [S, S, Q,Q, S]

to one large event, we need to generate the com-
bination of events. Therefore, we assume that the
duration of rhythmS is 100, and the duration of
rhythm Q is 50. The combination case of duration
events is shown in Table VII. Due to the property of
S that must be combined by two consecutiveQ’s,
we do not consider the combination case of [25, 50,
25]. An example of the synthetic data generation
with DiffV = [100, 50, 25],Rhy = SSQQS,N =
17 andMC = 100% is shown in Table VIII.

TABLE VII
THE COMBINATION CASE OF DURATION EVENTS[100, 50, 25]

FORS =100

Rhythm Combination

S

[100]
[50, 50]
[50, 25, 25]
[25, 25, 50]
[25, 25, 25, 25]

Q
[50]
[25, 25]

TABLE VIII
AN EXAMPLE OF THE DATA GENERATION(ND = 3, DiffV =

[100, 50 ,25] ,Rhy = SSQQS,N = 17 AND MC = 100%)

N S S Q Q S

1–8 [100] [25, 25, 50] [50] [25, 25] [100]
9–17 [50, 25, 25] [50, 50] [25, 25] [50] [100]

TABLE IX
A COMPARISON OF THE RUNNING TIME(MILLISECONDS) OF THE

JMC ALGORITHM AND THE CIRSALGORITHM (UNDER THE BASE

CASE)

Algorithm The running time

CIRS 44
JMC 8 (reduced 81.8%)

In order to controlMC = 100%, we use the
combination, as shown in Table VII, to be one
element of the input. Moreover, we use the rhythm
query as the order of data generation. For example,
the first symbol of the rhythm querySQQSS is S,
and we generate the combination of duration events
from five cases of RhythmS in Table VII randomly,
and so on. In this way, we can generate the duration
sequence that is covered by the rhythm query, and
that isMaxCover which we need.

B. Simulation Results of Synthetic Data

Now, we make a comparison of our JMC al-
gorithm with the CIRS algorithm by using the
synthetic data. For the base case shown in Table
VI, we make a comparison of the running time of
our algorithms and the CIRS algorithm. The result
is shown Table IX, which is the average of 20 dura-
tion sequences. On the average, our algorithm can
reduce about the 81.8% running time of the CIRS
algorithm. The value of the reduced percentage can
be calculated by using the formula described as
follows:

reduced percentage =
(1 − the running time of the JMC algorithm

the running time of the CIRS algorithm
) × 100%.

In the first case, we vary the value ofN , the num-
ber of events in the duration sequence. The range of
N is set to 2000, 4000, 6000, ..., and 20000, while
the other parameters are kept as their base values.
Under changing the value ofN , a comparison of
the running time by using the JMC algorithm and
the CIRS algorithm is shown in Figure 9. We can
observe that when the value ofN increases, the
running time by using the JMC algorithm and the
CIRS algorithm also increases. However, our algo-
rithm needs shorter time to answer the same rhythm
query than the CIRS algorithm. This is because that
our algorithm can filter the false cut sequence (piece

0

20

40

60

80

100

120

140

160

2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000
 20000

Number of duration event (N)

R
u

n
n

in
g

 t
im

e
(m

se
cs

)

JMC

CIRS

Fig. 9. A comparison of the running time of the JMC algorithm
and the CIRS algorithm by using the different number of duration
sequences(N)

of the duration sequence) in advance, whereas the
CIRS algorithm does not use the pruning strategy. In
this case, according toND = 3, the CIRS algorithm
needs to run the algorithm three times completely. In
our algorithm, we get the result ofMC = 100% for
q = 100 at the first round. Then, we can observe that
the length ofMaxCover is long enough to prune all
cut sequences (the duration sequence of the second
round forq = 50). Therefore, we do not need to run
our algorithm in the second round. As compared to
the CIRS algorithm, our JMC algorithm can reduce
up to 66.7% of the running time.

In the second case, we vary the kinds ofRhy,
the query rhythm. The nine kinds ofRhy are listed
in Table III, and the base values are used for the
other parameters. Under changing the differentRhy,
a comparison of the running time by using the
JMC algorithm and the CIRS algorithm is shown
in Figure 10. We can observe that no matter what
kind of Rhyis applied, the running time of the JMC
algorithm is shorter than that of the CIRS algo-
rithm. Moreover, our algorithm needs shorter time
to answer the same rhythm query than the CIRS
algorithm. This is because that our algorithm can
filter the false cut sequence (piece of the duration
sequence) in advance, whereas the CIRS algorithm
does not use the pruning strategy. As compared to
the CIRS algorithm, our JMC algorithm can reduce
up to 78.7% of the running time.

IV. CONCLUSION

In this paper, we have presented the JMC
(Jumping-By-MaxCover) algorithm to locate the

0

10

20

30

40

50

60

Bolero
Cha-Cha
 Foxtrot
 Jive
 Mambo
 Quickstep
Rumba
 Tango
 Waltz

The query rhythm

R
u

n
n

in
g

 t
im

e
(m

se
cs

)

JMC

CIRS

Fig. 10. A comparison of the running time of the JMC algorithm
and the CIRS algorithm by using different rhythm queries(Rhy)

maximum-length substring of the music duration
sequence for rhythm queries, which can reduce
the process cost of the CIRS algorithm [7]. Our
proposed algorithm follows the definition of the
CIRS algorithm and provides the pruning strategy
to generate the result incrementally. From our simu-
lation results, we have shown that our algorithm can
reduce up to the 81.8% running time of the CIRS
algorithm.

REFERENCES

[1] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, “Queryby
Humming-musical Information Retrieval in an Audio Database,”
in ACM Multimedia, 1995, pp. 231–236.

[2] D. Little, D. Raffensperger, and B. Pardo, “A Query by Humming
System That Learns from Experiences,” inProc. of the 8th
Int. Conf. on Music Information Retrieval, 2007, pp. 23–27.

[3] E. Unal, E. Chew, P. G. Georgiou, and S. S. Narayanan,
“Challenging Uncertainty in Query by Humming Systems: A
Fingerprinting Approach,”IEEE Trans. on Audio, Speech, and
Language Processing, vol. 16, no. 2, pp. 359–371, Feb. 2008.

[4] J. S. Downie, “Music Information Retrieval,”Annual Review of
Information Science and Technology, vol. 37, pp. 295–340, 2003.

[5] N. Orio, “Music Retrieval: A Tutorial and Review,”Foundations
and Trends in Information Retrieval, vol. 1, no. 1, pp. 1–96, Jan.
2006.

[6] H. C. Chen, Y. H. Wu, Y. C. Soo, and A. L. P. Chen, “Continuous
Query Processing over Music Streams Based on Approximate
Matching Mechanisms,”Multimedia Systems, vol. 14, no. 1, pp.
51–70, June 2008.

[7] M. Christodoulakis, C. S. Iliopoulos, and M. S. Rahman, “Iden-
tifying Rhythms in Musical Texts,”Int. Journal of Foundations
of Computer Science, vol. 19, no. 1, pp. 37–51, Feb. 2008.

[8] A. L. P. Chen, C. S. Iliopoulos, S. Michalakopoulos, and M. S.
Rahman, “Implementation of Algorithms to Classify Musical
Texts According to Rhythms,” inProc. 4th of Int. Sound and
Music Computing Conf., 2007, pp. 11–13.

