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Abstract―This paper presents a 3D scenes
reconstruction method based on less featured block
matching with a binocular vision system. The basic idea of
this paper is to utilize the imaging parallax of two cameras
caused by different setup locations to  immediately and
precisely obtain the 3D information of the objects within
the field of view of the cameras. To accomplish this, we
first adjust the setup locations of the cameras and then
conduct the pre-processing operations on both left and
right images, such as image rectification, grey-level
transformation, and histogram equalization. After that,
we divide the right image into blocks and adopt the
Pearson product moment correlation coefficient to
measure the similarity of the corresponding blocks in the
left image. If the image variance of the current block is too
large, we further partition this block into some sub -blocks
to recursively perform the matching. We also propose an
efficient searching algorithm to reduce the execution time
of block matching. Once we find the disparity of the
corresponding blocks, we reconstruct the real 3D location
by use of a stereo imaging model. The comparison of the
3D scenes reconstruction results with paralleled and
non-paralleled cameras approaches is made through
doing many experiments. We conclude that the paralleled
cameras approach attains higher reconstruction accuracy
than the non-paralleled cameras approach does although
the former is a special case of the latter.

Index Terms―Less featured block matching, binocular
vision system, 3D scenes reconstruction, image
rectification, Pearson product moment correlation
coefficient.

I. INTRODUCTION

One of the important subjects in developing
autonomous robots is machine vision, including
stereo image processing, moving object detecti on,
tracking, and recognition, and so on. In this paper,

we aim at presenting a 3D scenes reconstruction
method to give robots of a robust stereo visual
ability. The trade-off between accuracy and
efficiency is made to realize our binocular vision
system in real time. Stereo vision can be roughly
classified into monocular stereo vision and
binocular stereo vision. In 1987, Pentland produced
a monocular stereo vision method called Depth
from Defocus (DFD) and started a new idea of
obtaining image depth information [7]. In 1991,
Leung et al. designed a system using monocular
and binocular images as an accordance to
determine the moving direction of a car -like robot
[6].

The key step of stereo vision is to find
corresponding objects in binocular images. Some
methods have been proposed to do this, such as
epipolar geometry [1] and symmetry guided fusion
[9]. Our developed method is based on a block
matching scheme and emphasized to employ less
features than the other approaches, so we can save
lots of time in finding features and have not to
recognize them for stereo matching. Additionally,
some useful digital image processing techniques
are adopted to achieve 3D scenes reconstruction.
Therefore, any unstable or foul environment won ’t
much affect our reconstruction accuracy. The
aforementioned advantages make our method be
perfectly suitable for providing the 3D information
of a working space during the navigation of an
autonomous robot. Figure 1 shows the system
flowchart of our 3D scenes reconstruction
procedure.
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Figure 1.  System flowchart of our 3D scenes reconstruction procedure.

II. IMAGE PRE-PROCESSING

The image pre-processing of our 3D scenes
reconstruction method is briefly described as
follows. Because every camera has the image
distortion problem and its quality is uneven, the
first step is to rectify each input image we take. To
improve the matching accuracy, the grey -level
transformation and histogram equalization [5] are
then performed on the images. Before such
pre-processing, we adjust both camera s to be
located at equal height as to match corresponding
blocks in the two captured images. According to
this arrangement, a matching block in the left
image will be found at the similar elevati on of a
template block in the right image by a shift distance
as Fig. 2 shows. Nevertheless, we know that to
realize this idea requires very accurate regulation to
keep the cameras be always situated in the same

height. It is a time-consuming task and will  not
allow such a system to be implemented in real time.

To deal with the bargain between the time
consumption of the accurate regulation and the
large amount of probable matching blocks to be
searched, a compromise solution  is proposed below.
We design a board in which a broad black line is
printed as shown in Fig. 3(a), and put it in front of
the two cameras to carry out the regulation in this
research. The setup locations of the cameras will be
adjusted to make the black lines in both the left and
right images look approximately in the same height.
As Figs. 3(b) and 3(c) illustrate, we can find out
that even after elevation adjustment, the black lines
of the two images are not exactly situated in the
same height, but that is already enough for our
system.

Furthermore, when this system is implemented
on a robot, we can also utilize this simple
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regulation method by setting up eyelashes for its
both eyes. While the regulation is required, we can
half close the eyes to obtain two strip images
bounded by the upper and lower eyelashes as Fig. 4
shows. By this way, we can adjust the two cameras
to be situated at the same elevation by comparing
the coordinates of the black lines.

Besides, as this system may be equipped on a
robot, the slight vibration caused by the  motion of
the robot and the rugged ground will lower the

accuracy of the regulation. Being restricted by the
uneven quality of a camera, the imaging process
may be possessed of the location deviation problem
existing in pixels, even those cameras of the s ame
type also cause different kinds of image distortion
situations. These problems may affect the
reconstruction accuracy of our system, so we have
to conduct image rectification, including four main
steps that are depicted in [3] minutely.

(a)                (b)

Figure 2. Pairs of corresponding blocks located in: (a) the right image; (b) the left image.

(a)  (b)    (c)

Figure 3. Camera elevation adjustment: (a) an experimental regulation board; (b) the right image of (a);
(c) the left image of (a).

(a) (b)

Figure. 4. Strip images produced by: (a) the right camera; (b) the left camera of a robot vision system.
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III. LESS FEATURED BLOCK MATCHING

The following elaborates our proposed less featured
block matching method which separates the left
image into a set of blocks and looks for their
corresponding blocks in the right image recursively.
The Pearson product moment correlation
coefficient is employed to measure the similarity of
two blocks. Some searching area simplification
schemes are also described for fast finding
corresponding block candidates, one of which is
determined to be the matching block with the aid of
the Canny edge detector [2].

A. Pearson product moment correlation coefficient

In order to improve the robustness of the overall
system and raise its efficiency, we propose a less
featured block matching method to solve the 3D
scenes reconstruction problem in real time. First,
we classify the frame captured by the right camera
as a template image (T-image) and each block of
the T-image is called a template block ( T-block),
and the frame captured by the left camera as a
reference image (R-image) and each block of the
R-image is called a reference block (R-block). Then
we divide the T-image into a set of T-blocks, each
of which, say, consists of 20  20 pixels, and look
up every possible block in the R-image to find
several corresponding block candidates. Moreover,
one of them is identified as the corresponding block
for a T-block. The matching method based on
blocks is also called correlation -like method or
template matching [5]. We calculate a
cross-correlation coefficient to determine the
similarity of two blocks, which is called Pearson
product moment correlation coefficient [ 8]
expressed below:
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where T(x, y) represents the grey-level of the pixel
located at coordinates (x, y) of a T-image and R(x-m,

y-n) represents the grey-level of the pixel located at
coordinates ( , )x m y n  of an R-image by
respectively translating m and n pixels in x- and
y-directions from the coordinates ( , )x y ; T  and

R  indicate the mean grey-levels of the currently
processed blocks in the T- and R-images,
individually. The cross-correlation coefficient

( , )C m n is ranged from 1 to 1. If ( , ) 0C m n  ,
we regard the two blocks to be not matched. The
more positive ( , )C m n  is, the two blocks are more
similar to each other; if ( , ) 1C m n  , it means the
two blocks are exactly the same. In addition,

( , )C m n is not changed due to different
measurement units, so this method is more robust
under various lighting conditions. Even though, we
cannot declare the R-block with the highest

( , )C m n to be a corresponding block candidate yet,
because the Pearson product moment correlation
coefficient is derived from grey-level information
that is not equivalent to  color information.
Therefore, maybe the R-block with the highest

( , )C m n  just resembles to a T-block in the
grey-level situation.

B. Searching area simplification for corresponding
block candidates

The computation of the Pearson product moment
correlation coefficient is a compl icated process,
because it compares every pixel of an R-block for a
T-block. Additionally, the amount of corresponding
block candidates in the R-image is too large for us
to implement this method in real time. To overcome
the time-consuming problem, we first decide to set
up both of our cameras in the same height; thus, the
corresponding R-block will be located in the same
elevation as the T-block; that is, we only have to
look for the corresponding R-block candidates
through referring the elevation of the T-block to the
R-image while finding a matching block. Fig. 5
illustrates such imaging relationship of the two
cameras.

According to this, we just have to search the
matching R-block from the location of the current
T-block to the right as shown in Fig. 6.  In
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consequence, we can averagely moderate half of
corresponding R-block candidates to be found. It
means that the total matching times will be finally

decreased to 4.5% of the exhaustive searching
approach.

Figure 5. Imaging relationship of left and right cameras.

(a)  (b)

Figure 6. Searching area of matching R-blocks: (a) a T-block in the T-image; (b) the resized area of searching
corresponding R-block candidates in the R-image.

After we get several corresponding R-block
candidates, we further compare their edge
information to judge one of them to be th e correct
R-block. Herein, we adopt the Canny edge detector
[2] which can provide clear and thin edges. Once
the Canny edge detection has been applied to a
T-block and its corresponding R-block candidates,
we compare the resulting images by use of their
peak signal to noise ratios (PSNR). If the PSNR is
large, it means the difference between the two
blocks is small.

C. Recursive block matching

Actually, dividing a T-image into equal-sized
blocks is not very rigorous, since many blocks are
not so simple enough to describe their 3D locations
by uniform coordinates. As to improve the

reconstruction outcome, if we fi nd a block whose
color distribution or texture is complicated, we
partition the block into several sub -blocks for more
detailed matching. Fig. 7 shows that a cluttered
T-block contains three distinct objects with
different depths; using a single depth is n ot
appropriate, so we divide the block into four
sub-blocks for further matching. This concept is
stated as follows. First, we calculate the sample
variance of every T-block; if that of the current
T-block is larger than a threshold Tv, then we regard
this block as a cluttered one and divide it into four
sub-blocks. The sample variance is expressed as
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


 BN

jj

B

n
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where nj is the grey-level of the j-th pixel, μ is the



6

mean grey-level of the block, and BN is the size of
the block.

When we take a sub-block in the current
T-block for detailed matching, the rule of setting
the extent of the searching area is the same as the

previous subsection states. The only difference is
that the width will be ranged from the left side of
the T-block to the right side of its corresponding
R-block, and the height is identical with that of the
sub-block as Fig. 8 shows.

Figure 7. Sub-blocks of a cluttered T-block.

(a) (b)

Figure 8.  Searching area of matching sub-R-blocks: (a) a sub-T-block in the T-image; (b) the resized area of
searching corresponding sub-R-block candidates in the R-image.

IV. 3D SCENES RECONSTRUCTION

In this section, we mainly utilize the perspective
transformation theory [5] and the disparities
between pairs of corresponding points to
reconstruct the real location of an object by means
of algebraic manipulations.

As to view the image formed by a 3D scene, we
project 3D points onto an image plane . Fig. 9
shows the basic model of the imaging process with
a single camera. The camera coordinate system
oxyz has the image plane coincident with the
xy-plane and its optical axis is along the z-axis. Let
the center of the lens is at the origin o of the
camera coordinate system. Therefore, the center of

the image plane is at coordinates (0, 0,  ), and
  is the focal length of the lens. Assume that the
camera coordinate system is aligned with the world
coordinate system OXYZ.

We suppose all objects are in front of the lens;

that is, Z  . If we can find the relationship

between a 3D point ( , , )X Y Z and its image

point ( , )x y , it will be applied to estimating the real

location of the 3D point. The relationship is formed

by the aid of similar triangles given below:

x X
Z

       (3)
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and y Y
Z

  ,             (4)

where the negative signs mean that the 3D point
and its image point are located in the inverted half
space separated by the plane through the origin.

The following is to depict the 3D s cenes
reconstruction method which is based on the two
cameras not located in parallel. Fig. 10 graphically
illustrates the model of the stereo imaging process
with two non-paralleled cameras. Remark that the
cameras located in parallel are just a special c ase.

y, Y

x, X

z, Z

lens center

image plane

o, O

(x, y)

w(X, Y, Z)

Figure 9. Basic model of the imaging process  with a single camera.

1 1
( , )x yc c

2 2
( , )x yc c

Figure 10.  Model of the stereo imaging process with two non -paralleled cameras.

In this model, we set the left camera as  Camera
1 and its coordinate system is o1x1y1z1, and the right
camera as Camera 2 whose coordinate system is
o2x2y2z2. Note that the centers of lenses of Camera l
and Camera 2 serve as the origins of the associated
coordinate systems, respectively. The geo metric
transformation from the coordinate system of
Camera 1 to that of Camera 2 can be stated as
follows:

   2 2 2 1 1 1 ,
T T

R Tx y z x y z        (5)

where [   ]T
x y zR R R R is the rotation matrix with

1 2 3[   ] ,T
xR r r r 4 5 6[   ] , T

yR r r r and 7 8 9[   ] , T
zR r r r

respectively, and [   ]T
x y zT t t t  is the translation

vector. It is assumed that each camera coordinate
system is aligned with the associated world one.
Therefore, we can acquire
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   2 2 2 1 1 1 .
T T

R TX Y Z X Y Z        (6)

Given a target point (X, Y, Z) in a 3D scene, its
corresponding pixel in the rectified image plane of
Camera 1 by only taking the first deviation term
yields

1 1 1 1 1

1 1 1 1

2
1(1 )

  
     

 u d x d n
X Z Z Z

x x d x k d
  (7)

and

1 1 1 1 1

1 1 1 1

2
1(1 )

,
  

     
 u d x d n

Y Z Z Z
y y d y k d

  (8)

where k1 is the first deviation coefficient;
1ux and

1uy are the coordinates of  the pixel without

distortion, while
1dx and

1dy  are those with

distortion;
1nd stands for the distance normalized by

the focal length λ from an imaging point
1 1

( , )d dx y

to the image center
1 1

( , )x yc c .

Similarly, the imaging relationship for Camera
2 is

2 2 2 2 2

2 2 2 2

2
1(1 )

.u d x d n
X Z Z Z

x x d x k d

  
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 

(9)

Hence, from (5) ~ (8), we can obtain the depth
information of the target po int in the coordinate
system of Camera 1 as follows:

1 ( ) ( ) ,z xZ Ct t A BC            (10)

where

1 1 1 1

1 2 3

2 2
1 1(1 ) (1 )

,d n d n
A r r r

x k d y k d
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and 2

2

2
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dC
k d

x

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      (13)

By substituting Z1 into (7) and (8), we can get
X1 and Y1. Then the coordinates of the target point
in the world coordinate system have been estimated.
To obtain its real coordinates, we consider image
distortion situations and further derive the
following equations:

( ) ( )r r z x r r rZ C t t A B C   (14)

with
 

1 1 1 1

1

2
1(1 )x d n x

rA r
s x k d c


 

 
(15)

1 1 1 1

2 3

2
1( (1 ) )

,y d n y
r r

s y k d c
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
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
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1 1 1 1

7

2
1(1 )x d n x

rB r
s x k d c


 
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 (16)

 
1 1 1 1

8 9

2
1(1 )

,
y d n y

r r
s y k d c




 


and
 

2 2 2 2

2
1(1 )

.


 
 x d n x

rC
s x k d c

       (17)

Hence,
 

1 1 1 1

2
1(1 )


 

 x d n x

r rX
s x k d c

Z  (18)

and
 

1 1 1 1

2
1(1 )

.
y d n y

r rY
s y k d c

Z


 
 

(19)

V. EXPERIMENTAL RESULTS

We take several varied kinds of scenes as examples
to verify the performance and robustness of our 3D
scenes reconstruction system. Some of these
exemplary images are captured by two parall eled
cameras, and the others are under the situation of
two non-paralleled cameras. The following orderly
demonstrates and compares the reconstruction
results from different situated conditions of the two
cameras in either parallel or not.

A. Reconstruction results from two paralleled
cameras

One example conducted in a sidewalk is illustrated
in this subsection. The scene of this example
contains multi people and some special obstacles
such as a mirror and a fillister on the wall. Figs.
11(a) and 11(b) show the original scenes captured
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by two cameras located in parallel. Fig. 11(c) is the
2D (X-Z) graph which is also called a top  view
graph where each red line indicates the location of
an object in the scene. Fig. 11(d) is the 2D (X-Y)

graph which represents the block’s depth by
different colors where a deeper color means the
object is closer to the cameras.

(a) (b)

(c) (d)

Figure 11. 3D scenes reconstruction of the sidewalk: (a) the T-image of the original scene; (b) the R-image of the original
scene; (c) the 2D (X-Z) graph of location information; (d) the 2D ( X-Y) graph of depth information.

Now we take several blocks to inspect the
accuracy of our reconstruction system as Fig. 12
shows. Table 1 lists the reconstruction results of
these blocks. The coordinate system we use to
record the 3D real location in the table is depicted
as follows: the center of the baseline of both
cameras acts as the origin of  the X-axis, and its
right side is positive coordinates and left side is
negative coordinates; the ground level is referred to
as the origin of the Y-axis and the camera’s location
is considered as the origin of the Z-axis. The way

we evaluate the precision of the reconstruction
results is estimated by the following equation for
each dimension:

-loc  -loc -loc
 100%

-loc

R R E
Precision rate

R

 
 

(20)

where R-loc and E-loc stand for the real and
estimated locations, respectively.
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Figure 12. Several sampling T-blocks of Fig. 11(a).

Blocks 1, 2, and 3 are all reconstructed correctly
with the precision rate of over 90%. Block 4 covers
the border between the wall and the building
behind, and because part of the building in the
T-block is obstructed by the  wall in front of it in the
R-image, we can’t find the right corresponding
block. Block 5 contains a mirror, so that the
cameras in different setup locations will receive
dissimilar reflections, and we can ’t find a correct
corresponding block.

In the 2D graphs, we set the block whose
elevation is less than 15 cm from the ground won ’t
be drawn. We also don’t draw the block whose
depth is beyond 7 meters , because we have not to
consider this long-distance scene, even our cameras
can’t identify such a far distance correctly. The
block filled with the ground called ground block
usually has simple textures, which is easily to find
a corresponding ground block with a high matching
score. It reveals that the corresponding reference
ground block is very near to the original location of
a template ground block, and will make their
disparity very small. That is to say, the ground
block is usually considered as a block which is far
away from the cameras, so that we have not to
draw it. This is why our 2D graphs only sho w the
objects excluding ground blocks. We can also see
that about the last three columns of the captured
image are hardly find corresponding blocks. This is
because we place the two cameras paralleled with
each other, so that these cameras will see differe nt
scenes in the rim of their sight.

Table 1. The Evaluation of 3D Scenes Reconstruction Results of Figs. 11(a) and 11(b)

Estimated location Real location Precision rate
Block

X Y Z X Y Z X Y Z

1 0.66 1.45 3.40 0.69 1.49 3.50 95.6% 97.3% 97.1%

2 -0.23 1.11 6.87 -0.25 1.20 7.50 92.0% 92.5% 91.6%

3 1.40 0.45 5.48 -1.29 0.42 5.20 91.4% 92.8% 94.6%

Failure blocks:

4 0.18 0.63 1.87 0.60 2.30 9.30 30.0% 27.3% 20.1%

5 -0.42 0.32 1.87 -1.71 1.48 9.22 24.5% 21.6% 22.0%

If you watch the both captured  images carefully,
you may find out that the shades are little varied.
The reason is that although the two cameras are of
the same type, they may still have a slight
difference in sensitivity in some situations. Even
though, this problem will not affect th e robustness
of our reconstruction system owing to adopting the
less featured matching method.

B. Comparison of the reconstruction results from
paralleled and non-paralleled cameras

What follows demonstrates some various scenes of
a laboratory as an experimental example using a
pair of non-paralleled cameras. We will evaluate
the reconstruction results of these scenes with
different slanting angles of two cameras such as

180 , 175 , 170 ,  and 165 . Each case of the
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cameras situated with the slanting angles will be
examined individually by picking several
representative blocks for detailed comparison. And
we will only show the reconstruction results of the
matching blocks which are within the overlapping
area of the two captured images. If the overlapping
area gets confused, even the corresponding blocks
can’t be found in the R-image, they are sure to be
reconstructed wrong. Besides, because the
overlapping areas are all unlike,  we will highlight
them in purple color as to be easily identified.

Figs. 13 and 14 reveal the 3D scenes
reconstruction results that are derived from the two
cameras equipped with the slanting angles

 of 180∘(on the paralleled condition) and 170∘
(on the non-paralleled condition), respectively. The
block with the precision rate of above 90% is
considered as success estimation, and that below
90% is failure estimation. From this experiment,
we find out that the different slanting angles of the
two equipped cameras will cause the size of the
overlapping area of the two captured images to
change. Therefore, we define “Effective blocks” to
be the total amount of the blocks that
simultaneously appear in both the ima ges. The
evaluation of the 3D scenes reconstruction results
is manifested in Table 2.

(a) (b) (c)

Figure 13.  3D scenes reconstruction of using two cameras situated wit h the slanting angle of 180∘: (a) the T-image
of the original scene; (b) the R-image of the original scene; (c) the 2D ( X-Z) graph of location
information.

(a) (b) (c)

Figure 14. 3D scenes reconstruction of using two cameras situated with the slanting angle of 170∘: (a) the T-image
of the original scene; (b) the R-image of the original scene; (c) the 2D ( X-Z) graph of location
information.
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Table 2. The Evaluation of the 3D Scenes Reconstruction
Results from the Two Cameras Situated with
Different Slanting Angles

VI. CONCLUSIONS

In this paper, we have presented a robust 3D scenes
reconstruction system using binocular vision
techniques. With the less featured matching idea,
we can find good pairs of an objec t within the right
and left images even in a low luminance or blurred
features environment which is tedious for
feature-based methods to accomplish. And by
means of the two-stage confirmation approach,
combining the Pearson product moment correlation
coefficient and the Canny edge detector, the
corresponding blocks can be found correctly. We
also adopt the recursive scheme to make our
reconstruction results more delicate. The saving of
the execution time is emphasized in this work, too.
We not only renovate the image distortion caused
by the lens of a camera, but can also handle the
situations of the variations arisen from different
slanting angles between two setup cameras. As
revealed in the experimental result s, our proposed
system gives a satisfactory reconstruction
performance for various scenes.  It is suitable to
serve as a stereo vision system equipped on an
autonomous robot.
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angle

Effective

block

Success

block

Failure

block

Success

percentage

Paralleled 154 141 13 91.5%

175 143 126 17 88.1%

170 132 115 17 87.1%

165 99 85 14 85.8%


