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However, to solve the illumination problem for 

face recognition, most of the existing methods 
either use extracted small-scale features and discard 
large-scale features, or perform normalization on 
the whole image. In the latter case, the small-scale 
features may be distorted, whereas in the former 
case, large-scale features of facial image are not 
utilized. Different from previous research, Xie et.al 
[7] proposed a new framework which uses not only 
invariant small-scale feature but also considers 
illumination normalized large-scale feature to 
reconstruct an illumination normalized facial image 
for face recognition. 

Abstract―In the paper, we focus on how to reconstruct 
the illumination normalized facial image which can be 
used to improve the face recognition. Here, we employ a 
framework to process large-scale and small-scale features 
image independently. In this frame work, first, we 
decompose the facial image into a large-scale feature 
image and a small-scale feature image. Second, once a 
facial image is decomposed into a large-scale feature 
image and a small-scale feature image, normalization is 
then mainly performed on the large-scale feature image. 
Then, a smooth operator is applied on the small-scale 
feature image. Finally, we combine the large- and small- 
scale feature images to generate an illumination 
normalized facial image. We test our method using Yale B 
& Extend Yale B database. The experimental result shows 
that image processed by our method not only has better 
visual quality, but also can be used to improve the 
performance of face recognition. 

Since most of the existing methods aim at either 
small-scale features or the whole facial image, it is 
hard to get good recognition performance and 
generate normalized facial image. In this paper, we 
focus on how to reconstruct the illumination 
normalized facial image, to improve recognition 
result and generate good visual quality.  

Index Terms― facial image illumination normalization, 
face recognition. 

I. INTRODUCTION 
Face recognition technologies have been widely 

applied in the areas of intelligent surveillance, 
identity authentication, human-computer 
interaction and digital amusement. However, there 
are many limitations in deploying the face 
recognition for practical use such as pose, view 
point and illumination variations. It has been 
observed that the influence of illumination 
variations for face verification is more significant 
than the other effect [1]. Most existing methods for 
face recognition such as PCA [2], ICA [3] LDA [5] 
based methods are sensitive to illumination 
variations [4]. Therefore, Illumination 
normalization is a major issue in the face 
recognition process. 

To reach our goal, we employ a framework to 
process large-scale and small-scale features image 
independently. In this frame work, first, we 
decompose the facial image into a large-scale 
feature image and a small-scale feature image. 
Second, once a facial image is decomposed into a 
large-scale feature image and a small-scale feature 
image, normalization is then mainly performed on 
the large-scale feature image. Then a smooth 
operator is applied on the small-scale feature image. 
Finally, we combine the large- and small- scale 
feature images to generate an illumination 
normalized facial image. 

 

There are many different illumination variations 
in the real facial images. If we can normalize the 
images to a uniform illumination, then we may 
increase the accuracy of face recognition. The 
illumination normalization has become a critical 
issue for facial image processing, and many 
well-known algorithms have been developed to 
take this problem. 

Fig.1. Framework of our method. 
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II. IMAGE DECOMPOSITION USING 
ADAPTIVE SMOOTHING 
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    (3) 
In this section, we describe the system 

overview and explain how we can decompose a 
facial image into small-scale feature and large-scale 
feature image. Based on the Lambertian model, a 
facial image I can be represented by 

It consists of four steps, namely facial image 
decomposition, smoothing on small-scale feature 
image (T2), illumination normalization on 
large-scale feature image (T1) and reconstruction 
of normalized images. 

    TI r n l R L= = ⊗i          (1) 

where r is the albedo of face, n is the surface 
normal of face, • is the dot product, l is the 
illumination and ⊗ is the pointwise product. R 
indicates the reflectance image and L represents the 
illumination image. Many proposed researches try 
to extract the reflectance image for face recognition. 
Unfortunately, estimating R from I is an ill-posed 
problem. To solve this problem, Chen et al. [6] 
proposed a practical methodology. R denotes as the 
albedo of large-scale skin areas and background. 
Then, based on Eq. (1), we have the following 

A. Algorithm Overview 

Doing illumination normalization, first we 
decompose a facial image into a small-scale image 
and a large-scale image as shown in Eq.(2). In this 
paper, we employ recently developed adaptive 
smoothing [8] for image decomposition. Adaptive 
smoothing is a weighted smoothing which is based 
on both iterative convolution and two discontinuity 
measures. Further more, we also employ some new 
concepts, which are designed to be suitable 
especially for facial image. One is the new 
conduction function for adaptive weighting, and the 
other is the smoothing constraint for more accurate 
description of real environments. Compared with  

the existing method, adaptive smoothing has the 
capabilities of edge-preserving and small-scale 
features extracting.     
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In this framework, the former term ρ(x, y) 
contains only the smaller intrinsic structure of a 
facial image, and the later term S(x, y) contains not 
only the extrinsic illumination and shadows casted 
by bigger objects, but also the large intrinsic facial 
structure. In this paper, we regard ρ(x, y) as the 
small-scale feature image and S(x, y) as the 
large-scale feature image.  

Fig.2. Image decomposition overview. Since, the influence of illumination variation on 
large-scale features of a facial image, it is essential 
to maintain illumination-invariant small-scale 
features during illumination normalization. From 
Eq.(2), we notice that an image can be decomposed 
into a small-scale feature image and a large-scale 
feature image. Therefore, we do illumination 
normalization on large-scale feature images; 
meanwhile keep the small-scale intrinsic facial 
features in ρ unchanged. The illumination 
normalization on large-scale feature image needs 
some necessary processing on ρ, which is 
independent of the one on S. From Eq(2), we 
propose a framework for illumination 
normalization described as follows: 

B. Illumination Estimation 

The key idea of adaptive smoothing is to 
convolve the input image iteratively using a 3 × 3 
averaging mask whose coefficients repersent the 
discontinuity level of the input image at each point. 
Since we estimate illumination L as a smoothed 
version of input image I, we set the initial value of 
the estimated illumination (i.e., ) be the 
same as I(x, y). Therefore, the estimated 
illumination is represented as  at the 
(t+1)th iteration which is given by 

(0) ( , )L x y
( 1) ( ,tL x+ )y

1 1
( 1) ( ) ( )

( )
1 1

1( , ) ( , ) ( , )t t t
t
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where 
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 represents normalizing factor. A conduction 
function g is a nonnegative monotonically 
decreasing function, i.e., g(0)=1 and 

 as  increase.  
represents the amount of discontinuity at each pixel 
(x, y). For more efficient setting of , we 
will combine two discontinuity measures[9]. 

( ) 0t → ( )t ( )t

( )t

( ( , ))g d x y ( , )d x y ( , )d x y

( , )w x y

C. Discontinuity Measures 

We use two measurements of discontinuities, 
spatial gradient and local in-homogeneity, to 
determine the level of discontinuity at each pixel. 

a) Spatial Gradient 

The spatial gradient is a common local 
discontinuity measure. Therefore, we define the 
spatial gradient of an image I(x, y) at pixel (x, y) as 
the first partial derivatives of its image intensity 
function with respect to x and y as. 

( , ) ( , )( , ) [ , ] [ , ]x y
I x y I x yI x y G G

x y
∂ ∂

∇ = =
∂ ∂

     (5) 

The magnitude of the gradient vector in (5),  

   2( , ) 2
x yI x y G G∇ = +           (6) 

b) Local In-homogeneity 

In addition to spatial gradient, Chen [9] proposed 
a method by using in-homogeneity as another 
measure of discontinuity. This measure is very 
efficient, however, it is very time consuming. 
Therefore, we employ another measure that is just 
the average of local intensity differences for each 
pixel (x, y) in the facial image. This measure is 
called local in-homogeneity, which provides us the 
level of uniformity for all the pixels in the small 
neighborhood of current pixel. If local 
in-homogeneity at pixel (x, y) is large, then we find 
the discontinuity occurring at pixel (x, y). The 
average of local intensity differences at pixel (x, y) 
is described by 

      ( , )
( , ) ( , )

( , ) m n
I x y I m n
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−

=
Ω

∑∑
   (7) 

where Ω is a convolution region, and (m, n) 
indicates the locations of the surrounding pixels. 

Then, we normalize the average τ(x, y) at each 
pixel as 

             min

max min

( , )ˆ( , ) x yx y τ ττ
τ τ

−
=

−
          (8) 

where τmax and τmin are the maximal and minimal 
values of τ across the entire facial image. We apply 
a nonlinear transformation to emphasize the higher 
values which are more likely corresponding to cast 
shadow as 

  ˆ( , ) sin( ( , )),0 ( , ) 1
2

x y x y x yπτ τ τ= ≤ ≤

( , ) ( ( , ), )

    (9) 

Although we calculated this measure of its 
nearest neighborhood only, the propagation effect 
of local in-homogeneity many continue by an 
iterative convolution. 

D. Conduction Function and Smoothing 
Constraint 

With two discontinuity measures, we define 
proper conduction function for our discontinuity 
measures. Hence, g is nonnegative monotonically 
decreasing function, because a large weight should 
be assigned to a pixel that involves low 
discontinuity. A nonnegative monotonically 
decreasing function g is employed to both spatial 
gradient and local in-homogeneity as follows. 

       x y g x y hα = τ           (10) 

       ( , ) ( ( , ) , )x y g I x y Sβ = ∇         (11) 

where h(0<h<1) and S(S>0) are used to determine 
the level of discontinuities which must be 
preserved. There are many possible selections of g. 
Chen [9] has proposed 

Hence, we employ a new form of g without edge 
sharpening effect as 

1( , )
1

g z K
z K

=
+

           (12) 

The values of S and h (in Eq. (10) and (11)) are 
ed termined experimentally. Here, we let S = 1 and 

h = 0.1 for facial image normalization. Now, we 
can determine the corresponding weights of the 
convolution mask ( ) ( , )tw x y  by using α and β as 

( ) ( , ) ( , ),tw x y x y tβ( , )x yα= ∀        (13) 

E. Algorithm 

e set input image as an illuminated Initialization: w
facial image I. 
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 Computation of the adaptive smoothing 
weight as ( , ) ( , ) ( , ),w x y x y x y tα β= ∀  

 Iteration rm iteuntil t=T rative, Perfo  
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(a) 

    
(b) 

    
(c) 

Fig.3. (a) th  original facial image from Yale B face 
database, (b) the large-s  feature images, (c) the 
small-scale feature imag
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cial structures which are illumination invariant. 
Therefore, different from most illumination 
normalization algorithm, we apply the 
illumination-normalization on the large-scale 
feature images. To remove the illumination effect in 
large-scale feature images, an effective illumination 
normalization processing is employed. 

A. Generalized Quotient image 

Each image contains intrinsic information as will 
as extrinsic information. In this section,
a representation of an input lar
image by separating the intrinsic p

trinsic one. Then, we can eliminate the extrinsic 
property which contains illumination-variation. 

1) Intrinsic and Extrinsic Factorization 

A typical Lambertian model can be factorized 
into two parts. A large-scale feature image can
decomposed into the intrinsic part, w
illumination invariant, and the extrinsic par

illumination variant, described as follow: 

       ( , )S x y F L= •               (14) 

where F donates the intrinsic part in large-scale 
feature image, and L is the extrinsic part in 
large- ture image. By separating the two 
factors, we can recover the extrinsic property. 

scale fea

cale
es. Fig. 4. General quotient image framework. 

2) Illumination Normalization 

T wo 
main (2) 

irst, the extrinsic 
ated and 

a 

III. ILLUMINATION NORMALIZATION ON 
LARGE SCALE he illumination normalization consists of t

 steps: (1) Illumination estimation Here, we describe how to eliminate the 
on effect on large-scale feature i
eralized Quotient image [10][1

Illumination effect subtraction. F
factor in large-scale feature image is estim

synthesized image is generated. The synthesized 
large-scale feature image has the same illumination 
and 3D shape as the input but different albedo. 
Then the illumination is normalized by taking the 
difference between the input and the synthesized 
images in the logarithms. Since the synthesized 
image has the same illumination and 3D shape with 

applied for extracting illumination invariant 
representation of the facial image.  

 Most the extrinsic illumination and shadows 
cast by bigger objects will appear in the large-scale 
feature image. However, the larg
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the original one, the normalized image is (logρ0 − 
logρ1), where ρ0 and ρ1 are input and synthesized 
images. 

B. Non-Point Light QI (NPL-QI) 

Here, we assume that all the modeled objects 
have the same 3D shape as the original QI. NPL-QI, 

 of QI from a 
 illumination 

co

luminated with a 
 light source without shadow. 

ages are always 
ill

extends the illumination estimation
single point light source to any type of

nditions, by taking the advantage of the linear 
relationship between spherical harmonic bases and 
PCA bases. Instead of explicitly estimating the 3D 
face shape, we replace the spherical harmonic bases 
with their linear transformed version, PCA bases. 
NPL-QI has the same invariant form, albedo ratio 
of two faces, as the original QI. 

1) Analysis 

The original QI method works only under the 
assumption of facial image il
single point
Nevertheless, the common facial im

uminated by non-point light sources in which 
shadow may exist unless the face is illuminated 
only by frontal lighting. According to [12~15] 
spherical harmonic representation, facial image I 
can be represented by 

      I H oρ= i              (15) 

where 1 2 3[ , ,H h h h= n,..., ]h  is the spher
harmonic bases and o is the harmonic light. Based 
on their research, the first 9 h

ical 

armonic bases can be 
used to describe the image of diffuse object, such 

an face. as hum

 

Fig. 5. The first nine harmonic images for a model 
of a face in [15]. 

 not suitable for general 
According to [13], there is a linear relationship 
be

Because these bases must be calculated with 
known 3D geometry, the application range of this 
representation is case. 

tween PCA eigenvectors and spherical harmonic 
bases as 

            U BT=                 (16) 

Where 1 2 3[ , , ,..., ]nU u u u u=  is the eigenvector 
matrix of a facial image under all illumination 
conditions, B represents 
ba
ca d to tr

the spherical harmonic 
ses, and T is n-by-n transformation matrix which 
n be use rmonic light o into l. 

Therefore, the Eq.15 can be described as 
ansform the ha

I B o U l= =i i             (17) 

where 1l T o−= . 

Since we have densely samp
in Yale B [16], we can obtain U, which is a well 

a -transferred spherical 
ic  from PCA 

w

led images, such as 

approxim
harmon . 

ted for linear
bases Replacing these bases

ith three images in QI, we have the NPL-QI as 

y i iy yi
y

a a i ii

h o I
Q

h o U l
ρρ

ρ ρ
= = =∑

∑
   

In some extremely illuminated facial images, 
there are obvious cast shadows. Therefore, th
9 eigenvectors can not carried over 
energy. Obviously, more eigenvectors are needed in 
th

nd M is the 
cial images under different lighting 

 global lighting space. 

i
      (18)    

e first 
95 % image 

e implementation of this algorithm.  

2) Algorithm 

A. Let D be an N-by-M matrix, where N is the 
number of pixels of facial image a
number of fa
condition.  

 We choose the facial images of the same 
person in Face database with the frontal pose 
but systemically sampled lighting conditions 
for building

B. Compress these images by Singular Value 
Decomposition (SVD), and let V = [v1, v2, ..., 
vk] be the first K eigenvectors of D. 

t Let D U V= Σ , find the first k eigenvector of 
D, therefore, Σ  becomes vΣ  

 Then we have t
vV U V= Σ  

C. Compute li in quotient image, then we have the 
quotient image Qi for each faci la  image Ii in the 

 li,. database by the ratio of Ii and V •

 Find li with the characteristic  

 ( ) mini i iF l I V l= − i         (19) 

 Compute Quotient-Image Qi by 

                                                                             5



   i
i

i

I
V l= i           

e can get the 
illumination normalized image. 

 Fin  facia  

Q         (20) 

D. With illumination invariant Qi, w

d a image Inorm in uniforml 
illumination as a target illumination. 

 Compute lnorm based on 
 F(lnorm)= min norm normI V l− i  

 Transfer all facial images into the same 
illumination condition as norml  by 

  syn i normli             (21) I QV=

 
(a) 

 
(b) 

Fig. 6. (a) the original large-scale feature image; (b) 
the normalized large scale feature image. 

IV. MIN-FILTERING  SMALL SCALE 

age 

T t 
part in facial i eature image, 

ale 

ill

linear spatial filtering 

age area encompassed by the 

 spots. To 

e filter kernel will 

 ON
FEATURE IMAGE 

A. Light Spot on Small Scale Feature Im

hough, we try to separate illumination-invarian
mage as small scale f

some light spots may appear in the small-sc
feature image ρ under some challenging 

umination condition. Because some influence 
caused by extreme illumination might falls on some 
small-scale feature of face such as the corner of eye, 
nose or mouse. Although these light spots might 
not have influence on the result of face recognition, 
it would have negative effect on the visual of the 
reconstructed image. Therefore, we have to do 
some special filtering on small-scale feature image, 
to reduce these light spots. 

B. Threshold Min-filtering on Small Scale 
Feature Image 

Minimum filter is a non
whose response is based on ordering the pixels 

contained in the im
filter, and replacing the value of the center pixel 
with the pixel determined by the ranking result. The 
best-known example in this category is the median 
filter, which replaces the value of a pixel by the 
median of the gray levels in the neighborhood of 
that pixel. They provide excellent noise-reduction 
capabilities, with considerably less blurring than 
linear smoothing filters of similar size.  

 Most noise in our small-scale feature image 
appears as light spots. Therefore, we choose 
minimum filter to eliminate these light
reduce the influence on whole small-scale feature 
image, we employ the threshold minimum-filtering 
on small-scale feature images.  

 Suppose (x, y) is the center point of our 
convolution region. Then, the threshold minimum 
filtering performs as follows. Th
convolute only if small-scale feature images ρ(x, y) 
≥θ , where θ is an empirical threshold. A 3× 3 mask 
is applied in our threshold minimum filtering. A 
small-scale feature image is convolved twice. Some 
examples of the filtering result is illustrated as 
follow. 

    
(a) 

    
(b) 

Fig.7. (a) Original small-scale feature images after 
image decomposition, (b) The small-scale feature 
images after applying m ring. 

, 
ge, 

which m

in-filte

C. Smoothing on Small-Scale feature images 

After applying min-filtering on small-scale facial 
images, most light spots are eliminated. However
there are still some noise on our facial ima

ight caused by some extreme illumination 
conditions. To improve visual quality distorted by 
noise, we do average filtering on small-scale 
feature image. The average filter can reduce noise, 
however; too many times of average filtering will 
blur the small-scale feature. Therefore, we apply 
the average filtering on small-scale feature image 
only once. So that we can reduce noise and keep 
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most small-scale feature at the same time. 

    
(a) 

     
(b) 

Fig. 8. (a) Small-scale feature image after 
min-filterin , (b) Small-scale featur  image aft
average filtering. 

scale feature image are obtain
tion facial 

lized facial 
im

g e er 

D. Reconstructing normalized image 

After a normalized large-scale feature image and 
the filtered small- ed, 
we can reconstruct a uniform-illumina
image. Similar to Eq. (3), the norma

age is finally reconstructed by combination of 
the normalized large-scale feature image Snorm and 
the filtered small-scale feature image ρfilt , as 
follow. 

( , ) ( , ) ( , )norm filt normI x y x y s x yρ=      (22) 

Using the illumination normalization result in 
previous section and the filtered small-scale feature 
image, we can reconstruct our final res
simple reconstruction results are shown in Fig. 9. 

 
(a) 

 
(b) 

(c) 
Fig.9. (a) The normalized large-scale feature 
images, (b) The filtered small-scale feature image, 
(c) The reconstruction result from large-sc le 

feature and small-scale f re image. 

 performing 
illuminati eature 
images outperform age; 
(2

s are evaluated by using 

s of 
base are captured under 
rom 9 different poses of 

vi

ult. Several 

eatu

V. EXPERIMENTAL RESULTS 

Here, some experiments are conducted to verify 
the following two assumptions: (1)

on normalization on large-scale f
s that on the whole facial im

) large-scale features discarded in other 
algorithms are also useful for face recognition and 
should not be ignored.  

 To evaluate the visual quality of the 
reconstructed images, the Yale B and Extend Yale 
B databases are selected in our experiment. The 
performances of algorithm
a SVD-Based projection face recognition [17]. 

A. Yale face B Database 

For evaluation our method, Yale B [16], Extend 
Yale B databases are selected. The facial image

 

each person in Yale B data
64 different illuminations f

ews. We select the frontal facial images in Yale B 
database for our experiments; therefore, there are 
640 images from Yale B. Subjects in Yale B 
database are shown in Fig.10. 

 
Fig. 10. Ten facial images in Yale B database. 

More than Yale B database, extended Yale B is 
also selected for evaluation. In the Extended Yale B
dat d 
under 64 illum
as

ethods. In our 
 

e 
fil

 
abase, there are 28 human subjects capture

inations which is the same condition 
 Yale B. In our experiment, only the frontal facial 

images from these two databases are selected. All 
images are resized to 150*150. 

B. Visual Quality of the Reconstructed Images 

In this section, we compare the results of our 
illumination normalization m

a

framework, illumination normalization is applied
only on the large-scale feature images, and som

tering is performed on small-scale features. 
Therefore, we can protect the most small-scale 
features from being distorted by illumination 
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normalization. To compare the visual quality 
between our method and other methods, we apply 
NPL-QI and LOG-DCT methods on the whole 
facial image and compare with the results of our 
method. We also show the visual result of our 
method and the result in [7]. 

Here, we show image decomposition results in 
details as shown in Fig.11. Our method preserves 
the intrinsic facial structures in small-scale feature 
images well, and most illumination variations are 
kept in large-scale feature images. Therefore, the 
illumination in large-scale feature images can be 
better estimated in our framework. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 11. (a) the original facial images, (b) the 
small-scale feature images, (c) the filtered
small-scale feature im , (d) the large-scale 
feature images, (e) th normalized large-scale 

 et 
al. proposed a m

 
ages
e 

feature images, (f) the reconstruct facial images. 

In Fig. 12, we show the image decomposition 
results, i.e., small-scale and large-scale feature 

images and the illumination normalization. Xie.
ethod using LTV model [7] to 

decompose facial image to small- and large- scale 
features image, and perform illumination 
normalization on large-scale feature images, and 
smoothing on small-scale feature images. Finally, a 
normalized large-scale feature image and a filtered 
small-scale feature image are used to reconstruct an 
illumination-normalized facial image. In [7], two 
methods are applied to do illumination 
normalization on large-scale feature image, one is 
LOG-DCT [18], and the other is NPL-QI. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

Fig. 12. Illustration of the corresponding processing 

lts, we also 
pe

ages by 

Method Recognition Rate (%) 

on large- and small- scale feature images (a) the 
original images, (b) the small-scale feature image ρ, 
(c) the filtered ρ, (d) the large-scale feature image S, 
(e) the S normalized by LOG-DCT, (f) the S 
normalized by NPL-QI., (g) the images normalized 
by RLS(LOG-DCT), (h) the images normalized by 
RLS(NPL-QI). 

Besides showing the visual resu
rform face recognition on normalized facial 

images, which also provide a measurement of the 
reconstructed facial image quality. We compare the 
performance of our method with the others by a 
SVD-Based projection face recognition algorithm 
[17]. In our experiment, Yale and extend Yale B 
face database is selected for face recognition. There 
are 38 different subjects and 64 illumination 
variations for each subject in Yale and extend Yale 
B face database. We choose 6 images which are 
under normal illumination condition as training set, 
and other images as testing set.  

Having tested the reconstructed facial im
using a SVD-Based projection face recognition 
algorithm [17], we may show that our algorithm 
can improve recognition result significantly. The 
recognition rate of other methods is shown in Table 
1, in which our method is called "AS(NPL-QI)”. 

Table 1. Comparison of different illumination 
normalization methods on “Yale B & Extend Yale 
B”. 

  Original 25.8 
HE 43.4 

NPL-QI 66.1 

As described in Table 1, the histogram 
equal  little impr nt for face 
re

estimation. However, too much 
sm

tures 
w

he illumination 
no

 use small-scale 
n and discard the 

lar

 [19] is reported for 
co

 used for face 
L  75.2 OG-DCT

A  84.3 S(NPL-QI)

ization makes oveme
cognition performance. Because it is only 

suitable for processing the entire image which is 
either too dark or too bright. However, in Yale B 
database, most facial images are dark in some parts 
of image. Obviously, histogram equalization is not 
a good solution to illumination variation. The 
spatial non-uniformity of illumination variation is 
not taken into consideration in histogram 
equalization. 

In NPL-QI, it is very important to obtain good 
illumination 

all-scale features on the facial image will make 
it hard to estimate illumination condition correctly. 
If we cannot estimate illumination correctly, the 
performance of illumination normalization will be 
limited. The result of recognition rate shows that 
there is something to be improved in NPL-QI. 

For LOG-DCT, thought recognition rate is 
significantly improved, the small-scale fea

hich are very important for face recognition will 
be distorted as low-frequency coefficient truncated. 
Distorting small-scale features will decrease the 
performance of face recognition. 

As shown in Table 1, our method preserves the 
small-scale features when t

rmalization is applied on the large-scale feature 
images only. Therefore, our method has better 
performance in face recognition. 

C. Using Large-Scale Features 

Most proposed methods only
features image for face recognitio

ge-scale features in facial image. Thought 
small-scale features are very important for face 
recognition, some larger intrinsic facial structures 
are also invariant to illumination may be contained 
in the large-scale features. In this experiment, we 
show that using large-scale features can improve 
the performance of face recognition, and they 
should not be discarded.  

To demonstrate the advantage of our framework, 
the adaptive smoothing

mparison. The setting of the experiments is the 
same as the one in previous section. For adaptive 
smoothing, the iteration number is set to be very 
small (10 in our experiments). The results of our 
experiment are tabulated in Table 2. 

In [19], adaptive smoothing is applied to obtain 
only small-scale features which are
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recognition. Our method performs the illumination 
normalization on both large- and smoothing on 
small- scale feature images. Finally a reconstructed 
image is obtained, which is used for face 
recognition. In Table 2, we show that our method 
gives higher recognition rates on “Yale B & Extend 
Yale B”. It means that the normalized large-scale 
features can help improving the performance of 
face recognition. 

    
Fig.13. Sm cale features images from adaptive all-s
smoothing. 

    

 

Fig.14. Rec struct facia ages fromon l im  (NPL-QI). 

Table 2. Comparisons between using & discarding
large-scale features on “Yale B & Extend Yale B”. 

Method Recognition Rate (%)
Adapt thing ive Smoo 74.8 

AS(NPL-QI) 84.3 

 

VI. CONCLUSIONS 

In this paper n algo
for illumination no age. 
Ra

fe
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