Multiprocessor Priority Scheduling Algorithm in
Real-time Systems

Kun-Shan Wu

Department of Computer Science and Engineering

Tatung University
Email: €9506012@ms.ttu.edu.tw

Liang-Teh Lee
Department of Computer Science and Engineering
Tatung University

Email: ltlee@ttu.edu.tw

Abstract— In recent years, multiprocessor systems are the scheduler needs to consider the states of all
used W|despread. However, in real-time systems many processors_ It becomes a Compncated and interac-

scheduling algorithms are developed based on single

processor systems, such as rate-monotonic (RM) schg-
ing algorithm and earliest deadline first (EDF) scleduling
algorithm. There are some different properties betwen

single processor systems and multiprocessor systems

Those scheduling algorithms designed for single peessor
systems are not suitable for applying to multiprocssor
systems. For the hard real-time system, it is mostnpor-
tant to keep all tasks to meet their deadlines. Ithe sys-
tem’s utilization is high, it is hard to approach his goal. In
this paper, we propose a scheduling algorithm, Muit
processor Priority (MPP) scheduling algorithm, for mul-
tiprocessor real-time systems. The scheduler assgrall
tasks and processors different priorities to preventhe
processor time's fragmentation. Moreover, it reseres
longer available processor time for the task that equires
longer execution time. This kind of scheduling streegy
could increase system’s schedulable rate when theoges-
sor’s load is heavy. The simulation results show #t the
proposed algorithm is efficient even when the systeload
is heavy.

Index Terms— scheduling algorithm, priority, multi-

processor system.

l. Introduction

tive problem. Furthermore, the scheduling algo-

rithm needs to consider that the number of proces-
sors might increase in the future.

Many scheduling algorithms are developed
based on single processor real-time systems. The
rate-monotonic (RM) scheduling algorithm and
earliest deadline first (EDF) scheduling algorithm
are used widespread in single processor real-time
systems. However, these algorithms may not be
suitable for multiprocessor real-time systems. Some
problems might come up when these algorithms are
used in multiprocessor real-time systems directly
[10].

Motivation

Multiprocessor real-time systems have many
characteristics different from single processor
real-time systems. It is not efficient to use sangl
processor scheduling algorithms directly in multi-
processor systems. The problems of applying these
algorithms in multiprocessor systems will be dis-
cussed later. Briefly, the scheduler for multipmce
sor system should guarantee all tasks be executed

Multiprocessor systems have been used widefjithout missing their deadlines. It should have

and rapidly in recent years. The scheduling stral§ood scheduling capability even the system has
gies have become a problem in multiprocesspeavy loading. Moreover, the scheduler of the mul-
real-time systems [2]. The duty of the scheduler fjrocessor real-time systems should consider the
to determine when to execute the tasks and exechignber of the processors might increase in a sys-
it in which processor without missing its deadlineem. To provide a scheduling algorithm that could

[9]. An important difference between the singlechedule tasks efficiently, multiprocessor priority

processor system and the multiprocessor systemséheduling algorithm is proposed and implemented
that the multiprocessor system owns several prag-this paper.

essors for scheduling. The scheduler needs to de: : .
termine when to execute the task, and execute th(—l‘n the rest of this paper, some essential back-

task in which processor. For scheduling the taS(";<round issues related to this paper will be disediss



in chapter 2. Chapter 3 introduces the algorithAeavy, the system will result in un-schedulable by

and the implementation of the proposed schedulin . . : . .
algorithm. Chapter 4 shows the experiments aﬁ%plymg RM scheduling algorithm. Figure 2.1 s an

results. Conclusions of this research will be pr&xample for the RM scheduling algorithm in the
sented in chapter 5. multiprocessor real-time system. The system con-

sists of two processors and there are three tasks
need to be executed. The total system loading is
2.1 Real-time scheduler 80%. However, at tick 10Y the task T3 will miss

Il. Background

The purpose of the original single-process&S deadline.
scheduling algorithm is to guarantee the tasks
without missing their deadline and increase the  T1(50.50,25) T2(50,50,25) T3(100,100,60)
utilization of the system. It is done by establighi [T ] T1
the promotion to a higher priority [3] for the peri o : : :
odic tasks, otherwise the task will miss its de@lli  p2 g : ; -
The RM and EDF scheduling algorithms are used T -

in the single processor real-time system widely. Inrz - ; - =T
T2

\J

the recent years, the multiprocessor systems are [ T2 |

\

2 5 7

P2
evolved rapidly. In the single processor system the : ° :

100

scheduler decides when the task should be executed, —x = = T

but in the multiprocessor system the schedulerri : ; =T
[ T2 | T2

2
5 0 5

ow

should decide not only when to execute the task butPz

100

also which processor to execute the task. Besides,
the multiprocessor scheduler should consider tp%ure 2.1: RM scheduler example
increasing of the number of processors dynamically.

We will discuss the problems of the RM and EDR-3 EDF scheduler
scheduling algorithms in the multiprocessor
real-time systems in the following sections.

The EDF scheduling algorithm [5] scheduled the
tasks based on the task’s earliest deadline. EDF
2.2 RM scheduler scheduler scheduled the tasks dynamically and it
was a preemptive scheduling algorithm. Unfortu-

The rate-monotonic (RM) was a fixed prioritynately, it is not straightforward in multiprocessor
algorithm where the tasks priorities are deterrdinereal-time systems. Figure 2.2 shows an illustrative

by the periods of tasks. The task with tight periog(ample. In the figure, the system consists of two

will get higher priority. The RM S(I:he'duler SChedi)rocessors and three tasks. The loading of the sys-
uled the tasks from the highest priority to the 40W[em is about 75%. Firstly, the T1 and T2 are sched-
est priority one by one. It works well in the Sie'gluled to be executed in P1 and P2 respectively.

processor real-time systems. However, in the mlWhen T1 finished at tick é% T3 is dispatched to

tiprocessor real-time systems, the RM scheduler#’,ﬁ At 58 tick T3 is preempted by T1, and athS
not efficient. Even the loading of the system i$ no ' ’



T3 is dispatched to P1 again. Finally, T3 missgs tthem on the N processors. During runtime, an ar-

deadline at tick 110 riving task will be queued in the Global Queue
(GQ). In this queue, aperiodic tasks have higher
”‘5"525) TZC‘;’)"'S"’zs’ 10070 o priority than periodic tasks and they are queued in
B — — — \| FIFO order. The High Priority Queues (HQ) is used
» ™ to queue promoted periodic tasks. With this scheme,
Iﬁ | ) ; all periodic tasks’ deadlines are guaranteed.
Figure 2.2: EDF scheduling algorithm in the multipessor P1
real-time systems HQ
o ) Promoted tasks HQ p2
2.4 Dual Priority Algorithm - GS
The dual priority [DP] algorithm [10, 15] was 03

designed for multiprocessor systems. It used a |Globalqueue
global scheduler to schedule tasks. The schedutere 2.4 Global scheduler of Dual Priority Algbr

separates the processor’s available time slice intg - _ _
The aperiodic tasks have good response time in

two phases, dynamic phase and static phase. In dﬁ" )
the DP scheduler. When the system load is heavy,

namic phase the periodic tasks get lower priotities _
. , o . the DP scheduler can achieve better performance
and in static phase the periodic tasks own higher )
o than an optimal local scheduler as the Slack Steal-
priorities. To guarantee the tasks would meet their _
. ) ing scheduler [14]. The DP scheduler can obtain the
deadlines, the scheduler sets the task to stasiseph, _
, ) ) , ) higher performance of the system with a small
at its promotion time. The promotion time was de-
number of processors. Nevertheless, the DP sched-

uler still has the fragmentation problem between
the processors and it only works well in the system

Promotion = deadline — worst case execution time .
with few processors [10].

fined as below.

Promotion time

lll. Design and Implementation of the
Proposed Scheduling Algorithm

Low Priority High Priority

3.1 Multiprocessor Priority Algorithm

In this chapter we will describe the proposed

Dynamic Phase ' Static Phase Multiprocessor Priority (MPP) scheduling algo-
rithm that is suitable for the multiprocessor sgste

The Multiprocessor Priority scheduling algorithm

is a static pre-runtime scheduling algorithm. The

The DP implemented a global scheduler (GS) tdPP has following characteristics: (1) it guarastee

select the first N tasks from the queue and exdcui@l tasks without missing their deadlines. (2) It

Figure 2.3 Periodic tasks allocation phases in Rrabrity

Algorithm



could schedule tasks on multiprocessor real-tiniene to complete. In this case, both of the
systems when the system has heavy loading. (3ydte-monotonic (RM) scheduling algorithm and
reserves the possibility and flexibility to assjft  earliest deadline first (EDF) scheduling algorithm
ferent priorities for the processors that havare non-schedulable. Task T3 will miss its deadline
different capabilities and properties. at tick 100th, since these two scheduling algorghm
) make processor’s available time slices become

The MPP scheduler for the multiprocessor

. . _ fragmentation.
real-time systems is based on the offline computa-

T1(50, 50, 25) priority 130

tion of periodic task's worst case execution time. 550,  bewin
By calculating the worst case execution time of the, —T il

high priority

tasks, the scheduler could guarantee the tasks to b,
executed without missing their deadlines. The MPP

low priority

scheduler defines each processor with its own prim — = - = }‘ _
ority. The processor’s priorities are defined ie th .. | | | .
order of the processor scheduling sequence. The

T1 T2 T1 T2 ]

[
MPP scheduler selects the task that has the highest
priority in the ready queue, and then searches the [ ] ] o

processor that could execute the task without miss- _ _
) ) ) . o Figure 3.1: Using MPP scheduler to schedule 3 tagkis
ing its deadline from the highest priority procasso o
o worst case execution time in 2 processors system
to the lowest priority processor.

high priority

low priority

3.2 Framework and Assumptions
The MPP scheduling algorithm schedules the P

tasks according to the processor’s priority. Itlwil Considering a multiprocessor real-time system
schedule the task to the highest priority procegsomwith N symmetrical processors and shared memory.
the task does not miss its deadline. In Figure 3Ryery processor P has a pre-assigned priority Pi.
there are three tasks scheduled in two processdki.tasks work independently and they can be pre-
Based on the MPP scheduling algorithm, the firempted at any time. Each task Ti has a period of
processor (P1) is assigned a high priority and teepire time Tei, deadline Tdi, and worst case exe-
second processor (P2) is assigned a low prioritution time Tci. Assumed to satisfy Tci <= Tei. The
Firstly, the MPP scheduler selects the highestrprigriorities of the tasks are assigned as Tpi. The
ity task (T1) to schedule. Because P1 has highwrerheads for context switching, task scheduling,
priority, the T1 will be dispatched to P1. Thenttbo task preemption, and migration are assumed to be
of P1 and P2 can execute T2 without missing i&ero.
deadline, but P1 has higher priority, the MPP .

N 3.3 Implementation
scheduler will dispatch T2 to P1. After T1 and T2
are scheduled, the time slices of P2 are stilllavai For evaluating the proposed MPP scheduler, a
able. It means that P2 still has capability to exec simulator with applications has been constructed.
the task, such as T3, that requires long executidhe simulator is written in C language and can be



compiled by gcc or other compiler. Figures 3.2 iBut its drawback is that the system’s availablestim
the flow diagram of the algorithm, respectively.  slices will become fragmentation in each processor
in the multiprocessor real-time systems. The MPP
3.3.1 Flow chart of MPP
scheduler does not select the processor that could

Figure 3.2 shows that the scheduler selects tbrecute the task earliest, but select the processor
highest priority task in the task queue firstly.ehh depends on the processor’s priority. Hence, the
the scheduler searches the available processor frpracessors that have higher priority usually execut
the highest priority processor, but not the firghore tasks; the processors that have lower priority
available processor. If the processor can guarantemially execute fewer tasks. This strategy makes
the task without missing its deadline, the task withe MPP scheduler to avoid the fragmentation of
be dispatched to this processor. If the highest-prdhe system time.
essor can’'t guarantee the task without missing its .

. . . IV. Experimental Results

deadline, the scheduler will test it to next preces
one by one until all processors are tested. Ifetli@r In this chapter, we evaluate the performance of
no processor that could guarantee the selected tdsk proposed scheduling algorithm and compare it
be executed without missing its deadline, it meamgth RM and EDF scheduling algorithms by simu-

that the system is un-schedulable. lation. The simulation data is generated randomly

based on the worst case execution time percentage.
The simulations include 4 tasks, 6 tasks, 8 tasks
and 12 tasks to be scheduled in 2 processors and 4
processors in this chapter.

Start scheduling

4.1 The notation of the simulation

The notations listed below are used to generate
the task’s worst case execution time for the simula

FEiEETEs R tion. All tasks will generate a random number and

calculate the worst case execution time of the task

ol e based on the task’s period. The required parameters

in the formula are the task number, the processor
number, the utilization of the system and the pkrio
Figure 3.2: MPP flow diagram of the task.

The traditional scheduling algorithms select
the processor depending on the processor’s avail-
able time. These scheduling algorithms select the
processor that could execute the task earliest and
guarantee the task without missing its deadline.
These strategies could have good response time.



v CASOFTWAREWCOS- lI\Hrynm\BCﬁ\OE]\TEST EXE

n : Total number of tasks T e b P Tack(?)
task @ SCHEDULABLE

Pn : Total number of processors e, an s CUEVLALE ek S CHEDULABLE

’ -1 . deadline_time = 188 task 3 SCHEDULABLE
Su :The system’s utilization WC_execue_time = 69 task 4 SCHEDULABLE
. . task 5 SCHEDULABLE
[ : The task i T30k 5 NONE SCUEDNLABLE
TEP : The expiration period of the task.
R : The random number (0-1)
WCE : The worst-case execution time of the task
WCEI = TEPI * R /E (TEPI * R) * TEPI * Pn * Su %Puk“umh;r :_ ;2 CPU utilization : 97(398.,488)

astnunberss <-PRESS ‘ESC’ TOQ QUIT->

isn

Figure 4.1 RM scheduler for 4 processors system
4.2 Simulation with RM, EDF, and MPP algo-

H e CASOFTWAREWCOS-II\BryantBC45\0BRTEST.EXE
rlthm
The RM scheduler schedules the task by the pr|  Stere BF scheduding Guerent tine 27

PUT task 2 to CPU = 2 time 33
PUT task 5 to CPU = @ time 34

ority based on the task's period. The EDF schedul PUT task 7 to CPU
PUT task ¢ to CPU
PUT task 5 to GPU

schedules the task based on the earliest deadli RUT task 7 <o CrU
PUT task ? to CPU

The MPP scheduler schedules the task based FooN COREDU LB BT LasE 5t Gy
£<<RH result>>> PUT task 8 to CPU 1 time 36
IOME S CHEDU LABLE] PUT task 9 to CPU 2 time 36

both the task’s priority and the processor's piori PUT taik 6 oo P01 tine 39
In the simulation for MPP scheduler, we give theqm—-
task's priorities the same as the RM scheduler. The
assumption is that all processors have the same fdgure 4.2 EDF scheduler for 4 processors system

pabilities, so the processors’ priorities are jdet EEEEEEEIEEENIEILS

3 time 34
1 time 34
2 time 34
A time 35
3 time 35
1 time 35
2 time 35
B time 36
3 time 36

GPU utilization : 97(398.460>
<{-PRESS 'ESC’ TO QUIT->

fined sequentially. Reeh sgmes tPesonsegTaskcit)
= = task @ SCHEDULABLE
ok PEats CNERb ScHEDULABLE  Cack § SCHEDULABLE
In the simulation, the MPP, RM, and EDF| jifsif: g
= = task 6 SCHEDULABLE
scheduling algorithms schedule the tasks with di Catk & SHEDLABLE
o . FIONE G EDULADLY Fatk 10 SOIEDULADLE
ferent system utilizations. When the system utilize cask 11 NONE SCHEDILABLE
tion is lower than 50%, almost all test cases a
H H GPU number = 4  CPU utilization : 97<398-4008>
schedulable by using these three algorithms. Whi as«'mumbex " 12 PRESS ESC" 10 QU1

e e 0
the system’s utilization is more than 90%, almo%‘igure 4.3 MPP scheduler for 4 processors system
all test cases are un-schedulable by using these

three algorithms. So in this simulation, the syssem?.3 Schedulable rate in various utilizations

utilizations are defined from 50% to 90%. Finally, To compare these scheduling algorithms, the

the comparisons of the efficiencies of these SCheéjc'heduler should keep all the tasks be executed
uling algarithms are made. Figures 4.1 to 4.3 Afithout missing their deadlines. Once any task
the test cases for RM, EDF and MPP scheduler fl?fsses its deadline, the simulation application wil

4 processors system. The test cases are simufate %Ige it as un-schedulable case. The experiment

a computer with Intel® Pentium® M 1.86 GHz, . \4es four simulation cases as following sec-
processor. The operation system of the simulati%ns

is uC/OS-II.



4.3.1 Simulation of 4 tasks in 2 processors

4.3.3 Simulation of 8 tasks in 4 processors

Test case A is the simulation to schedule 4 tasksTest case C is the simulation to schedule 8 tasks
in the system with 2 processors by using RM, EDH the system with 4 processors by using RM, EDF,
and MPP scheduling algorithms. The systema&and MPP scheduling algorithms. The system’s

utilizations are 50%, 60%, 70%, 80% and 90%.

2 Processor 4 Task

100
90
80
70
60
50
40
30
20
10

schedulable rate

\

50 60 70 80
utilization

Figure 4.4: Result of 4 tasks scheduled in 2 prsmsswith

50% to 90% system utilization

4.3.2 Simulation of 6 tasks in 2 processors

in the system with 2 processors by using RM, EDF, , ,
y P y g and MPP scheduling algorithms. The system’s

and MPP scheduling algorithms. The system’s
utilizations are 50%, 60%, 70%, 80% and 90%.

2 Processor 6 Task

100
90
80
70
60
50
40
30
20
10

schedulable rate

90

-

T

RM
EDF
MPP

\

50 60 70 80
utilization

Figure 4.5: Result of 6 tasks scheduled in 2 prsmsswith

50% to 90% system utilization

90

4 Processor 8 Task

100
90
80
70
60
50
40

30
20
10

schedulable rate

utilizations are 50%, 60%, 70%, 80% and 90%.

50 60 70 80
utilization

90

Figure 4.6: Result of 8 tasks scheduled in 4 prsmsswith

50% to 90% system utilization

4.3.4 Simulation of 12 tasks in 4 processors

Test case D is the simulation to schedule 12 tasks

Test case B is the simulation to schedule 6 tasks ) ,
in the system with 4 processors by using RM, EDF,

4 Processor 12 Task

100
90
80
70
60
50
40
30
20
10

schedulable rate

i

RM
EDF
MPP

utilizations are 50%, 60%, 70%, 80% and 90%.

L/

50 60 70 80
utilization

Figure 4.7: Result of 12 tasks scheduled in 4 mame with

50% to 90% system utilization

The values of the worst case execution time are
generated randomly for the experimental. It simu-
lates various distributions of the worst case execu
tion time in these algorithms. Moreover, the simu-



lation includes various numbers of processors and

—>¢—  2processor 4 task
RM

tasks to compare these algorithms in different en- 4 ST 2processor blask

—#A— 4 processor 8 task
100 P

Vl ron ments, 90 —— 4 processor 12 task
80

In Figures 4.4 to 4.7, the experiment shows tha 0
these scheduling algorithms could schedule thae ®
tasks well when the system’s utilization is 50% and 2
60% in the cases A, B, C and D. When the system’s ?
utilization increases to 70%, 80% and 90%, there i silzation
are some test cases become un-schedulable. The

Figure 4.8: Result of the efficiency of the RM sghling
RM scheduler’s schedulable rate decreased qwckly

ble rate

Y

algorithm
especially in 4 processors test cases C and D. When
the system’s utilization increases to 90%, the RM EDF —%—  2processor 4task
- . A —B8— 2 processor 6 task
scheduler is almost un-schedulable in all testxase 10 —a— 4 processor Btask

—6— 4 processor 12 task

Even using the EDF scheduler in cases A, B, C arid o
D, the schedulable rate is low when the system% o
utilization increases to 80% and 90%. For the MP%’ ig
scheduler, all the test cases are schedulable wherig
the system’s utilizations are 50% to 70%. Even the B

system’s utilization increases to 80% and 90%, the T e

MPP scheduler still has efficient scheduling capa-
bilit Figure 4.9: Result of the efficiency of the EDF edhling
ihty.

\J

algorithm
In the experiment, it shows the schedulable rates
of three schedulers in multiprocessor real-time sys MPP T Zprocessor

A —B8—  2processor 6 task

tem and the schedulable rate’s variation in difiere 100 —&— 4 processor 8task
90 —O©—  4processor 12 task
system’s utilizations. Generally, the MPP schedg so X
70

uler’s efficiency is better than EDF scheduler and e

2 50
RM scheduler; the EDF scheduler’s efficiency i$ 4
better than RM scheduler in the multiprocessor 0

. 10
real-time system.

ble?éte

50 60 70 80 90
utilization

Figure 4.10: Result of the efficiency of the MPmhextuling

algorithm

In Figures 4.8 to 4.10, when the system’s utiliza-
tion is 60%, there are some un-schedulable test
cases by using RM scheduler. There are two



un-schedulable test cases by using EDF schedutasks when the system’s loading is not heavy. It
But the first un-schedulable test case appears iygans that these processors are in the idle dtate a
using MPP scheduler when the system’s utilizaticall times. Figure 4.11 shows an example of the sys-
is 80%. tem with an idle processor. The system includes

L four processors to schedule seven tasks. After the

When the system’s utilization is increased to
system scheduled by MPP scheduler, the 4th proc-
90%, the RM scheduler almost becomes ,
i essor (P4) does not execute any task at all times.

un-schedulable in all test cases. The RM sched-
uler’s schedulable rate is only 10 % in the 2 proc- If the processors of the system have Dynamic
essors for 6 tasks test case; in all of the otbsr t\Voltage Scaling (DVS) capability, the system could
cases, the RM scheduler is un-schedulable at alicn off those processors that are in the idleestat
The EDF scheduler’s schedulable rates are fradoreover, the system designer could use fewer
0% to 40% when the system'’s utilization is 90%. firocessors in the system to reduce the system cost.
means that the EDF scheduler could not work wedly turning off the processors that are in the idle
when system has heavy loading in the multiprostate or reducing the number of the processors, the
essor real-time system. The MPP schedulep®wer consumption of the system is reduced.
schedulable rates are from 30% to 80% when the
system’s utilization is 90%. The experimental resul
shows that when the system’s utilization increaseg %]
to 90%, the MPP scheduler is un-schedulable in |
some test cases. But the MPP scheduler is still -
more efficient than RM scheduler and EDF sched#
uler in the multiprocessor real-time system when

the system has heavy loading. Figure 4.11: Example for power saving

[t Je e ][a]e]B]

100,100,35)
100,100,35)
100,100,60)

T
T2(!
T3(!
T4(50,50,15)
T5(
T6(
T7(

125

After the un-schedulable case appears, the slopd Summary
of the un-schedulable rate in the Figures 4.8, 4.9

, In this chapter, the experiments show the results
and 4.10 is RM > EDF > MPP. It means that when _ _ _
.. In multiprocessor real-time systems by using MPP,
the un-schedulable test case appears, the efficienc _ ] )
, , RM, and EDF scheduling algorithms. The experi-
became worse quickly by using RM and EDF _ ) _ L
. , ment was simulated with various cases with differ-
scheduling algorithm.

ent system loading and system with different num-
4.3.5 Power saving ber of processors. To meet the general cases, the

, worst case execution times of the tasks are gener-
In the experiments, the MPP scheduler always

ated randomly. Generally, the MPP scheduler gets a
dispatches the tasks to the higher priority promes Y y g

S
) i , better scheduling efficiency in the multiprocessor
firstly. This strategy causes that the higher psece _ g. ) y ) P
, real-time system in all simulation cases. When the
sors execute the tasks firstly. Hence, the proessso .
system’s loading is heavy, the schedulable rate of

with lower priorities might not need to execute anK/IPP scheduler is still acceptable. Moreover, the



MPP scheduler gets a higher possibility to save tfragmentation can be decreased further.

power consumption of the system in general cases.
In the future, the processors of a system may

V. Conclusions have different capabilities. The strategy to define

. . _the priorities of the processors for the system and
In this paper, we propose an efficient schedulln% i
, _ , the strategy to improve the system performance by
algorithm for multiprocessor real-time systems. ) _ _
) applying the proposed algorithm are subjects need
The experimental results show that the schedulable _
, , ) to be further studied.
rates of MPP scheduler in all simulation cases are

better than RM and EDF schedulers. REFERENCE

. A. B A. Welli Real Ti t
Furthermore, when the system is schedulable, tHé and %rr%zsarlrgming i;ggﬁ'agees 3r|anEdSys ems,

MPP scheduler prevents the system available time http://www.cs.york.ac.uk/rts/books/RTSBookT

: . hirdEdition.html
slice from fragmentation. It means that once a task , )
(2] A. Burns, "Scheduling Hard Real-Time Sys-

scheduler gets a better probability to schedule thi 3. pp 116-128, Journal, 1991
task. (3] B. Anderson, S. Baruah, and J. Jonsson,
"Static-Priority Scheduling on Multiproces-
In addition, the MPP scheduler keeps the flexi- Bgrsjrl_i%f]goggalmme Systems Symposium,

bility for the multiprocessor real-time systemthg 141 B. Sprunt, L. Sha, and J. P. Lehoczky, "Aperi-

processors of a system have different capabilities odic Task Scheduling for Hard Real-Time Sys-

and characteristics, the MPP scheduler will asaign Lepm;b_g(ia}]lhﬂgnigzgstems Journal, Volume 1,

suitable priority to each processor. Hence, tasks ¢, j. Gossens, S. Funk, and S. Baruah, "EDF

be scheduled with some strategies as the user’s de- scheduling on Multiprocessor platforms: some
(perhaps)  counterintuitive  observations,"

sign by defining the processors’ priorities of the Real-Time Computing Systems and Applica-
system. tions, pp. 321-330, 2002

6 J. M. Banus, A. Arenas, and J. Labarta, "An

In this paper, the experiment assumes that the Efficient Scheme to Allocate Soft-Aperiodic
capabilities of the processors are all the santban Iearfllés" 'npgﬂrgﬁgrogﬁzso[r)iglt?irgutzgalgr'gncisiﬁé
system. Hence, the priorities of the processor are Techniques and Applications, Volume 2, pp.

predefined statically. In the simulation, some test 809-815, 2002

. . 71 J. P. Lehoczky, L. Sha, and Y. Ding, "The
cases of the MPP scheduling algorithm aré Rate-Monotonic Scheduling Algorithm: Exact

un-schedulable with the predefined processor prior- Characterization and Average Case Behavior,"

ity. If the MPP scheduler could change the proces- ;Lorgeggl.n%&c_)fl?Rle ai—gérge Systems Sympo-

sor’'s priority dynamically then the system mighty; j p. Lehoczky and S. Ramos-Thuel, “An Op-

become schedulable. The scheduler changes the timal Algorithm for Scheduling Soft-Aperiodic
Tasks in Fixed Priority Preemptive Systems,”

processor’s priority based on the processor’s load- Rea|Time Systems Symposium, Volume 2, Is-
ing, the heavier loading the higher priority.  sue 4, pp. 110-123, December 1992

Through this method, tasks will be more concen-
trated in high priority processors and the system’s



(9]

K. Ramamritham, J. A. Stankovic, and W.
Zhao, "Distributed Scheduling of Tasks with
Deadlines and Resource Requirements,” IEEE
Transactions on Computers, Volume 38, pp.
1110-1123, August 1989

M. Banus Josep, Alex Arenas, and Labarta
Jesus, “Dual Priority Algorithm to Schedule
Real-Time Tasks in a Shared Memory Multi-
processor,” IEEE Computer Society Washing-
ton, DC, pp. 2-12, USA, 2003

M. Joseph and P. Pandya, "Finding Response
Times in a Real-Time System," British Com-
puter Society Computer Journal, Cambridge
University, Volume 29, Issue 5, pp. 390-395,
1986

M. L. Dertouzos and A. K. Mok, "Multiproc-
essor On-Line Scheduling of Hard-Real-Time
Tasks", IEEE Transactions on Software Engi-
neering, Volume 15, pp. 1497-1506, 1989

[14]

[15]

[13] M. R. Garey and D. S. Johnson, "Complexity

Results for Multiprocessor Scheduling under
Resource Constraints," SIAM Journal on
Computing, Volume 4, Issue 4, pp. 397-411,
1975

P. Lehoczky John and R. Thuel Sandra,
"Scheduling Periodic and Aperiodic Tasks
using the Slack Stealing Algorithm,” Pren-
tice-Hall, Chapter 8, pp. 175-197, 1994

R. Davis and A. Wellings, "Dual Priority
Scheduling”, 16th Real-Time Systems Sympo-
sium, pp.100, 1995

(16 HC/OS-Il, The Real-Time Kernel

http://www.micrium.com/products/rtos/kernel/rtosuht




