

Multiprocessor Priority Scheduling Algorithm in

Real-time Systems

Kun-Shan Wu
Department of Computer Science and Engineering

Tatung University
Email: e9506012@ms.ttu.edu.tw

Liang-Teh Lee
Department of Computer Science and Engineering

Tatung University

 Email: ltlee@ttu.edu.tw

Abstract― In recent years, multiprocessor systems are
used widespread. However, in real-time systems many
scheduling algorithms are developed based on single
processor systems, such as rate-monotonic (RM) schedul-
ing algorithm and earliest deadline first (EDF) scheduling
algorithm. There are some different properties between
single processor systems and multiprocessor systems.
Those scheduling algorithms designed for single processor
systems are not suitable for applying to multiprocessor
systems. For the hard real-time system, it is most impor-
tant to keep all tasks to meet their deadlines. If the sys-
tem’s utilization is high, it is hard to approach this goal. In
this paper, we propose a scheduling algorithm, Multi-
processor Priority (MPP) scheduling algorithm, for mul-
tiprocessor real-time systems. The scheduler assigns all
tasks and processors different priorities to prevent the
processor time’s fragmentation. Moreover, it reserves
longer available processor time for the task that requires
longer execution time. This kind of scheduling strategy
could increase system’s schedulable rate when the proces-
sor’s load is heavy. The simulation results show that the
proposed algorithm is efficient even when the system load
is heavy.

Index Terms― scheduling algorithm, priority, multi-

processor system.

I. Introduction
Multiprocessor systems have been used widely

and rapidly in recent years. The scheduling strate-
gies have become a problem in multiprocessor
real-time systems [2]. The duty of the scheduler is
to determine when to execute the tasks and execute
it in which processor without missing its deadline
[9]. An important difference between the single
processor system and the multiprocessor system is
that the multiprocessor system owns several proc-
essors for scheduling. The scheduler needs to de-
termine when to execute the task, and execute the
task in which processor. For scheduling the task,

the scheduler needs to consider the states of all
processors. It becomes a complicated and interac-
tive problem. Furthermore, the scheduling algo-
rithm needs to consider that the number of proces-
sors might increase in the future.

Many scheduling algorithms are developed
based on single processor real-time systems. The
rate-monotonic (RM) scheduling algorithm and
earliest deadline first (EDF) scheduling algorithm
are used widespread in single processor real-time
systems. However, these algorithms may not be
suitable for multiprocessor real-time systems. Some
problems might come up when these algorithms are
used in multiprocessor real-time systems directly
[10].

Motivation

Multiprocessor real-time systems have many
characteristics different from single processor
real-time systems. It is not efficient to use single
processor scheduling algorithms directly in multi-
processor systems. The problems of applying these
algorithms in multiprocessor systems will be dis-
cussed later. Briefly, the scheduler for multiproces-
sor system should guarantee all tasks be executed
without missing their deadlines. It should have
good scheduling capability even the system has
heavy loading. Moreover, the scheduler of the mul-
tiprocessor real-time systems should consider the
number of the processors might increase in a sys-
tem. To provide a scheduling algorithm that could
schedule tasks efficiently, multiprocessor priority
scheduling algorithm is proposed and implemented
in this paper.

In the rest of this paper, some essential back-
ground issues related to this paper will be discussed

in chapter 2. Chapter 3 introduces the algorithm
and the implementation of the proposed scheduling
algorithm. Chapter 4 shows the experiments and
results. Conclusions of this research will be pre-
sented in chapter 5.

II. Background

2.1 Real-time scheduler

The purpose of the original single-processor

scheduling algorithm is to guarantee the tasks

without missing their deadline and increase the

utilization of the system. It is done by establishing

the promotion to a higher priority [3] for the peri-

odic tasks, otherwise the task will miss its deadline.

The RM and EDF scheduling algorithms are used

in the single processor real-time system widely. In

the recent years, the multiprocessor systems are

evolved rapidly. In the single processor system the

scheduler decides when the task should be executed,

but in the multiprocessor system the scheduler

should decide not only when to execute the task but

also which processor to execute the task. Besides,

the multiprocessor scheduler should consider the

increasing of the number of processors dynamically.

We will discuss the problems of the RM and EDF

scheduling algorithms in the multiprocessor

real-time systems in the following sections.

2.2 RM scheduler

The rate-monotonic (RM) was a fixed priority

algorithm where the task’s priorities are determined

by the periods of tasks. The task with tight period

will get higher priority. The RM scheduler sched-

uled the tasks from the highest priority to the low-

est priority one by one. It works well in the single

processor real-time systems. However, in the mul-

tiprocessor real-time systems, the RM scheduler is

not efficient. Even the loading of the system is not

heavy, the system will result in un-schedulable by

applying RM scheduling algorithm. Figure 2.1 is an

example for the RM scheduling algorithm in the

multiprocessor real-time system. The system con-

sists of two processors and there are three tasks

need to be executed. The total system loading is

80%. However, at tick 100th, the task T3 will miss

its deadline.

T1 T1

T2

2
5

5
0

7
5

100

T1(50,50,25) T2(50,50,25) T3(100,100,60)

2
5

5
0

7
5 100

T1 T1

2
5

5
0

7
5

100

2
5

5
0

7
5

100

P1

P2

P1

P2

T2

T2

T1 T1

2
5

5
0

7
5

100

2
5

5
0

7
5

100

P1

P2

T2

T3 T3

Figure 2.1: RM scheduler example

2.3 EDF scheduler

The EDF scheduling algorithm [5] scheduled the

tasks based on the task’s earliest deadline. EDF

scheduler scheduled the tasks dynamically and it

was a preemptive scheduling algorithm. Unfortu-

nately, it is not straightforward in multiprocessor

real-time systems. Figure 2.2 shows an illustrative

example. In the figure, the system consists of two

processors and three tasks. The loading of the sys-

tem is about 75%. Firstly, the T1 and T2 are sched-

uled to be executed in P1 and P2 respectively.

When T1 finished at tick 25th, T3 is dispatched to

P1. At 50th tick, T3 is preempted by T1, and at 75th,

T3 is dispatched to P1 again. Finally, T3 misses its

deadline at tick 110th.

25 50 75 100 125

25 50 75 100 125

T3T1

T2

T1 T3

T2

1 2 3

T1(50,50,25) T2(50,50,25) T3(110,110,70)

P1

P2

Figure 2.2: EDF scheduling algorithm in the multiprocessor

real-time systems

2.4 Dual Priority Algorithm

The dual priority [DP] algorithm [10, 15] was

designed for multiprocessor systems. It used a

global scheduler to schedule tasks. The scheduler

separates the processor’s available time slice into

two phases, dynamic phase and static phase. In dy-

namic phase the periodic tasks get lower priorities,

and in static phase the periodic tasks own higher

priorities. To guarantee the tasks would meet their

deadlines, the scheduler sets the task to static phase

at its promotion time. The promotion time was de-

fined as below.

Promotion = deadline – worst case execution time

Promotion time

Dynamic Phase Static Phase

Low Priority High Priority

Figure 2.3 Periodic tasks allocation phases in Dual Priority

Algorithm

The DP implemented a global scheduler (GS) to

select the first N tasks from the queue and executed

them on the N processors. During runtime, an ar-

riving task will be queued in the Global Queue

(GQ). In this queue, aperiodic tasks have higher

priority than periodic tasks and they are queued in

FIFO order. The High Priority Queues (HQ) is used

to queue promoted periodic tasks. With this scheme,

all periodic tasks’ deadlines are guaranteed.

Global queue

HQ

HQ

HQ
GS

P1

p2

p3

Promoted tasks

Figure 2.4 Global scheduler of Dual Priority Algorithm

The aperiodic tasks have good response time in

the DP scheduler. When the system load is heavy,

the DP scheduler can achieve better performance

than an optimal local scheduler as the Slack Steal-

ing scheduler [14]. The DP scheduler can obtain the

higher performance of the system with a small

number of processors. Nevertheless, the DP sched-

uler still has the fragmentation problem between

the processors and it only works well in the system

with few processors [10].

III. Design and Implementation of the
Proposed Scheduling Algorithm

3.1 Multiprocessor Priority Algorithm

In this chapter we will describe the proposed

Multiprocessor Priority (MPP) scheduling algo-

rithm that is suitable for the multiprocessor systems.

The Multiprocessor Priority scheduling algorithm

is a static pre-runtime scheduling algorithm. The

MPP has following characteristics: (1) it guarantees

all tasks without missing their deadlines. (2) It

could schedule tasks on multiprocessor real-time

systems when the system has heavy loading. (3) It

reserves the possibility and flexibility to assign dif-

ferent priorities for the processors that have

different capabilities and properties.

The MPP scheduler for the multiprocessor

real-time systems is based on the offline computa-

tion of periodic task’s worst case execution time.

By calculating the worst case execution time of the

tasks, the scheduler could guarantee the tasks to be

executed without missing their deadlines. The MPP

scheduler defines each processor with its own pri-

ority. The processor’s priorities are defined in the

order of the processor scheduling sequence. The

MPP scheduler selects the task that has the highest

priority in the ready queue, and then searches the

processor that could execute the task without miss-

ing its deadline from the highest priority processor

to the lowest priority processor.

The MPP scheduling algorithm schedules the

tasks according to the processor’s priority. It will

schedule the task to the highest priority processor if

the task does not miss its deadline. In Figure 3.1,

there are three tasks scheduled in two processors.

Based on the MPP scheduling algorithm, the first

processor (P1) is assigned a high priority and the

second processor (P2) is assigned a low priority.

Firstly, the MPP scheduler selects the highest prior-

ity task (T1) to schedule. Because P1 has higher

priority, the T1 will be dispatched to P1. Then, both

of P1 and P2 can execute T2 without missing its

deadline, but P1 has higher priority, the MPP

scheduler will dispatch T2 to P1. After T1 and T2

are scheduled, the time slices of P2 are still avail-

able. It means that P2 still has capability to execute

the task, such as T3, that requires long execution

time to complete. In this case, both of the

rate-monotonic (RM) scheduling algorithm and

earliest deadline first (EDF) scheduling algorithm

are non-schedulable. Task T3 will miss its deadline

at tick 100th, since these two scheduling algorithms

make processor’s available time slices become

fragmentation.

T1

25 50 75 100

25 50 75 100

T1

T3

T1(50, 50, 25) priority 130
T2(50, 50, 25) priority 120
T3(100, 100, 60) priority 110

T2T1

25 50 75 100

25 50 75 100

T1 T2

T2T1

25 50 75 100

25 50 75 100

T1 T2

high priority

low priority

high priority

low priority

high priority

low priority

P1

P2

P1

P2

P1

P2

Figure 3.1: Using MPP scheduler to schedule 3 tasks with

worst case execution time in 2 processors system

3.2 Framework and Assumptions

Considering a multiprocessor real-time system

with N symmetrical processors and shared memory.

Every processor P has a pre-assigned priority Pi.

All tasks work independently and they can be pre-

empted at any time. Each task Ti has a period of

expire time Tei, deadline Tdi, and worst case exe-

cution time Tci. Assumed to satisfy Tci <= Tei. The

priorities of the tasks are assigned as Tpi. The

overheads for context switching, task scheduling,

task preemption, and migration are assumed to be

zero.

3.3 Implementation

For evaluating the proposed MPP scheduler, a

simulator with applications has been constructed.

The simulator is written in C language and can be

compiled by gcc or other compiler. Figures 3.2 is

the flow diagram of the algorithm, respectively.

3.3.1 Flow chart of MPP

Figure 3.2 shows that the scheduler selects the

highest priority task in the task queue firstly. Then

the scheduler searches the available processor from

the highest priority processor, but not the first

available processor. If the processor can guarantee

the task without missing its deadline, the task will

be dispatched to this processor. If the highest proc-

essor can’t guarantee the task without missing its

deadline, the scheduler will test it to next processor

one by one until all processors are tested. If there is

no processor that could guarantee the selected task

be executed without missing its deadline, it means

that the system is un-schedulable.

Start scheduling

Get task from queue

Get available time
slice

yes
yes no

mark the processor 's
time slice as “in use”

yes

schedulable

no

Schedule from high
priority processor n

unschedulable

no

Figure 3.2: MPP flow diagram

The traditional scheduling algorithms select

the processor depending on the processor’s avail-

able time. These scheduling algorithms select the

processor that could execute the task earliest and

guarantee the task without missing its deadline.

These strategies could have good response time.

But its drawback is that the system’s available time

slices will become fragmentation in each processor

in the multiprocessor real-time systems. The MPP

scheduler does not select the processor that could

execute the task earliest, but select the processor

depends on the processor’s priority. Hence, the

processors that have higher priority usually execute

more tasks; the processors that have lower priority

usually execute fewer tasks. This strategy makes

the MPP scheduler to avoid the fragmentation of

the system time.

IV. Experimental Results

In this chapter, we evaluate the performance of

the proposed scheduling algorithm and compare it

with RM and EDF scheduling algorithms by simu-

lation. The simulation data is generated randomly

based on the worst case execution time percentage.

The simulations include 4 tasks, 6 tasks, 8 tasks

and 12 tasks to be scheduled in 2 processors and 4

processors in this chapter.

4.1 The notation of the simulation

The notations listed below are used to generate

the task’s worst case execution time for the simula-

tion. All tasks will generate a random number and

calculate the worst case execution time of the task

based on the task’s period. The required parameters

in the formula are the task number, the processor

number, the utilization of the system and the period

of the task.

n : Total number of tasks
Pn : Total number of processors
Su : The system’s utilization
i : The task i
TEP : The expiration period of the task.
R : The random number (0-1)
WCE : The worst-case execution time of the task

WCEi = TEPi * R / Σ (TEPi * R) * TEPi * Pn * Su

4.2 Simulation with RM, EDF, and MPP algo-

rithm

The RM scheduler schedules the task by the pri-

ority based on the task's period. The EDF scheduler

schedules the task based on the earliest deadline.

The MPP scheduler schedules the task based on

both the task’s priority and the processor's priority.

In the simulation for MPP scheduler, we give the

task's priorities the same as the RM scheduler. The

assumption is that all processors have the same ca-

pabilities, so the processors’ priorities are just de-

fined sequentially.

In the simulation, the MPP, RM, and EDF

scheduling algorithms schedule the tasks with dif-

ferent system utilizations. When the system utiliza-

tion is lower than 50%, almost all test cases are

schedulable by using these three algorithms. When

the system’s utilization is more than 90%, almost

all test cases are un-schedulable by using these

three algorithms. So in this simulation, the system’s

utilizations are defined from 50% to 90%. Finally,

the comparisons of the efficiencies of these sched-

uling algorithms are made. Figures 4.1 to 4.3 are

the test cases for RM, EDF and MPP scheduler for

4 processors system. The test cases are simulated in

a computer with Intel® Pentium® M 1.86 GHz

processor. The operation system of the simulation

is µC/OS-II.

Figure 4.1 RM scheduler for 4 processors system

Figure 4.2 EDF scheduler for 4 processors system

Figure 4.3 MPP scheduler for 4 processors system

4.3 Schedulable rate in various utilizations

To compare these scheduling algorithms, the

scheduler should keep all the tasks be executed

without missing their deadlines. Once any task

misses its deadline, the simulation application will

judge it as un-schedulable case. The experiment

includes four simulation cases as following sec-

tions.

4.3.1 Simulation of 4 tasks in 2 processors

Test case A is the simulation to schedule 4 tasks

in the system with 2 processors by using RM, EDF,

and MPP scheduling algorithms. The system’s

utilizations are 50%, 60%, 70%, 80% and 90%.

10

20

30

40

50

60

70

80
90

100

sc
he

d
ul

a
bl

e
ra

te

utilization
50 60 70 80 90

2 Processor 4 Task
RM

EDF

MPP

Figure 4.4: Result of 4 tasks scheduled in 2 processors with

50% to 90% system utilization

4.3.2 Simulation of 6 tasks in 2 processors

Test case B is the simulation to schedule 6 tasks

in the system with 2 processors by using RM, EDF,

and MPP scheduling algorithms. The system’s

utilizations are 50%, 60%, 70%, 80% and 90%.

10

20

30

40

50

60

70

80
90

100

sc
he

d
ul

a
bl

e
ra

te

utilization
50 60 70 80 90

2 Processor 6 Task
RM

EDF

MPP

Figure 4.5: Result of 6 tasks scheduled in 2 processors with

50% to 90% system utilization

4.3.3 Simulation of 8 tasks in 4 processors

Test case C is the simulation to schedule 8 tasks

in the system with 4 processors by using RM, EDF,

and MPP scheduling algorithms. The system’s

utilizations are 50%, 60%, 70%, 80% and 90%.

10

20

30

40

50

60

70

80
90

100

sc
he

d
ul

a
bl

e
ra

te

50 60 70 80 90

4 Processor 8 Task
RM

EDF

MPP

utilization
Figure 4.6: Result of 8 tasks scheduled in 4 processors with

50% to 90% system utilization

4.3.4 Simulation of 12 tasks in 4 processors

Test case D is the simulation to schedule 12 tasks

in the system with 4 processors by using RM, EDF,

and MPP scheduling algorithms. The system’s

utilizations are 50%, 60%, 70%, 80% and 90%.

10

20

30

40

50

60

70

80
90

100

sc
he

d
ul

a
bl

e
ra

te

50 60 70 80 90

4 Processor 12 Task
RM

EDF

MPP

utilization
Figure 4.7: Result of 12 tasks scheduled in 4 processors with

50% to 90% system utilization

The values of the worst case execution time are

generated randomly for the experimental. It simu-

lates various distributions of the worst case execu-

tion time in these algorithms. Moreover, the simu-

lation includes various numbers of processors and

tasks to compare these algorithms in different en-

vironments.

In Figures 4.4 to 4.7, the experiment shows that

these scheduling algorithms could schedule the

tasks well when the system’s utilization is 50% and

60% in the cases A, B, C and D. When the system’s

utilization increases to 70%, 80% and 90%, there

are some test cases become un-schedulable. The

RM scheduler’s schedulable rate decreased quickly

especially in 4 processors test cases C and D. When

the system’s utilization increases to 90%, the RM

scheduler is almost un-schedulable in all test cases.

Even using the EDF scheduler in cases A, B, C and

D, the schedulable rate is low when the system’s

utilization increases to 80% and 90%. For the MPP

scheduler, all the test cases are schedulable when

the system’s utilizations are 50% to 70%. Even the

system’s utilization increases to 80% and 90%, the

MPP scheduler still has efficient scheduling capa-

bility.

In the experiment, it shows the schedulable rates

of three schedulers in multiprocessor real-time sys-

tem and the schedulable rate’s variation in different

system’s utilizations. Generally, the MPP sched-

uler’s efficiency is better than EDF scheduler and

RM scheduler; the EDF scheduler’s efficiency is

better than RM scheduler in the multiprocessor

real-time system.

10

20

30
40

50

60

70

80

90

100

sc
h

ed
u

la
b

le
 r

a
te

utilization

50 60 70 80 90

RM
2 processor 4 task

2 processor 6 task

4 processor 8 task

 4 processor 12 task

Figure 4.8: Result of the efficiency of the RM scheduling

algorithm

10
20

30
40

50

60

70

80

90

100

sc
he

du
la

bl
e

 r
at

e

utilization

50 60 70 80 90

EDF 2 processor 4 task

2 processor 6 task

4 processor 8 task

 4 processor 12 task

Figure 4.9: Result of the efficiency of the EDF scheduling

algorithm

10
20

30

40

50

60

70

80

90

100

sc
he

du
la

bl
e

 r
at

e

utilization

50 60 70 80 90

MPP 2 processor 4 task

2 processor 6 task

4 processor 8 task

 4 processor 12 task

Figure 4.10: Result of the efficiency of the MPP scheduling

algorithm

In Figures 4.8 to 4.10, when the system’s utiliza-

tion is 60%, there are some un-schedulable test

cases by using RM scheduler. There are two

un-schedulable test cases by using EDF scheduler.

But the first un-schedulable test case appears by

using MPP scheduler when the system’s utilization

is 80%.

When the system’s utilization is increased to

90%, the RM scheduler almost becomes

un-schedulable in all test cases. The RM sched-

uler’s schedulable rate is only 10 % in the 2 proc-

essors for 6 tasks test case; in all of the other test

cases, the RM scheduler is un-schedulable at all.

The EDF scheduler’s schedulable rates are from

0% to 40% when the system’s utilization is 90%. It

means that the EDF scheduler could not work well

when system has heavy loading in the multiproc-

essor real-time system. The MPP scheduler’s

schedulable rates are from 30% to 80% when the

system’s utilization is 90%. The experimental result

shows that when the system’s utilization increases

to 90%, the MPP scheduler is un-schedulable in

some test cases. But the MPP scheduler is still

more efficient than RM scheduler and EDF sched-

uler in the multiprocessor real-time system when

the system has heavy loading.

After the un-schedulable case appears, the slope

of the un-schedulable rate in the Figures 4.8, 4.9

and 4.10 is RM > EDF > MPP. It means that when

the un-schedulable test case appears, the efficiency

became worse quickly by using RM and EDF

scheduling algorithm.

4.3.5 Power saving

In the experiments, the MPP scheduler always

dispatches the tasks to the higher priority processor

firstly. This strategy causes that the higher proces-

sors execute the tasks firstly. Hence, the processors

with lower priorities might not need to execute any

tasks when the system’s loading is not heavy. It

means that these processors are in the idle state at

all times. Figure 4.11 shows an example of the sys-

tem with an idle processor. The system includes

four processors to schedule seven tasks. After the

system scheduled by MPP scheduler, the 4th proc-

essor (P4) does not execute any task at all times.

If the processors of the system have Dynamic

Voltage Scaling (DVS) capability, the system could

turn off those processors that are in the idle states.

Moreover, the system designer could use fewer

processors in the system to reduce the system cost.

By turning off the processors that are in the idle

state or reducing the number of the processors, the

power consumption of the system is reduced.

t6 t5t4 t4

t3t3t1 t2

25 50 75 100 125

25 50 75 100 125

t1 t2

25 50 75 100 125

25 50 75 100 125

P1

P2

P3

P4

T1(50,50,15)
T2(50,50,15)
T3(50,50,15)
T4(50,50,15)
T5(100,100,35)
T6(100,100,35)
T7(100,100,60)

t7

Figure 4.11: Example for power saving

4.4 Summary

In this chapter, the experiments show the results

in multiprocessor real-time systems by using MPP,

RM, and EDF scheduling algorithms. The experi-

ment was simulated with various cases with differ-

ent system loading and system with different num-

ber of processors. To meet the general cases, the

worst case execution times of the tasks are gener-

ated randomly. Generally, the MPP scheduler gets a

better scheduling efficiency in the multiprocessor

real-time system in all simulation cases. When the

system’s loading is heavy, the schedulable rate of

MPP scheduler is still acceptable. Moreover, the

MPP scheduler gets a higher possibility to save the

power consumption of the system in general cases.

V. Conclusions

In this paper, we propose an efficient scheduling

algorithm for multiprocessor real-time systems.

The experimental results show that the schedulable

rates of MPP scheduler in all simulation cases are

better than RM and EDF schedulers.

Furthermore, when the system is schedulable, the

MPP scheduler prevents the system available time

slice from fragmentation. It means that once a task

requires a long worst-case execution time, the

scheduler gets a better probability to schedule this

task.

In addition, the MPP scheduler keeps the flexi-

bility for the multiprocessor real-time system. If the

processors of a system have different capabilities

and characteristics, the MPP scheduler will assign a

suitable priority to each processor. Hence, tasks can

be scheduled with some strategies as the user’s de-

sign by defining the processors’ priorities of the

system.

In this paper, the experiment assumes that the

capabilities of the processors are all the same in the

system. Hence, the priorities of the processor are

predefined statically. In the simulation, some test

cases of the MPP scheduling algorithm are

un-schedulable with the predefined processor prior-

ity. If the MPP scheduler could change the proces-

sor’s priority dynamically then the system might

become schedulable. The scheduler changes the

processor’s priority based on the processor’s load-

ing, the heavier loading the higher priority.

Through this method, tasks will be more concen-

trated in high priority processors and the system’s

fragmentation can be decreased further.

In the future, the processors of a system may

have different capabilities. The strategy to define

the priorities of the processors for the system and

the strategy to improve the system performance by

applying the proposed algorithm are subjects need

to be further studied.

REFERENCE

[1] A. Burns and A. Wellings, Real Time Systems,
and Programming Languages, 3rd Ed,
http://www.cs.york.ac.uk/rts/books/RTSBookT
hirdEdition.html

[2] A. Burns, "Scheduling Hard Real-Time Sys-
tems," Software Engineering, Volume 6, Issue
3, pp 116-128, Journal, 1991

[3] B. Anderson, S. Baruah, and J. Jonsson,
"Static-Priority Scheduling on Multiproces-
sors,” 22nd Real-Time Systems Symposium,
pp. 41-43, 2003

[4] B. Sprunt, L . Sha, and J. P. Lehoczky, "Aperi-
odic Task Scheduling for Hard Real-Time Sys-
tems," Real-Time Systems Journal, Volume 1,
pp. 27-60, June 1989

[5] J. Gossens, S. Funk, and S. Baruah, "EDF
scheduling on Multiprocessor platforms: some
(perhaps) counterintuitive observations,"
Real-Time Computing Systems and Applica-
tions, pp. 321-330, 2002

[6] J. M. Banús, A. Arenas, and J. Labarta, "An
Efficient Scheme to Allocate Soft-Aperiodic
Tasks in Multiprocessor Hard Real-Time Sys-
tems," Parallel and Distributed Processing
Techniques and Applications, Volume 2, pp.
809-815, 2002

[7] J. P. Lehoczky, L. Sha, and Y. Ding, "The
Rate-Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,"
Proceedings of Real-Time Systems Sympo-
sium, pp. 166-171, 1989

[8] J. P. Lehoczky and S. Ramos-Thuel, “An Op-
timal Algorithm for Scheduling Soft-Aperiodic
Tasks in Fixed Priority Preemptive Systems,”
RealTime Systems Symposium, Volume 2, Is-
sue 4, pp. 110-123, December 1992

[9] K. Ramamritham, J. A. Stankovic, and W.
Zhao, "Distributed Scheduling of Tasks with
Deadlines and Resource Requirements," IEEE
Transactions on Computers, Volume 38, pp.
1110-1123, August 1989

[10] M. Banús Josep, Alex Arenas, and Labarta
Jesús, “Dual Priority Algorithm to Schedule
Real-Time Tasks in a Shared Memory Multi-
processor,” IEEE Computer Society Washing-
ton, DC, pp. 2-12, USA, 2003

[11] M. Joseph and P. Pandya, "Finding Response
Times in a Real-Time System," British Com-
puter Society Computer Journal, Cambridge
University, Volume 29, Issue 5, pp. 390-395,
1986

[12] M. L. Dertouzos and A. K. Mok, "Multiproc-
essor On-Line Scheduling of Hard-Real-Time
Tasks", IEEE Transactions on Software Engi-
neering, Volume 15, pp. 1497-1506, 1989

[13] M. R. Garey and D. S. Johnson, "Complexity
Results for Multiprocessor Scheduling under
Resource Constraints," SIAM Journal on
Computing, Volume 4, Issue 4, pp. 397-411,
1975

[14] P. Lehoczky John and R. Thuel Sandra,
"Scheduling Periodic and Aperiodic Tasks
using the Slack Stealing Algorithm," Pren-
tice-Hall, Chapter 8, pp. 175-197, 1994

[15] R. Davis and A. Wellings, "Dual Priority
Scheduling", 16th Real-Time Systems Sympo-
sium, pp.100, 1995

[16] µC/OS-II, The Real-Time Kernel
http://www.micrium.com/products/rtos/kernel/rtos.html

