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Abstract― In recent years, multiprocessor systems are 
used widespread. However, in real-time systems many 
scheduling algorithms are developed based on single 
processor systems, such as rate-monotonic (RM) schedul-
ing algorithm and earliest deadline first (EDF) scheduling 
algorithm. There are some different properties between 
single processor systems and multiprocessor systems. 
Those scheduling algorithms designed for single processor 
systems are not suitable for applying to multiprocessor 
systems. For the hard real-time system, it is most impor-
tant to keep all tasks to meet their deadlines. If the sys-
tem’s utilization is high, it is hard to approach this goal. In 
this paper, we propose a scheduling algorithm, Multi-
processor Priority (MPP) scheduling algorithm, for mul-
tiprocessor real-time systems. The scheduler assigns all 
tasks and processors different priorities to prevent the 
processor time’s fragmentation. Moreover, it reserves 
longer available processor time for the task that requires 
longer execution time. This kind of scheduling strategy 
could increase system’s schedulable rate when the proces-
sor’s load is heavy. The simulation results show that the 
proposed algorithm is efficient even when the system load 
is heavy. 

Index Terms― scheduling algorithm, priority, multi-

processor system. 

I. Introduction 
Multiprocessor systems have been used widely 

and rapidly in recent years. The scheduling strate-
gies have become a problem in multiprocessor 
real-time systems [2]. The duty of the scheduler is 
to determine when to execute the tasks and execute 
it in which processor without missing its deadline 
[9]. An important difference between the single 
processor system and the multiprocessor system is 
that the multiprocessor system owns several proc-
essors for scheduling. The scheduler needs to de-
termine when to execute the task, and execute the 
task in which processor. For scheduling the task, 

the scheduler needs to consider the states of all 
processors. It becomes a complicated and interac-
tive problem. Furthermore, the scheduling algo-
rithm needs to consider that the number of proces-
sors might increase in the future. 

Many scheduling algorithms are developed 
based on single processor real-time systems. The 
rate-monotonic (RM) scheduling algorithm and 
earliest deadline first (EDF) scheduling algorithm 
are used widespread in single processor real-time 
systems. However, these algorithms may not be 
suitable for multiprocessor real-time systems. Some 
problems might come up when these algorithms are 
used in multiprocessor real-time systems directly 
[10]. 

Motivation 

Multiprocessor real-time systems have many 
characteristics different from single processor 
real-time systems. It is not efficient to use single 
processor scheduling algorithms directly in multi-
processor systems. The problems of applying these 
algorithms in multiprocessor systems will be dis-
cussed later. Briefly, the scheduler for multiproces-
sor system should guarantee all tasks be executed 
without missing their deadlines. It should have 
good scheduling capability even the system has 
heavy loading. Moreover, the scheduler of the mul-
tiprocessor real-time systems should consider the 
number of the processors might increase in a sys-
tem. To provide a scheduling algorithm that could 
schedule tasks efficiently, multiprocessor priority 
scheduling algorithm is proposed and implemented 
in this paper. 

In the rest of this paper, some essential back-
ground issues related to this paper will be discussed 



                                                                           

in chapter 2. Chapter 3 introduces the algorithm 
and the implementation of the proposed scheduling 
algorithm. Chapter 4 shows the experiments and 
results. Conclusions of this research will be pre-
sented in chapter 5. 

II. Background 

2.1 Real-time scheduler 

The purpose of the original single-processor 

scheduling algorithm is to guarantee the tasks 

without missing their deadline and increase the 

utilization of the system. It is done by establishing 

the promotion to a higher priority [3] for the peri-

odic tasks, otherwise the task will miss its deadline. 

The RM and EDF scheduling algorithms are used 

in the single processor real-time system widely. In 

the recent years, the multiprocessor systems are 

evolved rapidly. In the single processor system the 

scheduler decides when the task should be executed, 

but in the multiprocessor system the scheduler 

should decide not only when to execute the task but 

also which processor to execute the task. Besides, 

the multiprocessor scheduler should consider the 

increasing of the number of processors dynamically. 

We will discuss the problems of the RM and EDF 

scheduling algorithms in the multiprocessor 

real-time systems in the following sections. 

2.2 RM scheduler 

The rate-monotonic (RM) was a fixed priority 

algorithm where the task’s priorities are determined 

by the periods of tasks. The task with tight period 

will get higher priority. The RM scheduler sched-

uled the tasks from the highest priority to the low-

est priority one by one. It works well in the single 

processor real-time systems. However, in the mul-

tiprocessor real-time systems, the RM scheduler is 

not efficient. Even the loading of the system is not 

heavy, the system will result in un-schedulable by 

applying RM scheduling algorithm. Figure 2.1 is an 

example for the RM scheduling algorithm in the 

multiprocessor real-time system. The system con-

sists of two processors and there are three tasks 

need to be executed.  The total system loading is 

80%. However, at tick 100th, the task T3 will miss 

its deadline. 
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Figure 2.1: RM scheduler example 

2.3 EDF scheduler 

The EDF scheduling algorithm [5] scheduled the 

tasks based on the task’s earliest deadline. EDF 

scheduler scheduled the tasks dynamically and it 

was a preemptive scheduling algorithm. Unfortu-

nately, it is not straightforward in multiprocessor 

real-time systems. Figure 2.2 shows an illustrative 

example. In the figure, the system consists of two 

processors and three tasks. The loading of the sys-

tem is about 75%. Firstly, the T1 and T2 are sched-

uled to be executed in P1 and P2 respectively. 

When T1 finished at tick 25th, T3 is dispatched to 

P1. At 50th tick, T3 is preempted by T1, and at 75th, 



                                                                           

T3 is dispatched to P1 again. Finally, T3 misses its 

deadline at tick 110th. 
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Figure 2.2: EDF scheduling algorithm in the multiprocessor 

real-time systems 

2.4 Dual Priority Algorithm 

The dual priority [DP] algorithm [10, 15] was 

designed for multiprocessor systems. It used a 

global scheduler to schedule tasks. The scheduler 

separates the processor’s available time slice into 

two phases, dynamic phase and static phase. In dy-

namic phase the periodic tasks get lower priorities, 

and in static phase the periodic tasks own higher 

priorities. To guarantee the tasks would meet their 

deadlines, the scheduler sets the task to static phase 

at its promotion time. The promotion time was de-

fined as below. 

 

Promotion = deadline – worst case execution time 

Promotion time

Dynamic Phase Static Phase

Low Priority High Priority

 

Figure 2.3 Periodic tasks allocation phases in Dual Priority 

Algorithm 

The DP implemented a global scheduler (GS) to 

select the first N tasks from the queue and executed 

them on the N processors. During runtime, an ar-

riving task will be queued in the Global Queue 

(GQ). In this queue, aperiodic tasks have higher 

priority than periodic tasks and they are queued in 

FIFO order. The High Priority Queues (HQ) is used 

to queue promoted periodic tasks. With this scheme, 

all periodic tasks’ deadlines are guaranteed. 
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Figure 2.4 Global scheduler of Dual Priority Algorithm 

The aperiodic tasks have good response time in 

the DP scheduler. When the system load is heavy, 

the DP scheduler can achieve better performance 

than an optimal local scheduler as the Slack Steal-

ing scheduler [14]. The DP scheduler can obtain the 

higher performance of the system with a small 

number of processors. Nevertheless, the DP sched-

uler still has the fragmentation problem between 

the processors and it only works well in the system 

with few processors [10]. 

 

III. Design and Implementation of the 
Proposed Scheduling Algorithm 

3.1 Multiprocessor Priority Algorithm  

In this chapter we will describe the proposed 

Multiprocessor Priority (MPP) scheduling algo-

rithm that is suitable for the multiprocessor systems. 

The Multiprocessor Priority scheduling algorithm 

is a static pre-runtime scheduling algorithm. The 

MPP has following characteristics: (1) it guarantees 

all tasks without missing their deadlines. (2) It 



                                                                           

could schedule tasks on multiprocessor real-time 

systems when the system has heavy loading. (3) It 

reserves the possibility and flexibility to assign dif-

ferent priorities for the processors that have 

different capabilities and properties. 

The MPP scheduler for the multiprocessor 

real-time systems is based on the offline computa-

tion of periodic task’s worst case execution time. 

By calculating the worst case execution time of the 

tasks, the scheduler could guarantee the tasks to be 

executed without missing their deadlines. The MPP 

scheduler defines each processor with its own pri-

ority. The processor’s priorities are defined in the 

order of the processor scheduling sequence. The 

MPP scheduler selects the task that has the highest 

priority in the ready queue, and then searches the 

processor that could execute the task without miss-

ing its deadline from the highest priority processor 

to the lowest priority processor. 

The MPP scheduling algorithm schedules the 

tasks according to the processor’s priority. It will 

schedule the task to the highest priority processor if 

the task does not miss its deadline. In Figure 3.1, 

there are three tasks scheduled in two processors. 

Based on the MPP scheduling algorithm, the first 

processor (P1) is assigned a high priority and the 

second processor (P2) is assigned a low priority. 

Firstly, the MPP scheduler selects the highest prior-

ity task (T1) to schedule. Because P1 has higher 

priority, the T1 will be dispatched to P1. Then, both 

of P1 and P2 can execute T2 without missing its 

deadline, but P1 has higher priority, the MPP 

scheduler will dispatch T2 to P1. After T1 and T2 

are scheduled, the time slices of P2 are still avail-

able. It means that P2 still has capability to execute 

the task, such as T3, that requires long execution 

time to complete. In this case, both of the 

rate-monotonic (RM) scheduling algorithm and 

earliest deadline first (EDF) scheduling algorithm 

are non-schedulable. Task T3 will miss its deadline 

at tick 100th, since these two scheduling algorithms 

make processor’s available time slices become 

fragmentation. 
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Figure 3.1: Using MPP scheduler to schedule 3 tasks with 

worst case execution time in 2 processors system 

3.2 Framework and Assumptions 

Considering a multiprocessor real-time system 

with N symmetrical processors and shared memory. 

Every processor P has a pre-assigned priority Pi. 

All tasks work independently and they can be pre-

empted at any time. Each task Ti has a period of 

expire time Tei, deadline Tdi, and worst case exe-

cution time Tci. Assumed to satisfy Tci <= Tei. The 

priorities of the tasks are assigned as Tpi. The 

overheads for context switching, task scheduling, 

task preemption, and migration are assumed to be 

zero. 

3.3 Implementation 

For evaluating the proposed MPP scheduler, a 

simulator with applications has been constructed. 

The simulator is written in C language and can be 



                                                                           

compiled by gcc or other compiler. Figures 3.2 is 

the flow diagram of the algorithm, respectively. 

3.3.1 Flow chart of MPP 

Figure 3.2 shows that the scheduler selects the 

highest priority task in the task queue firstly. Then 

the scheduler searches the available processor from 

the highest priority processor, but not the first 

available processor. If the processor can guarantee 

the task without missing its deadline, the task will 

be dispatched to this processor. If the highest proc-

essor can’t guarantee the task without missing its 

deadline, the scheduler will test it to next processor 

one by one until all processors are tested. If there is 

no processor that could guarantee the selected task 

be executed without missing its deadline, it means 

that the system is un-schedulable. 

Start scheduling

Get task from queue

Get available time 
slice

yes
yes no

mark the processor 's 
time slice as “in use”

yes

schedulable

no

Schedule from high 
priority processor n

unschedulable

no

 

Figure 3.2: MPP flow diagram 

The traditional scheduling algorithms select 

the processor depending on the processor’s avail-

able time. These scheduling algorithms select the 

processor that could execute the task earliest and 

guarantee the task without missing its deadline. 

These strategies could have good response time. 

But its drawback is that the system’s available time 

slices will become fragmentation in each processor 

in the multiprocessor real-time systems. The MPP 

scheduler does not select the processor that could 

execute the task earliest, but select the processor 

depends on the processor’s priority. Hence, the 

processors that have higher priority usually execute 

more tasks; the processors that have lower priority 

usually execute fewer tasks. This strategy makes 

the MPP scheduler to avoid the fragmentation of 

the system time. 

IV. Experimental Results 

In this chapter, we evaluate the performance of 

the proposed scheduling algorithm and compare it 

with RM and EDF scheduling algorithms by simu-

lation. The simulation data is generated randomly 

based on the worst case execution time percentage. 

The simulations include 4 tasks, 6 tasks, 8 tasks 

and 12 tasks to be scheduled in 2 processors and 4 

processors in this chapter. 

4.1 The notation of the simulation 

The notations listed below are used to generate 

the task’s worst case execution time for the simula-

tion. All tasks will generate a random number and 

calculate the worst case execution time of the task 

based on the task’s period. The required parameters 

in the formula are the task number, the processor 

number, the utilization of the system and the period 

of the task. 



                                                                           

 
n  : Total number of tasks 
Pn  : Total number of processors 
Su  : The system’s utilization 
i  : The task i 
TEP : The expiration period of the task. 
R    : The random number (0-1) 
WCE : The worst-case execution time of the task 

WCEi  = TEPi * R / Σ (TEPi * R) * TEPi * Pn * Su 

 

4.2 Simulation with RM, EDF, and MPP algo-

rithm 

The RM scheduler schedules the task by the pri-

ority based on the task's period. The EDF scheduler 

schedules the task based on the earliest deadline. 

The MPP scheduler schedules the task based on 

both the task’s priority and the processor's priority. 

In the simulation for MPP scheduler, we give the 

task's priorities the same as the RM scheduler. The 

assumption is that all processors have the same ca-

pabilities, so the processors’ priorities are just de-

fined sequentially. 

In the simulation, the MPP, RM, and EDF 

scheduling algorithms schedule the tasks with dif-

ferent system utilizations. When the system utiliza-

tion is lower than 50%, almost all test cases are 

schedulable by using these three algorithms. When 

the system’s utilization is more than 90%, almost 

all test cases are un-schedulable by using these 

three algorithms. So in this simulation, the system’s 

utilizations are defined from 50% to 90%. Finally, 

the comparisons of the efficiencies of these sched-

uling algorithms are made. Figures 4.1 to 4.3 are 

the test cases for RM, EDF and MPP scheduler for 

4 processors system. The test cases are simulated in 

a computer with Intel® Pentium® M 1.86 GHz 

processor. The operation system of the simulation 

is µC/OS-II. 

 

Figure 4.1 RM scheduler for 4 processors system 

 
Figure 4.2 EDF scheduler for 4 processors system 

 
Figure 4.3 MPP scheduler for 4 processors system 

4.3 Schedulable rate in various utilizations 

To compare these scheduling algorithms, the 

scheduler should keep all the tasks be executed 

without missing their deadlines. Once any task 

misses its deadline, the simulation application will 

judge it as un-schedulable case. The experiment 

includes four simulation cases as following sec-

tions. 

 



                                                                           

4.3.1 Simulation of 4 tasks in 2 processors 

Test case A is the simulation to schedule 4 tasks 

in the system with 2 processors by using RM, EDF, 

and MPP scheduling algorithms. The system’s 

utilizations are 50%, 60%, 70%, 80% and 90%.  

10

20

30

40

50

60

70

80
90

100

sc
he

d
ul

a
bl

e 
ra

te

utilization
50 60 70 80 90

2 Processor 4 Task
RM

EDF

MPP

 
Figure 4.4: Result of 4 tasks scheduled in 2 processors with 

50% to 90% system utilization 

4.3.2 Simulation of 6 tasks in 2 processors 

Test case B is the simulation to schedule 6 tasks 

in the system with 2 processors by using RM, EDF, 

and MPP scheduling algorithms. The system’s 

utilizations are 50%, 60%, 70%, 80% and 90%. 
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Figure 4.5: Result of 6 tasks scheduled in 2 processors with 

50% to 90% system utilization 

 

 

4.3.3 Simulation of 8 tasks in 4 processors 

Test case C is the simulation to schedule 8 tasks 

in the system with 4 processors by using RM, EDF, 

and MPP scheduling algorithms. The system’s 

utilizations are 50%, 60%, 70%, 80% and 90%. 
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Figure 4.6: Result of 8 tasks scheduled in 4 processors with 

50% to 90% system utilization 

4.3.4 Simulation of 12 tasks in 4 processors 

Test case D is the simulation to schedule 12 tasks 

in the system with 4 processors by using RM, EDF, 

and MPP scheduling algorithms. The system’s 

utilizations are 50%, 60%, 70%, 80% and 90%. 
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Figure 4.7: Result of 12 tasks scheduled in 4 processors with 

50% to 90% system utilization 

The values of the worst case execution time are 

generated randomly for the experimental. It simu-

lates various distributions of the worst case execu-

tion time in these algorithms. Moreover, the simu-



                                                                           

lation includes various numbers of processors and 

tasks to compare these algorithms in different en-

vironments. 

In Figures 4.4 to 4.7, the experiment shows that 

these scheduling algorithms could schedule the 

tasks well when the system’s utilization is 50% and 

60% in the cases A, B, C and D. When the system’s 

utilization increases to 70%, 80% and 90%, there 

are some test cases become un-schedulable. The 

RM scheduler’s schedulable rate decreased quickly 

especially in 4 processors test cases C and D. When 

the system’s utilization increases to 90%, the RM 

scheduler is almost un-schedulable in all test cases. 

Even using the EDF scheduler in cases A, B, C and 

D, the schedulable rate is low when the system’s 

utilization increases to 80% and 90%. For the MPP 

scheduler, all the test cases are schedulable when 

the system’s utilizations are 50% to 70%. Even the 

system’s utilization increases to 80% and 90%, the 

MPP scheduler still has efficient scheduling capa-

bility. 

In the experiment, it shows the schedulable rates 

of three schedulers in multiprocessor real-time sys-

tem and the schedulable rate’s variation in different 

system’s utilizations. Generally, the MPP sched-

uler’s efficiency is better than EDF scheduler and 

RM scheduler; the EDF scheduler’s efficiency is 

better than RM scheduler in the multiprocessor 

real-time system. 
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Figure 4.8: Result of the efficiency of the RM scheduling 

algorithm 
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Figure 4.9: Result of the efficiency of the EDF scheduling 

algorithm 
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Figure 4.10: Result of the efficiency of the MPP scheduling 

algorithm 

In Figures 4.8 to 4.10, when the system’s utiliza-

tion is 60%, there are some un-schedulable test 

cases by using RM scheduler. There are two 



                                                                           

un-schedulable test cases by using EDF scheduler. 

But the first un-schedulable test case appears by 

using MPP scheduler when the system’s utilization 

is 80%. 

When the system’s utilization is increased to 

90%, the RM scheduler almost becomes 

un-schedulable in all test cases. The RM sched-

uler’s schedulable rate is only 10 % in the 2 proc-

essors for 6 tasks test case; in all of the other test 

cases, the RM scheduler is un-schedulable at all. 

The EDF scheduler’s schedulable rates are from 

0% to 40% when the system’s utilization is 90%. It 

means that the EDF scheduler could not work well 

when system has heavy loading in the multiproc-

essor real-time system. The MPP scheduler’s 

schedulable rates are from 30% to 80% when the 

system’s utilization is 90%. The experimental result 

shows that when the system’s utilization increases 

to 90%, the MPP scheduler is un-schedulable in 

some test cases. But the MPP scheduler is still 

more efficient than RM scheduler and EDF sched-

uler in the multiprocessor real-time system when 

the system has heavy loading. 

After the un-schedulable case appears, the slope 

of the un-schedulable rate in the Figures 4.8, 4.9 

and 4.10 is RM > EDF > MPP. It means that when 

the un-schedulable test case appears, the efficiency 

became worse quickly by using RM and EDF 

scheduling algorithm. 

4.3.5 Power saving 

In the experiments, the MPP scheduler always 

dispatches the tasks to the higher priority processor 

firstly. This strategy causes that the higher proces-

sors execute the tasks firstly. Hence, the processors 

with lower priorities might not need to execute any 

tasks when the system’s loading is not heavy. It 

means that these processors are in the idle state at 

all times. Figure 4.11 shows an example of the sys-

tem with an idle processor. The system includes 

four processors to schedule seven tasks. After the 

system scheduled by MPP scheduler, the 4th proc-

essor (P4) does not execute any task at all times. 

If the processors of the system have Dynamic 

Voltage Scaling (DVS) capability, the system could 

turn off those processors that are in the idle states. 

Moreover, the system designer could use fewer 

processors in the system to reduce the system cost. 

By turning off the processors that are in the idle 

state or reducing the number of the processors, the 

power consumption of the system is reduced. 
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Figure 4.11: Example for power saving 

4.4 Summary 

In this chapter, the experiments show the results 

in multiprocessor real-time systems by using MPP, 

RM, and EDF scheduling algorithms. The experi-

ment was simulated with various cases with differ-

ent system loading and system with different num-

ber of processors. To meet the general cases, the 

worst case execution times of the tasks are gener-

ated randomly. Generally, the MPP scheduler gets a 

better scheduling efficiency in the multiprocessor 

real-time system in all simulation cases. When the 

system’s loading is heavy, the schedulable rate of 

MPP scheduler is still acceptable. Moreover, the 



                                                                           

MPP scheduler gets a higher possibility to save the 

power consumption of the system in general cases. 

V. Conclusions 

In this paper, we propose an efficient scheduling 

algorithm for multiprocessor real-time systems. 

The experimental results show that the schedulable 

rates of MPP scheduler in all simulation cases are 

better than RM and EDF schedulers. 

Furthermore, when the system is schedulable, the 

MPP scheduler prevents the system available time 

slice from fragmentation. It means that once a task 

requires a long worst-case execution time, the 

scheduler gets a better probability to schedule this 

task. 

In addition, the MPP scheduler keeps the flexi-

bility for the multiprocessor real-time system. If the 

processors of a system have different capabilities 

and characteristics, the MPP scheduler will assign a 

suitable priority to each processor. Hence, tasks can 

be scheduled with some strategies as the user’s de-

sign by defining the processors’ priorities of the 

system. 

In this paper, the experiment assumes that the 

capabilities of the processors are all the same in the 

system. Hence, the priorities of the processor are 

predefined statically. In the simulation, some test 

cases of the MPP scheduling algorithm are 

un-schedulable with the predefined processor prior-

ity. If the MPP scheduler could change the proces-

sor’s priority dynamically then the system might 

become schedulable. The scheduler changes the 

processor’s priority based on the processor’s load-

ing, the heavier loading the higher priority. 

Through this method, tasks will be more concen-

trated in high priority processors and the system’s 

fragmentation can be decreased further. 

In the future, the processors of a system may 

have different capabilities. The strategy to define 

the priorities of the processors for the system and 

the strategy to improve the system performance by 

applying the proposed algorithm are subjects need 

to be further studied. 
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