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Abstract―Super-resolution (SR) image reconstruction 
can produce a higher resolution digital image from 
multiple low-resolution (LR) photographs. Many 
applications require high resolution images, including 
medical imaging, satellite imaging, and video applications. 
Recovering lost details from down-sampled images is the 
main challenge of super resolution techniques. However, 
most researches do not take computational complexity 
into consideration. Therefore, this paper presents a new 
fast maximum a posteriori (MAP)-based SR image 
reconstruction method, it is based on the multilevel 
algorithm. In particular, this work focuses on the case of 
the input LR images that are not enough for analysis. A 
two-step interpolation process is proposed to increase the 
quality of the constructed SR image. Experimental results 
show that the proposed algorithm can simultaneously 
reduce blocking artifacts caused by a lack of LR images 
and computational complexity. 

Index Terms―Super-resolution; Maximum a Posteriori 
(MAP) method; multilevel algorithm; computational 
complexity; multiframe image reconstruction. 

I. INTRODUCTION 

Super-resolution (SR) image reconstruction can 
reconstruct a high-resolution (HR) image from 
multiple low-resolution (LR) photographs by 
exploiting the correlations between those images. 
When there are sub-pixel shifts between LR images, 
it is also possible to increase spatial resolution. 
Typical SR techniques model the process of 
acquiring LR images from an unknown HR image, 
and usually consist of two steps: (1) image 
registration, and (2) combining registered LR 
images to produce an improved resolution image. 
The first step is also called motion estimation, and 
many different registration approaches with 

fractional pixel accuracy are available. Generally, 
accurate sub-pixel motion estimation affects the 
success of SR techniques. The second step can be 
performed in different algorithms, such as the 
frequency domain method, the projection onto 
convex sets (POCS) method, and the maximum a 
posteriori (MAP) method. Many studies discuss the 
advantages and disadvantages of each algorithm [1], 
[5]. 

Many applications require high resolution 
images, including medical imaging, satellite 
imaging, and video applications. How to recover 
lost details from down-sampled images is the 
primary challenge in this area, and researchers have 
proposed many different algorithms to conquer this 
task. The most well known algorithm is the 
Bayesian maximum a posteriori (MAP) method. 
This approach has a variety of outstanding 
advantages, including robustness and flexibility in 
modeling noise characteristics in the spatial domain 
and a priori knowledge about the solution. However, 
it has a large computational complexity. 

To decrease the complexity, conjugate gradient 
(CG) method [2], [3] and preconditioned conjugate 
gradient (PCG) method [4], [6] were proposed to 
fasten the optimization procedure and minimize the 
cost function used in MAP-based SR image 
reconstruction. Later, Di Zhang et al. [7] proposed 
the recursive multilevel reconstruction algorithm, 
which dramatically reduces computational 
complexity. 

This paper focuses on Zhang’s method, showing 
that when not enough LR images are available (for 
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example, 16 LR images are required to recover a 
HR image magnified by four), blocking artifacts 
appear in the reconstructed HR image. This is a 
very practical problem since capturing adequate 
and usable LR images can be a difficult task. Some 
unexpected factors, such as moving objects, 
illumination changes, or atmosphere perturbation, 
can influence the available information captured in 
a single LR image. These destructive LR images 
must be eliminated from the total number of LR 
images, leading to an inadequacy of LR images. 

This paper proposes a new algorithm that 
improves the performance of the recursive 
multilevel reconstruction algorithm [7] as only a 
few LR images are available. Experimental results 
show that the proposed method can simultaneously 
reduce blocking artifacts and computational 
complexity. Unlike Zhang’s algorithm, which 
assumes LR images are uniformly distributed, the 
proposed algorithm can also deal with LR images 
with arbitrary shifts [7]. 

 

II. MAP-BASED SUPER-RESOLUTION 

A. Formulation 
The SR image reconstruction problem can be 

analyzed by formulating the imaging process in a 
common imaging system as a linear mapping 
between a HR input signal x  and LR images iy , 

Ni ,,1K= , where N  is the total number of LR 
images. Each LR image can be considered as a 
noisy and down-sampled version of the HR image 
that has been shifted and blurred. The imaging 
process is formulated as 

 
 NinxMDBy iiii ,,1, K=+=  (1) 

 
where x  is the desired HR image measuring 

qWqL× and q  represents the down-sampling 
factor in the horizontal and vertical directions. Thus, 
each observed LR image iy  measures WL× . 

iM  is a warp matrix representing the geometric 
shifts between the i th LR image and the HR 

image, iB  is a blur matrix simulating the point 
spread function of the sensor elements, D  is a 
subsampling matrix, and in  is the zero-mean 
independent identically distributed (IID) Gaussian 
noise with a probability density function (PDF) 
given by 
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The MAP estimator of x  maximizes the a 
posteriori PDE )|( iyxP  with respect to x  and 
yields: 
 

 ),,,|(max arg 21 NyyyxPx K= . (3) 

 
Applying Bayes’ theorem to the conditional 

probability and taking the logarithmic function 
results in the MAP optimization problem as shown 
in (4): 
 

 { })(ln)|,,,(lnmax arg 21 xPxyyyPx N += K . (4) 

 
The conditional PDF )|,,,( 21 xyyyP NK  is 

defined by the statistical distribution of the 
Gaussian noise in  as following 
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Further, the prior PDF )(xP  is defined by a 

priori knowledge concerning the HR image x . 
Since images are frequently assumed to be globally 
smooth, we simply use a Gaussian model  
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where μ  represents the mean of image x  
obtained by interpolating and averaging LR images. 
By substituting (5) and (6) into (4), the MAP 
optimization problem can be rewritten as  
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From (7), the MAP estimate of x  minimizes 

the cost function:  
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where W  is a diagonal matrix, and its diagonal is 
equal to 2σ , C  serves as a constant diagonal 
matrix. 

Gradient descent techniques can be employed to 
solve the optimization problem. The image x  can 
be estimated by iteratively updating an initial 
estimate in the direction of the negative gradient of 

)(xE . At the k th iteration, the estimate is 

 

 )ˆ(ˆˆ )1()1()( −− ∇−= kkk xExx α  (9) 

 
where α  is the step size and )(xE∇  can be 
found as 
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In our experiments, α  is updated in each 
iteration using the formula 
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where H  is the Hessian matrix which is defined 
by  
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B. Recursive multilevel reconstruction algorithm 

The MAP-based SR algorithm is a 
time-consuming task because it exploits every LR 
images in each iteration. The number of operations 
is generally based on the LR image size, the 
magnification factor, and the total number of LR 
images. Zhang [7] proposed a multilevel algorithm 
that reduces the number of operations by simply 
splitting one big task into multiple small tasks. 
Each small task involves only few LR images and 
attempts to reconstruct a HR image which is twice 
the size of LR images. Fig. 1 presents a flowchart 
of the multilevel SR algorithm. 

 

 
Fig. 1. The flowchart of the multilevel super- 
resolution image reconstruction algorithm. 
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Given N  LR images iy  of the same WL×  
size, the proposed SR algorithm attempts to 
reconstruct a HR image of size qWqL× . Ideally, 
N  equals 2q  and q  is a power of two ( nq 2= , 
and n  is a positive integer which represents the 
total number of levels).  

 

 

Fig. 2. An example of the grouping process in the 
proposed method. 

 
The recursive multilevel algorithm can be stated 

as following: 
1. Estimate spatially transformations between LR 

images and the reference LR image by image 
registration. 

2. On the first level ( 1=n ), N  LR images iy  
are set as input images. 

3. Classify input images into multiple subsets 
},,{ 21 psss K  based on a grouping principle. p  

is the total number of subsets. In each subset, if 
the translation of a LR image is ),( lk , the 
translations of other LR images should be 

),5.0( lk + , )5.0,( +lk  or )5.0,5.0( ++ lk . 
Fig. 2 shows that each circle represents an input 
image, and 16 input images are transferred onto 
the reference grid. Based on the grouping 
principle, input images }11,9,3,1{  belong to 
the same subset. 

4. Apply the MAP-based SR reconstruction to p  

subsets and obtain HR images }',','{ 21 pyyy K  

of size WL nn 22 × . 

5. If qn =2 , then stop; otherwise set 1+= nn , 
and set HR images }',','{ 21 pyyy K  as input 
images. Return to Step 3. 

 
In the ideal case, if the translation of a LR image 

is ),( lk , the principle of grouping searches for the 
other three LR images with the translation being 

),5.0( lk + , )5.0,( +lk , or )5.0,5.0( ++ lk  and 
classifies all of them into the same subset. However, 
this principle is difficult to implement in real world 
situation because LR images usually have arbitrary 
translations. These arbitrary translations result in 
more computational complexity in the grouping 
process. 

If 2qN < , some subsets classified in the ideal 
case may be null or may have less than four images. 
In the absence of sufficient LR images, MAP-based 
super-resolution cannot recover the high-frequency 
components; furthermore, image interpolation 
methods used in SR reconstruction can create 
blocking artifacts in diagonal edges or lines. 

The proposed fast MAP-based SR algorithm is 
presented in Section 3, which implements the 
grouping method for real world cases and reduce 
the blocking artifacts when there are not enough 
LR images. 

 

III. PROPOSED FAST MAP-BASED SR ALGORITHM 

Suppose that N  LR images of the same WL×  
size are obtained to reconstruct a HR image 
measuring qWqL× . The number of new set of LR 
images is equal to qq× .  

Fig. 3 shows that two steps should be performed 
successively to obtain a new set of LR images 
before applying recursive multilevel reconstruction 
algorithm.  
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Fig. 3. The block diagram of the proposed fast SR 
image reconstruction method. 

 

The first step is to convert original LR images 
},,,{ 21 Nyyy K  with arbitrary shifts to a new set of 

LR images },,,{ 21 qqzzz ×K  with uniform shifts. 
Motion information obtained by registration is used 
to estimate the relative shifts between each LR 
image and the reference LR image. According to 
the relative shifts, each LR image is determined to 
participate in making up four nearest new LR 
images. In Fig. 4, the green circles are pixels in the 
reference LR image. The red circle represents one 
LR image, which plays a part in the construction of 
images },,,{ 7632 zzzz . The blue circle is another 
LR image, which influences the images 

},,,{ 16151211 zzzz . The construction of a new image 

iz  can be expressed by 
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where Ω  denotes the set { }Ω∈jy j |  and iz  is 
the weighted average of LR images in the set.  
 

 
Fig. 4. The first step in the interpolation process of 
the proposed method: distribute non-uniformly 
distributed LR images to obtain new set of LR 
images. 
 

Since the transformations between image iz  
and jy  are already known, the nearest neighbor 
search can be employed to determine the pixel 
value ),( 21 mmy j .  

Fig. 5 shows that the pixel )','( 21 nny j  is 
transformed from pixel ),( 21 nnzi ; thus, pixel 

),( 21 mmy j  is its nearest neighbor. By using (13), a 
new LR image can be obtained by weighted 
combination of its nearest neighbors, where jω  is 
the weight estimated by a Gaussian function based 
on the distance from )','( 21 nny j  to ),( 21 mmy j . 

 
 

 
Fig. 5. Nearest neighbor search. 
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In the second step, if any LR images in the set 
},,,{ 21 qqzzz ×K  are still null, these null images can 

be constructed by other non-null LR images. In Fig. 
6, the white circle labeled as 8 is a null image, and 
it can be interpolated by non-null images 

},,,,{ 1211731 zzzzz . The interpolation can be 
formulated as 
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where Φ  denotes the set in which images are null, 
and Θ represents those non-null images in a 33×  
neighborhood of image iz . The pixel ),( 21 nnzi  
can be obtained by merging the closest pixels in 
{ }Wjz j ∈| . For example, as shown in Fig. 6, the 
pixel ),( 218 nnz  is a weighted average of pixels 
{ ),1( 211 nnz + , ),( 213 nnz , ),( 217 nnz , ),( 2111 nnz ,

),( 2112 nnz }. 

 

 
Fig. 6. The second step in the interpolation process 
of the proposed method: interpolate null images by 
its neighbors. 

 
In summary, the proposed algorithm turns 

arbitrarily distributed LR images into a new set of 

LR images with a uniform distribution, it makes the 
grouping process simple and easy to implement. 
Next, when input images in a subset is not enough 
to recover high frequency components in a HR 
image, a simple interpolation in (14) is proposed to 
avoid blocking artifacts. For example, as shown in 
Fig. 7, only 9 LR images (represented by orange 
circles) are available for magnifying a HR image 
by a factor of four. If Zhang’s method [7] is applied, 
subsets },,{ 432 sss  will fall short of the necessary 
number of LR images, as Fig. 7(a) indicates. 
Unlike Zhang’s work, the proposed algorithm 
estimates the lost LR images (represented by blue 
circles) in },,{ 432 sss  before grouping, as Fig. 7(b) 
shows. 

 

 
(a) 

 
(b) 

Fig. 7. The improvement in the grouping of the 
proposed method. (a) The pictorial grouping 
example for Zhang’s work [7]; (b) The grouping 
result of the proposed method. 
 

IV. EXPERIMENTAL RESULTS 
A. Simulations 

This study includes a controlled experiment to 
test the performance of the proposed algorithm. 
The Lena, Baboon, and Airplane images are 
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horizontally and vertically down-sampled by four 
to create 16 LR images measuring 128128× . Nine 
of these 16 LR images were used as input images to 
model the inadequacy of LR images. Fig. 7(a) 
shows how these 9 LR images were uniformly 
distributed. The following four different algorithms 
for reconstructing a HR image are compared: 
1. Bilinear interpolation. 
2. MAP-based reconstruction algorithm [8]. 
3. Recursive multilevel reconstruction approach 

[7]. 
4. The proposed fast SR reconstruction algorithm. 

This study uses the PSNR between the original 
image and the reconstructed image as a measure to 
provide a quantitative comparison of reconstruction 
quality. To compare computational complexity, we 
recorded the CPU runtime of each algorithm except 
the bilinear interpolation. All the tests were run on 
a personal computer with a Pentium 4 3-GHz CPU 
and 1G RAM. 

Fig. 8 shows the reconstructed results of the four 
algorithms on the “Lena” image. The MAP-based 
algorithm reconstructs the HR image with sharper 
edges and requires more operation time. The 
recursive multilevel SR algorithm loses some edge 
information and suffers from blocking artifacts; 
however, it is the fastest method. On the other hand, 
the proposed algorithm simultaneously recovers 
high-frequency components and reduces artifacts. 
Its complexity lies between the MAP-based and 
recursive multilevel algorithm. Table 1 and 2 give 
the comparisons of the PSNR performance and 
processing time respectively between the proposed 
method and other approaches in the literature. Fig. 
9 shows the reconstructed results of the four 
algorithms on the image “Airplane”. 

Table 1 PSNR(dB) performance comparison of the  
proposed method with other approaches in the 
literature on test images Lena, Baboon and 
Airplane. 
Test 
Image  

Bilinear  
Interpolation 

MAP Recursive 
multilevel

Proposed 

Lena 26.67 28.21 27.28 27.89 
Baboon 19.21 20.69 20.04 20.48 
Airplane 25.48 27.11 26.54 26.87 

Table 2 Comparison of processing time (seconds) 
of the proposed method with other approaches in 
the literature on test images Lena, Baboon and 
Airplane. 
Test 
Image  

Bilinear 
Interpolation 

MAP Recursive 
multilevel

Proposed 

Lena 0 29 12 17 
Baboon 0 40 16 22 
Airplane 0 28 12 18 

 
B. Real data set 

In addition to the simulated data, we also tested 
the algorithm with a real image sequence books, 
which captured by a consumer digital camera. 
There are 60 LR images measuring 120160×  with 
arbitrary shifts which are used to magnify a HR 
image by a factor of 8. The reconstructed results by 
using the simplest bilinear interpolation algorithm, 
MAP-based approach and the proposed algorithm 
are shown in Fig. 10. It is obvious that the 
MAP-based algorithm has the best visual 
performance, however it requires 2325 seconds for 
reconstruction, while the proposed algorithm only 
needs 137 seconds. This dramatic reduction of 94% 
in CPU runtime is achieved but sacrificing little 
quality of the HR image. 
 

V. CONCLUSION 
This paper has presented a new fast MAP-based 

SR reconstruction algorithm, it has lower 
computational burden compared with the 
conventional Bayesian super-resolution approach. 
By using a simple two-step interpolation method, 
the proposed method reduces obvious blocking 
artifacts in the reconstructed SR image, it enhances 
the performance of the recursive multilevel 
algorithm effectively, especially in the case when 
there are not many LR images are available. And 
the proposed method is also able to deal with the 
problem of LR images with arbitrary 
transformations. As a future work, we will 
investigate the higher-level interpolation method to 
improve the quality of the reconstructed SR 
images. 
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(a)                                         (b) 

  

(c)                                        (d)

Fig. 8. Comparison of reconstructed Lena with bilinear interpolation, MAP-based reconstruction 
algorithm and the recursive multilevel SR algorithm [7]. (a) Result using bilinear interpolation; (b) Result 
recovered by the MAP-based reconstruction algorithm. (c) Result recovered by the recursive multilevel 
SR algorithm [7]. (d) Result recovered by our algorithm. 
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(a)                                         (b) 

  

(c)                                        (d) 

Fig. 9. Comparison reconstructed Airplane with bilinear interpolation, MAP-based reconstruction 
algorithm and the recursive multilevel SR algorithm [7]. (a) Result using bilinear interpolation; (b) Result 
recovered by the MAP-based reconstruction algorithm. (c) Result recovered by the recursive multilevel 
SR algorithm [7]. (d) Result recovered by our algorithm. 
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(a)                                        (d) 

  
(b)                                        (e) 

  
(c)                                        (f) 

Fig. 10. Comparison of a real case example Books. (a) Result using bilinear interpolation. (b) Result 
reconstructed by the MAP-based reconstruction algorithm. (c) Result reconstructed by our algorithm. (d) , 
(e) and (f) Zoom-in on the areas of interest in (a), (b) and (c) respectively.
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