

A Design of Application-Aware Profiling and

Monitoring Architecture for Cloud Computing

Sheng-Hao Liu Wei-Jen Wang

Department of Computer Science and Information Engineering
National Central University

{93502025, wjwang}@csie.ncu.edu.tw

Abstract―A cloud computing system should put more

attentions on system monitoring and application profiling

because it demands better performance guarantee. For

example, the cloud computing resource providers may

charge users according to how the resources are used.

Thus service quality implies business income. Previous

grid computing approaches only focus on monitoring

hardware components, failing to accurately depict the

triangle relationship among the users, applications, and

the resource providers. In this paper, we present an

application-aware profiling and monitoring architecture

which consists of three major components: the

application-aware profiling agents, a profiling database,

and filters. The application-aware profiling agents are

installed on every computing node to keep track of the

execution status of the applications. The observed

information is then sent to the filters for preliminary

processing and then to the profiling database, or directly

to the profiling database.

Observed data sets are formatted in the XML standard.

Details of application activities thus can be found on the

profiling database though user interfaces. The proposed

architecture is able to integrate the information of users,

applications, jobs, processes, and resources. When

problems arise, applications with high performance

guarantee can be identified to get timely service. This

approach provides better performance guarantee and

resource utilization. Based on our design, cloud computing

service providers can develop different billing strategies,

service-level agreements, and user privileges according to

user payment and the observed application activity

information.

Index Terms ― Clouding Computing, Profiling, Monitoring.

I. Introduction

A cloud computing system usually consists of a

large amount of distributed, heterogeneous

computing resources. It may concurrently host

many different types of applications of different

users. A cloud computing system involves resource

providers (including system administrators), users,

and applications (or application developers). The

resource providers offer users a variety of

fundamental computing services, such as storage

systems and computing platforms. Applications can

be built from resource providers’ cloud services and

other cloud applications. Resource providers may

charge users according to how the resources and

the services are used. As a result, it is important to

provide monitoring and profiling services on a

cloud computing system. Compared to a grid

system, a cloud computing system must emphasize

on system monitoring and application profiling

because it should provide some degree of

performance guarantee for users’ payment ―

System monitoring helps users know what is

happening in the system; application profiling

abstracts historic records for administrators to

fine-tune the application configurations.

Figure 1. Relationship among users, applications, and cloud computing providers.

It is desirable for users/ administrators to be able

to obtain the configurations of applications, but it is

not easy because a cloud computing system is

usually large and complex, involving considerable

amount of computing resources and applications.

The ability of obtaining accurate system

configuration is critical in cloud computing because

wrong resource/application deployment can

seriously degrade system performance. For

example, a private business cloud [14] without

using any suitable monitoring and managing

service can suffer low efficiency of resource usage.

As a result, applications on the cloud may require

more resources and time than expected. Some

applications with hard time restrictions may even

cause financial loss. For example, some timely

sales analysis applications may not be able to

complete within the expected timeline and thus

results in huge loss for the enterprise. In order to

avoid the situation mentioned above, monitoring,

profiling, and managing a cloud computing system

becomes important issues.

In a computing system, any parts of the system

can become the performance bottleneck of the

system, such as hardware, networking, and system

loading status [8]. Most existing grid computing

approaches only focus on monitoring hardware

components, such as CPU utilization, memory

usage, I/O rate, etc. By using the monitoring data, a

grid system can be dynamically reconfigured to

improve efficiency. This approach is not enough in

a cloud system, because cloud computing

emphasizes the triangle relationship among users,

applications, and cloud service providers, as shown

in Figure 1. In the triangle relationship model, users

develop their applications and execute them on a

cloud system with some degree of quality

guarantee (i.e. service-level agreements, SLAs

[16]). Cloud computing providers must provide a

way to ensure the quality of service (i.e. providing

a performance contract), and charge users

according to the consumption and the quality of

computing resources of applications. As a result,

cloud computing demands not only resource-level

monitoring but also application-level profiling and

monitoring. The improvement of monitoring helps

users have more control on application execution

status. Users also acquire better performance

guarantee as a “performance contract” between

service providers and users [11].

A. Challenges

It is hard to monitor the behavior of applications

on a cloud computing system because many types

of cloud applications are distributed/parallel tasks.

Compared to traditional sequential applications,

distributed and parallel applications can potentially

run in a complex way, such as MapReduce

applications [13]. Furthermore, distributed/parallel

applications usually rely on many communication

and synchronization operations among computing

nodes. Another challenge to monitor a cloud

computing system is that it usually consists of

dozens or even tens of thousands of computing

nodes. Therefore, monitoring different types of

applications on a cloud computing system is a

fairly complex and difficult task.

B. Design Overview

In order to make our design of application-aware

profiling and monitoring architecture relatively

simple, we use Ganglia [2] [12] [15] as the basis of

our research. The proposed system architecture

consists of three parts: application-aware profiling

agents, a profiling database, and filters (as mediate

information collectors/senders). The application-

aware profiling agents are installed on every

computing node to keep track of the execution

status of the applications. The observed information

is then sent to the filters for preliminary processing

and then to the profiling database, or directly to the

profiling database. Details of application activities

thus can be found on the profiling database.

C. Contributions

Most existing systems only monitor computing

resources to get targeted information, such as CPU

usage, memory usage, and network speed. The

major difference between our system and existing

systems is that the proposed architecture is an

application-oriented monitoring architecture.

Furthermore, it is able to integrate the information

of users, applications, jobs, processes, and

resources. When problems arise, applications with

high performance guarantee can be identified to get

timely service. Thus users are able to get better

performance guarantee and service providers can

have better resource utilization. Most important of

all, cloud computing providers can take advantages

of our system to develop a set of billing strategies,

to create different service-level agreements, and to

protect the rights of different customers who pay

different money.

D. Structure of the Paper

The rest of the paper is organized as follows:

Section 2 describes the related work, including

several existing monitoring systems and the study

of performance contracts. Section 3 describes the

proposed architecture which shows how the system

works, and how the components of the system

communicate. Section 4 provides details of each

system component. Section 5 presents

implementation challenges and considerations.

Figure 2. Applications types

Section 6 concludes the paper and discusses the

future work of the paper. It reveals our plan of

implementing and extending the proposed

monitoring architecture.

II. Related Work

A. System Monitoring

Many existing monitoring systems provide the

ability to monitor computing resources. Ganglia [2]

[12] [15], developed by UC Berkeley, is a free,

open source software. Ganglia uses a hierarchical

design targeted at federations of clusters. Ganglia

can monitor each individual computing node of a

grid/cloud computing system with a Ganglia

monitoring agent. The observed data from the

monitoring agents of the entire computing system

is delivered layer by layer, and eventually

processed by a main node with the installed Gmeta

[12] software. Ganglia is proven to be scalable and

can monitor a large amount of computing nodes.

Autopilot [4], developed by UIUC, is a system of

effectiveness measurement. It helps dynamic

performance tuning of computational grids. A

variety of different monitoring systems targeting at

different computing environments are still in

development. More related software and systems

can be found in [18].

There are also many programming-language-

level monitoring tools in literature. For example,

NetLogger [8] is an event-driven, visualization

tools for distributed applications. NetLogger can

obtain a variety of events which are generated by

instrumented application components to understand

the actual situation of an application, especially for

multithreaded and parallel/distributed programs.

NetLogger can give programmers and system

administrators a clearer grasp of how computation

is performed by each individual thread/process of

an application. Therefore it is very useful for

debugging. In addition, NetLogger supports various

types of programming languages, including C, C++,

Java, Perl, and Python by providing APIs for the

above programming languages. OverView [19] is

another programming-language-level monitoring

tool which supports Java and SALSA [10]. It can

replay computing events by animations.

B. Performance Contract

Most existing grid computing systems are

designed as batch systems. Grid applications are

mostly executed as batch-system jobs which are

uploaded to some non-specific host. Thus a grid

system emphasizes the total throughput and the

average elapsed time of programs. Compared to the

existing grid applications, many types of existing

applications have a wider variety and diversity. For

example, one may execute a long-term service,

such as a web service; one can also execute a task

which demands completion in a specific time range.

Thus applications can be roughly classified by two

user-defined restrictions, as shown in Figure 2: the

time restriction (efficiency), and the stability

Figure 3. The proposed architecture.

restriction (reliability). Of course, we must consider

more related criteria in order to achieve better

service quality guarantee. This kind of service

quality guarantee is called a performance contract

[11].

A performance contract is a form of service level

agreement (SLA). It is a kind of agreement

between the applications, the cloud systems, and

the users. The content should include requirements

for the cloud system, which may cover the

execution environment, computing resources, and

user-defined restrictions. In other words, the

contract asks the application to run in a certain way

on the system. It simply is what users want their

applications to be executed. From the perspective

of users, this guarantee definition must be very

straightforward. These user-defined descriptions

can be regarded as the agreements signed by the

users and the cloud system. From a resource-level

view, the definition can be treated as how to select

a computing task and how to allocate the

underlying computing resources appropriately.

From a system-level view, the definition can be

treated as the coordination agreements of related

services [16]. To negotiate the service level

agreement and to carry out the performance

contract , a cloud computing system requires more

advanced monitoring services, in particular for

application-level management and monitoring.

III. Proposed Architecture

In the proposed architecture as shown in Figure 3,

application-aware profiling agents are installed on

every computing node to monitor the behavior of

applications and the usage of computing resources.

When an application is executed on a cloud system,

each involved application-aware profiling agent

should be notified by the job/application execution

service. Then it can monitor the computing activity

on each host and collect the information of each

involved application on the node. Notice that a

profiling agent may only have a partial view of the

behavior of an application if the application is

running across several computing nodes. The

observed data, such as the life time of each

application component (process/thread/object), the

CPU usage, and the memory usage, could be sent

to filters for preliminary processing. Filters are

middleware which can collect selected data items

and deliver them as feedbacks to resource

management services. Filters can also aggregate the

information which needs to be stored for further

analysis, and then deliver the information to a

profiling database. The information in the profiling

database can then be used as a data source for

analysis of long-term application behaviors. In

addition, the information stored in the profiling

database can also be sent to a visualization tool to

provide human-readable data for system

administrators. The observed data thus can help

system administrators to manually reconfigure the

system, and it can help identify the performance

bottlenecks in the current system as well. System

administrators can also take an initiative query to

the profiling database. Since there are all kinds of

application data sets in the profiling database,

system administrators can choose a specific

application as the targeted monitoring object and

can also observe the computing activity of the

targeted application at some specific time period.

Furthermore, the system administrators can get

real-time system information if they can receive

information directly from the cloud system or the

hardware. Notice that the information does not

have to go through the application-aware profiling

agents or filters.

Through the proposed application-aware

profiling and monitoring architecture, users can

have a grasp of the status of each cloud computing

application, as well as the system performance in

soft real time. The feedback information which is

generated by the system can help fine-tune the

system configuration, and it can also be used for

performance bottleneck analysis. In other words,

the proposed architecture improves the monitoring

scope. Not only the proposed architecture monitors

cloud computing resources like a grid computing

system, but it also takes applications into

consideration.

IV. System Components

The proposed architecture consists of three major

components, two of which are derived from

Ganglia and the other one is the profiling database.

A. Application-Aware Profiling Agents

Agents of a monitoring system are generally

interested in collecting the usage data of computing

resources. Some may provide limited job-aware or

process-aware monitoring abilities. The proposed

application-aware profiling agents are very

different from existing works. The proposed

application-aware profiling agents are developed

based on Ganglia software. Thus they are able to

monitor computing resources. A new developed

module will be plugged into each of the original

Ganglia monitoring agent. The new module should

be able to communicate with job/application

execution service to know which application

components are sent to the host it resides in. Then

the agent collects information for each different

application. The concept of application-aware

Figure 5. The role of the profiling database.

Figure 4. The relationship of applications, jobs, and processes in the proposed architecture.

profiling and monitoring simplifies a lot of

management issues in cloud computing. For

instance, the system administrators only need to set

up the destination host of the observed data. In

most cases the destination host is a web server

which can illustrate the status of each application

on each computing hosts. The system administrator

may use the processed data to get a high-level

overview of the cloud system because resource

usage and applications are linked together. Since

applications and users are linked together by

default, the information of per-user-resource-usage

can be identified easily. If users have to pay for

resource usage, the proposed architecture can

provide useful information for the resource

providers to charge users.

One advantage of using application-aware

profiling agents is that they hide the details of the

complicated mapping relationship between

applications and processes. The application-aware

profiling agents should integrate the information of

the users and the applications. A business strategy

can be used here to assign different levels

(priorities) to different user accounts while

executing the applications. Figure 4 explains how

the application-aware profiling agents handle

processes, jobs, applications. First, an application

may contain several jobs, while a job may also

constituted by several processes. For example, a

data mining application may generate a bunch of

independent jobs with different parameters, and

each job may generate several processes in a

multi-processor system to accelerate data mining.

Then the behaviors of the processes of a specific

application are observed by the agents. Through the

management interface, system administrators only

need to know the application's ID, and all related

observed data can be acquired easily.

Figure 6. Data path via filters.

B. Profiling Database

The role of the profiling database is shown in

Figure 5. The information generated by the

profiling agents will be eventually transferred to a

profiling database through the filters if the

information needs to be stored. The data in the

profiling database can provide system

administrators a long-term or short-term view of

applications. System administrators can use a

visualization tool or a graphical web interface to

connect to the profiling database to have a general

view of the system. Users can also obtain the

information of how their applications are executed

via the visualization tool. A query command

interface which supports advanced queries is

provided as well. Other middleware services can

also acquire information through the standard query

interface. For example, a job scheduling service

can use the historical data of a specific application

to have a better arrangement of computing

resources.

C. Filters

Filters in our system are mediate information

transferring services, as shown in Figure 6. The

observed data sets to be delivered in the data path

use the XML standard. Information such as

application behaviors is sent to the filters for

preliminary processing. A middleware service can

also provide information to the filters for any

purpose. According to how the filters are designed,

different types of data sets are delivered to different

types of filters, and then re-transmitted to their final

destinations. Filters are responsible for choosing

the right data path. However, they are not

responsible for complex data analysis or processing.

This strategy can improve scalability and ensure

data consistency as well.

V. Implementation Issues

A. Fault tolerance

The observed data is transmitted through the

Internet in the proposed architecture. However, one

cannot expect that the network environment is

always stable. One cannot expect that the

information is always transmitted normally either.

When the data transmission problems occur, the

system temporarily loses contact with the

application-aware profiling agents. Because the

contact loss may last for a long time, the failure

must be recovered properly. Problems may occur at

any component of the proposed architecture. When

a component (such as the profiling database)

encounters a problem, a data backup and recovery

mechanism or even a system recovery mechanism

should be applied if needed.

B. Scalability

Since there are a lot of applications running on

the cloud computing systems, we cannot just

simply direct the data to one single point. Thus

filters can form a hierarchical structure to process

data, and they can also serve as a preliminary

gatekeeper to remove unnecessary data sets. The

profiling database is able to deal with huge among

of data from all directions, such as the data from

the application-aware profiling agents and the state

of computing resources from the computing system.

The role of the filters plays a very critical part in

the scalability issues. With proper configuration of

the filters, a cloud system can prevent delays due to

the increase of data from the profiling and

monitoring services.

C. Security Issues

Many security issues are needed to be considered in

the design of the proposed architecture. At the

beginning stage, we only focus on the certification

mechanism, which is one of the most important

issues of the proposed architecture to be discussed.

Data in the profiling database contains the most

detailed information, including the status of

applications, the location of computing nodes, and

the system's overall status. Since the system

involves different users, different hosts, different

applications, the system demands a certification

mechanism to confirm identity of each roles. When

components/users/applications are authorized, they

can query the database according to their

privileges.

VI. Conclusions and Future Work

The major contribution of the proposed

application-aware profiling architecture is that it

emphasizes the relationship among applications,

users, and computing resource providers. By

monitoring applications, system administrators no

longer need to track the processes and jobs. The

behaviors of applications can be understood better

as well because the application-aware profiling

agents handle the relationship among applications,

processes, jobs, and users. As a result, all the

complicated relationship is hidden from the users.

System administrators need only to control

high-end applications. Thus it simplifies system

management. In addition, we also consider tuning

application performance with the long-term

observed application data, as well as the observed

computing resource data. Filters transfer the

observed data sets in the XML format. The data

through filters can be sent to other middleware

services or the computing resources as the feedback

information to refine the system.

To conclude, we proposed a profiling and

monitoring architecture for different types of

applications on a cloud system. Users and system

administrators can have a high-level scope to

monitor and to operate the system, which makes

monitoring and management more convenient on a

cloud system.

In the future, we plan to implement the proposed

architecture and measure the efficiency and the

overhead of the proposed architecture. We may use

some application/VM migration policies and the

real-time monitoring feedback information to

dynamically tune the performance of applications.

An adaptive control mechanism will be established

and the system can be adjusted automatically to

provide better quality of services.

VII. Acknowledgements

This work was supported in part by the Taiwan

National Science Council under Grant

NSC-98-2221-E-008-080.

VIII. Reference

[1] The GridLab Project http://www.gridlab.org

[2] Ganglia http://ganglia.info/

[3] A.Iosup, N.Tapu, S.Vialle, "A monitoring

architecture for control grids," Proceedings of

the European Grid Conference (Lecture Notes

in Computer Science),Vol.

3470,pp.922–931,Springer:Berlin,2005.

[4] A.Litke, K.Konstanteli, V.Andronikou,

S.Chatzis,T.Varvarigou, "Managing service

level agreement contracts in OGSA-based

Grids," Future Generation Computer

Systems,Vol. 24, Issue 4, pp.245-258,April 2008

[5] A. Waheed, W. Smith, J. George, and J. Yan.

“An Infrastructure for Monitoring and

Management in Computational Grid,"

Proceedings of the 2000 Conference on

Languages, Compilers, and Runtime

Systems(Lecture Notes in Computer Science),

Vol. 1915,pp.922–931,Springer:Berlin,2000.

[6] B. Balis, M. Bubak, W. Funika, T. Szepieniec, R.

Wismüller, M. Radecki, “Monitoring Grid

Applications with Grid-enabled OMIS Monitor”,

Proceedings of the First European Across Grids

Conference, Vol.2970 ofLNCS, Santiago de

Com-postela, Spain, pp.230–239,2003.

[7] B. Balis, M. Bubak, W. Funika, T. Szepieniec, R.

Wismüller, "An Infrastructure for Grid

Application Monitoring." Proceedings of the 9th

European PVM/MPI Users’GroupMeeting,

Linz,Austria, September/October 2002.

[8] B. Tierney, D. Gunter, "NetLogger: a toolkit for

distributed system performance tuning and

debugging," Proceedings of the IFIP/IEEE

Eighth International Symposium on Integrated

Network Management ,Vol. 246 of IFIP

Conference Proceedings, Kluwer,2003,

pp.97–100.

[9] B. Tierney, R.Aydt, D. Gunter,W. Smith,M.

Swany,V. Taylor, R.Wolski,"A Grid Monitoring

Architecture.", GGF Technical Report GFD-I.7,

January 2002.

[10] C. A. Varela and G. Agha. "Programming

dynamically reconfigurable open systems with

SALSA", ACM SIGPLAN Notices. OOPSLA

'2001 ACM Conference on Object-Oriented

Systems, Languages and Applications,

36(12):20–34, Dec. 2001.

[11] D.A.Reed, C.L.Mendes, C.da Lu, I.Foster,

C.Kesselman. "The Grid 2: Blueprint for a

New Computing Infrastructure - Application

Tuning and Adaptation.", Morgan Kaufman,

2003.

[12] F.D. Sacerdoti, M.J. Katz, M.L. Massie, D.E.

Culler, "Wide Area Cluster Monitoring with

Ganglia",Proceedings of the IEEE Cluster 2003

Conference, December 2003

[13] J.Dean ,S.Ghemawat, ”MapReduce: simplified

data processing on large clusters.” Proceedings

of the Sixth Symposium on Operating Systems

Design and Implementation, San Francisco,

pp.137-150,2004

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

http://www.gridlab.org/
http://ganglia.info/

R. Katz, A. Kon-winski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Za-haria. Above

the Clouds: A Berkeley View of Cloud

Computing.Technical Report 2009-28, UC

Berkeley, 2009.

[15] M.L. Massie, B.N. Chun, D.E. Culler, "Ganglia

Distributed Monitoring System: Design,

Implementation, and Experience",Parallel

Computing Vol.30,pp.817–840,2004

[16] P.Hasselmeyer, H.Mersch, B.Koller, H.-N.

Quyen, L.Schubert, P.Wieder. "Implementing

an SLA Negotiation Framework". Proceedings

of e-Challenges 2007

[17] R.L. Ribler, J.S. Vetter, H. Simitci, D.A. Reed,

"Autopilot: adaptive control of distributed

applications," Proceedings of the 7th IEEE

Symposium on High-Performance Distributed

Computing, pp.172–179,1998

[18] S. Zanikolas, R. Sakellariou, "A taxonomy of

grid monitoring systems",Future Generation

Computer Systems Vol.21,pp.163–188,2005

[19] Travis Desell, H. Iyer, Abe Stephens, and

Carlos A. Varela. "OverView: A Framework for

Generic Online Visualization of Distributed

Systems". In Proceedings of the European Joint

Conferences on Theory and Practice of

Software (ETAPS 2004), eclipse Technology

eXchange (eTX) Workshop, Barcelona, Spain,

March 2004.

[20] Z. Balaton and G. Gombás, "Resource and Job

Monitoring in the Grid", Proceedings of the 9th

International Euro-Par Conference,Vol. 2790 of

LNCS, Klagenfurt, Austria, pp.404

