TEREN\+AFZEEREE

UMPL &S FITRE R AR RTE
The Design and Implementation of A MPI-Based Parallel File System

BRI BIRE ZEE TRBR
Yung-YuTsai Te-Ching Hsich Guo-HwaLee Ming-Feng Chang

BLRBALERIEZLA
Department of Computer Science and Information Engineering
National Chiao-Tung University
{yytsai,tchsieh,ghlee,mfchang} @csie.nctu.edu.tw

ME

BERIRNAL MPI BAHR 2 AR EA2 4
(MPFS) #%3t - B MPI 42834 M R &9 MPL-IO ,
REABEFBREGBENEIHATEN SRS, ©
RUVEHHEERAN - MPFSHE A EREHEL
REEFZMHBEREIY, RETHARS LYY
EREREMNIG - BT ELLToIoH
WEIB>H, ERF /O, 2EHEIE, HERX
VO #4F: LEAHEHIHETHEREE - K,
MPFS # 7% % # % MPL-IO #.45 ¢ + ¢ FORTRAN 4y
&, HBRRBEUBRNH o MPFS EE&FHAEBEHRT
KB rTiRE TEsbR L - MPFS #9iER| &4
WEREERXTRSA -

Abstract

This paper presents the design of a MPI-based
parallel file system, MPFS. MPI-IO is an extension of
MPI to support flexible logical file partition and physical
Jile organization, as well as a rich set of file access
Sunctions. MPFS enables users to specify both logical file
partition among user processes and physical file data
layout across data servers. Present implementation
includes full support of file data distribution,
asynchronous 1/0, shared file pointers, collective I/Q
operations, and limited support of data layout hints.
However, MPFS does not support FORTRAN interface,
error handling and profiling in MPI-IO specification.
MPFS has been implemented on a workstation cluster
connected by Fast Ethernet. The performance
measurements of MPFS are also presented in this paper.

keywords: parallel file system, MPI, MPI-IO

1.Introduction

The processor speed and memory capacity of
computer systems have been increasing rapidly in the last
decade. However, the 1/O subsystem has not improved at
the same rate due to the limitation of disk mechanical
operations. This mismaich between computing speed and

1/0 bandwidth has impeded the performance of computer
systems. In order to improve the performance of /O
subsystem, most recent researchers focus on parallel disk
schemes that use several independent disks in parallel to
aggregate disk bandwidth [1-3]. Moreover, in order to
effectively exploit I/O performance of the parallel disk
scheme, a parallel file system is needed to provide
programmers a parallel file interface. An efficient
parallel file interface should enable users to specify data
distribution, caching, and prefetching policies that allow
a parallel file system to reduce the number of physical
input/output operations and to overlap physical
input/output with computation. In addition, for parallel
computing systems, the parallel file interface should
enable a group of user processes to access disjoint parts
of a file in a parallel fashion.

MPFS, a MPI-based Parallel File System, is
designed to provide high I/O bandwidth, an efficient and
yet easy-to-use parallel file interface, as well as high
system portability for parallel computer systems. MPI is
a message passing interface standard prompted by MPI
Forum [4] and it is gaining popularity as a parallel
programming environment. However, due to the lack of
I/O interface support in MPI, IBM and NASA proposed
MPI-1O, a parallel file I/O interface extension for MPI.
MPI-IO supports a high-level interface to specify the
logical partitioning of file data among processes and the
physical file layout on data servers. Im addition, it
provides a rich set of file access functions. In general,
MPI data type specifies dynamic user-defined partition of
file data among a group of processes. This logical
partition specification is independent of the physical data
layout of file on data servers. The design of MPFS
provides a user-level library which is an implementation
of MPI-10 interface.

2.Related Work

A simple approach to improve the performance of a
file system is to stripe file data and to store them across
multiple disks or across muliiple /O mnodes. RAID
(Redundant Array of Inexpensive Disks) is an example of
striping file data across multiple disks to aggregate disk

E-127

FERENTAFZEHEHTE

bandwidth [2-3]. RAID enable the parallel inputs/outputs
at the disk level; we can apply the same concept at a
higher level - the file system level. File data can be
striped and stored across multiple file servers so that the
data transfer rate is not limited by the performance of a
single file server. Example file systems that utilize /O
parallelism at both the disk level and the host level
include Intel's Concurrent File System (CFS) [5] ,
nCUBE [6], Bridge [7], IBM'‘s Vesta [8], Pasda [9] and
PIOFS {[10]. In contrast, Zebra [11] uses a different
approach to stripe file data across the data servers.
Instead of striping a single user file, Zebra stripes the
logical file stream generated by a single client process.
Small files are combined into a stripe fragment, and then
written to the data servers. In this way, the read/write
overhead of small files is lowered because the number of
physical 1/0 operations is reduced..

Most parallel file systems are designed for particular
parallel systems. Therefore, it is difficult to port these
parallel file systems to other machines. For example,
Intel's Concurrent File System(CFS) is built for
iPSC/860 and iPSC/2, the Vesta parallel file system for
IBM Vulcan, and the scalable file system(sfs) for the
CM-5 [12]. On the other hand, some parallel file systems
are built for virtual parallel environments to maximize
their portability. Instead of modifying system kermnel,
user-level libraries are developed to provide the parallel
file interface and disk accesses are performed by the
underlying Unix file system. For example, PPFS [13] is a
portable parallel file system that is based on MPI and
NXLIB [14]. PIOUS [15] is another example designed
for PVM [16] environment which is a portable software
platform that aggregates networked computing resources.
However, both PPFS and PIOUS do not allow users to
specify a flexible parallel view in file access.

MPI-IO is an extension of MPI to support a flexible
user-defined logical file partition and a rich set of file
access functions. To date, there are some
implementations of parallel file system that is also based
on MPI-IO. For example, PMPIO [17], a portable
implementation of MPI-IO, is developed at the
Numerical Aerodynamic Simulation (NAS) facility
located at NASA Ames Research Center. PMPIO is a
portable MPI-1O library that runs on Intel Paragon, IBM
SP2 and SGI workstation clusters. They employ a
collective buffering design to collect and merge I/O
operations, and thus effectively reduce physical I/O
overhead. However, their present implementation does
not support asynchronous I/O, shared file pointer,
profiling and hints. PIOFS [10] is another
implementation of MPI-IO, developed by the Scalable
Parallel Systems Department at the IBM T. J. Watson
Research Center. PIOFS runs on the IBM SP2, but it
does not support asynchronous data access functions, file
pointers (nether individual nor shared file pointers)
operations, error handling and profiling in their present

s

implementation. Our MPFS implementation includes full
supports of MPI-IO filetype and buftype, asynchronous
/O, shared file pointers, collective /O operations, and
limited support of hints. However, present
implementation does not support FORTRAN interface,
error handling and profiling.

3.Design & Implementation of MPFS
The overall architecture of MPFS is shown in Figure
1. MPFS consists of three major components: a user
library, data servers and file managers. The user library
of MPFS is an implementation of MPI-TO, a parallel file
I/O interface for user processes to access files. The file
managers maintain the metadata of MPFS files. When a
MPFS file is opened, the user library obtains the
metadata of the file from a file manager to determine the
physical data distribution pattern over the data servers.
User processes can access a MPFS file in parallel through
the user library which in turn requests data from the data
servers according to the file data distribution pattern. File
data are striped and stored over the data servers so that
the file access can be done in parallel. To maximize
system portability, the data servers use the underlying
Unix file system. Moreover, our design is built on the top
of MPICH which is a portable implementation of MPI.
The communications between the user library, the data
servers and the file mangers are carried out by the
message passing schemes of MPICH. We will explain the
design of the three components in following sections.

MPFS

Process Process Preocss

. Local File B Local File
I__Sysiem «f@ System ¢

VRSN 22

B
S
i
&
o
;}
i
F
3}
i

3.1 MPI-10 and MPFS user library

MPI-IO provides flexible logical file partition
schemes and a rich set of file access functions. MPI-IO
extends the MPI datatype to create etype, filetype and
buftype in order to specify the logical data partitioning
among user processes. etype defines the basic access unit
of a file; it is used as the elemeniary datatype to ensure
the consistency between buftype and filetype. filetype

E-128

h#EREN\HAEZER EHREE

describes the data layout in the file, and bufiype
describes the data layout in process® buffer; both the
filetype and buftype are specified in terms of etype. The
filetype specifies the a data patiern that a process intends
to access in the file; as shown in Figure 2, the ‘holes® in
the filetype represent the data that the process cannot
access. Several disjoint filetypes can form a logical file
partition. For example, in Figure 2, three processes
partition a MPFS file logically by using disjoint filetypes.
The three processes can access the same file in a
interleaving fashion. On the other hand, buftype specifies
a data pattern in which file data are placed in the user
buffer. This allows non-contiguous memory buffers to be
read from or written to the file system. An Example file
access of process 1 using the filetype and buftype is also
shown in Figure 2.

elype

process L: flewpe Ll | | buflype
process 2: filetype - ' buftype
prosess 3:filetype . |] buftype

logical file Jayout

process 1:
buffer layout

Figure 2: An example of filetype and buftype

MPFS user library is an implementation of MPI-10
interface; it consists of two types of functions: the file
manipulation functions and the data access functions. In
addition, the user library supports a local data cache to
reduce the number of physical I/O operations. The file
manipulation functions including file open, file close, file
delete, file resize, and file seek. When a file is opened,
the user library communicates with the file managers to
determine which data servers will serve the input/output
requested for the given file on behalf of the user program.
Users can also set system parameters by using file
manipulation functions including the number of data
servers, stripe factor, striping size, cache size,
enabling/disabling cache, cache policy, and
enabling/disabling prefetching.

The file data access functions are classified
according to three orthogonal aspects: positioning,
synchronism and coordination (see Table 1). In the
positioning aspect, user processes describe the position of
file pointer in three ways: explicit offsets, individual file
pointers and shared file pointers. The operations using an
explicit offset need to specify the file pointer position in
every read or write operation; they act like seek-and-read
or seek-and-write operations. On the other hand, the
operations using individual and shared file pointers use
implicit file pointers maintained by MPFS. Individual file
pointers are maintained for each process individually,
and this is implemented in the MPFS user library. In

contrast, the shared file pointer is maintained by the file
managers for the group of processes that opened the file.

In the synchronism aspects, all operations can be
either synchronous or asynchronous. A synchronous I/O
operation will be blocked until the /O request is
completed. On the other hand, an asynchronous 1/O
operation only initiates the corresponding 1/0 operation,
but does not wait for its completion. A separate MPI-IO
function call, MPIO_Test or MPIO_Wait, is needed to
check whether the asynchronous 1/0 request is completed.
Using asynchronous data access functions, user program
can overlap I/0O operations with computation to improve
performance.

The coordination of I/O functions can be either
collective or independent. The independent accesses do
not need any coordination between processes, while the
collective accesses imply that the functions cannot be
performed until all processes in the process group
associated with the target file invokes the 1/O operation.
The collective 1/O calls have the potential to fully utilize
the disk bandwidth, because the disk accesses in the data
servers are more likely to be segmented accesses. MPFS
implements all combinations of these data access
functions defined in MPI-IO (see Table 1).

When a data access function is invoked, the user
library first calculates the absolute offset of the target
block for the associated file stored in the data server. In
this way, it maintains individual file pointers for the files
opened. The user library issues only simple read/write
commands to the data servers. MPI_Send and MPI_Recv
functions supported by MPICH are used to transfer data
between the data servers and the user library. Moreover,
the user library of MPFS guarantees that the data stream
returned to user processes would be in order, like Unix
file system does.

Table 1: Data access functions defined by MPI-IO

positioning] synchronism

coordination

independent collective
explicit | blosking MFIO_Read MPIO__Read_all
offset (ssnchronous) MPIO_Write MPIO_Write_all
nonblocking MPIO_Ircad MPIO_lread_alt

{asynchronous) MPIO_Jwrite MPIO_3write_all
ndividual | blocking | MPIO_Read_nest | MPIO_Read_nest_al
file pointer (syachronous) | MPIO_Write_ncxt | MPIO_Write_nest_afl
nonblocking | MPIO_Fread_ncxt | MPIO_lread_next_all
(asynchronous)] MPIO_lwritc_next | MPIO_lwrite_ncut_all
shared blocking M-lf"lO.Rmd.sharcd MPIO_Read_shared_all
file pointer {synchronous) | MP1O_Write_sharcd | MP1O_Write_shared_ail
nonblocking | MPIO_Ircad_shared | MPIO_Ircad_shared_alt
(asynchronous)] MPIO_lwrite_sharcd| MPIO_lwrite_shared ol

The user library also supports a local data cache.
User can enable or disable the caching. When enabled,
the cache replacement policy can be either LRU or FIFO.
To reduce the complexity in maintaining data consistence,
write-through policy is used, i.e., all write operations
write data first to the data servers, and then to the local
cache. When a read operation is a hit in the cache, the
user library still has to verify the data by requesting the
data serves to check the time-stamp of the cache data. In
this way, the communications with the data servers are

E-129

PERE/N\TAERERENTGR

still required, but the data transfer may be omitted.

3.2 File managers

The file managers maintain file metadata,
authenticate user access requests and coordinate file
manipulation operations. Metadata describes the parallel
file organization (i.e., the file name, the data servers, the
striping size, the stripe factor, file length, and file access

_privilege). In addition, the file manager maintains a file
handle table that contains the status of the files opened;
the status data include the group of processes that opened
the file, their process ID, the file handle number, the
access mode, and the shared file pointer.

The file managers service file manipulation
operations including file open, file close, file delete, and
file control. When user processes open a file, the file
mangers notify all data servers that contain file data that
the file is opened, and then send the corresponding
metadata and a file handle number back to the user
library. When more than one group of processes open the
same file, a different file handle number is returned to
each process group. Moreover, the file managers
maintain the shared file pointers of the opened files.
When a file access function using a shared file pointer is
invoked, the user library needs to retrieve the current file
pointer from the file manager before it send access
requests to the data server. In addition, the file managers
also coordinate file close operations, detecting that all
user processes of a file have closed and then collecting
any updated metadata from the data servers.

3.3 Data servers

The data servers respond to the file access requests
of user processes; they read data from and write data to
the local disks. The number of data servers is
configurable at the time PMFS is initialized. The data
server maintains a table to store the metadata of the files
opened. When a data server receive a file access request,
it first checks whether the file handle and the process ID
is valid. Before the data server issues a physical 1/O
operation, it first tries to lock the target data block.
Present data server design uses the approach of single-
writer/multiple-reader lock so that more than one process
can read a single data block at the same time, but only
one process can write a particular data block. If the
locking attempts fails, the access request will be placed
in a waiting queue. Moreover, the data server splits each
access request into a series of data block access
commands, and then send each data block back to the
client separately. In this way, the disk access and the
network data transfer of the data blocks can be
overlapped thus reduce the overall response time. The
size of a data block can be specified by users.

Each data server contains a cache of file data to
reduce the number of disk accesses, and thus the access
latency. This file cache is also used as the data buffer of

the message passing operations between the data servers
and user processes. In this way, the overhead of memory-
to-memory copy is reduced. Moreover, a simple
prefetching algorithm is designed to read additional data
blocks from the underlying file system when collective
operation requests are received. In order to maximize
system portability, the data servers use local Unix file
system to access disk data.

4.Performance Measurements

In order to measure the performance of MPFS,
sequential file access experiments are carried out on a
workstation cluster connected by 100Mb/s Fast Ethernet.
The workstation cluster consists of four workstations;
each workstation contains a Pentium-150 CPU, 32MB
memory and FreeBSD 2.2.1-RELEASE operating system.
The disk drives are connected using SCSI bus; the
maximum data transfer rate of a hard disk is measured at
about 6.5 MB/s. In the experiments described below, one
user process accesses 64 MB of file data sequentially in
MPFS. To examine the scalability of present
implementation, the number of data servers varies form 1
to 4. In addition, to estimate the message passing
overhead, the physical block size of data siriping varies
from 1KB to 128KB. The data stripe factor is set to one,
i.e., file data are stored across the data servers in a round-
robin fashion.. A

The measurements on synchronous read operations
(MPIO_Read) are shown in Figure 5. Note that the
performance of MPIO_Read improves significantly as
the block size increases. This is due to the less number of
read commands issued to the data server, and thus the
smaller communication overhead. When the block size is
greater than 16 KB, the data throughput using one data
server is 5.5 MB/sec which is about 20% less than the
maximum data throughput of a local disk access. This
indicates the message passing overhead of MPFS is about
20%. In addition, when the block size is large, the
performance of MPFS improve by only a small margin as
the number of data servers increases. This is because the
total data transfer rate is limited by the network
bandwidth which is about 7 MB/sec. On the other hand,
when small block size is used, the performance indeed
improves significantly as the number of data servers
increases, but still cannot reach the maximum network
bandwidth because of the message passing overhead.
Figure 6 shows the experiment results of synchronous
write (MPIO_Write) operations. The performance
measurements are almost identical to those of
synchronous read operations. However, note that
MPIO_Write is faster than MPIO_Read by a very small
margin in each case. This is because the data server
issues asynchronous write operations to the local Unix
file system.

Figure 7 shows the experiment results of
asynchronous read functions (MPIO Iread). An

E-130

hERBENTAEZERI ERTS

MPIO_Iread function returns as soon as it sends the read
requests to the data servers; it does not wait for the data
server to send the data back. The results in Figure 7 show
only the time to issue the requests to the data servers, not
including the time to wait for the completion of the
request. Compared with synchronous read functions in
Figure 5, asynchronous read functions save a great
amount of time without waiting the data requested. This
provides the asynchronous operation the potential of
overlapping /O operations and computation.
Furthermore, we consider the overhead that may be
incurred if a user process use MPIO_Wait to wait for the
return of the data requested by asynchronous read
functions. The results in Figure 8 indicates that there is
no overhead for asynchronous read functions using
MPIO_Wait when compared with synchronous rea

functions. :

Server
Number(s)

16k 64k

Block Size (bytes)

Figure 5: The performance of synchronous read.

0140-60!
; 8 2040!
B0,
Time
(sec))
Server
Number(s)

16k
Block Size (bytes)

64k

Figure 6: The performance of synchronous write.

Server

Number(s)
16k 64k 4

Block Size (bytes)
Figure 7: The performance of asynchronous read
Figure 9 shows the overhead of synchronousrread

functions using a shared file pointer. Since user process
using a shared file pointers needs to fetch current file

pointer position before each read/write operation, the
overhead is proportional to the number of read/write '
operations. In Figure 9, we can see that the overhead in
using a shared file pointer is larger as the block size gets
smaller. Note that the overhead using a shared file
pointer for small block size almost doubles the access
time.
70
60
50

] —#— asynchronous read |

~@— asynchronous read '
(received data)

—&— synchronous read |

{

Time 40
(sec) 39

k . 2%k 4k 8k 16k 32 64k 128k
Block size(Byes)

Figure 8: The comparison between synchronous read and
asynchronous read

140 — =8 read with shared file 1

L. " pointer ¥

120 5% 4 ==t~ synchronous read]

100 T | e wrie with shared fie]

" pointer i

Time 80 [—&— synchronous write %
(sec) 60
40
20

1k 2% 4k

8k 16k 32 64k 128k
Block size(Bytes)

Figure 9: the overhead of a shared file pointer

IR Numb;_zr‘ofdgta‘sc:ve::

—4+— cache all miss
—8—no cache

1k 2% 4k 8k 16k 3% 64k 128k
Block size (Bytes)

Figure 10: The cache performance for synchronous read

60
50

-umber of data server =

i == no cache
| @ cache all migs/aﬂ hit

1k %k 4k 8k 16k 3% 64k 128k
Block Size (Bytes)

Figure 11: The cache overhead for synchronous write

We examine the performance and overhead of data’
cache in two extreme cases: one in which all cache

E-131

FERBNTAEREFERTE

references are missed, and the other in which all cache
references are hit. The caching is implemented at both
the user library and the data servers. The resulis in Figure
10 shows that compared with synchronous read without
caching, cache-hit provides 50% performance
improvement in average, while cache-miss calls for 25%
performance loss in average. By simple calculation, one
can derive that if the cache hit-rate is above 33%, read
operations benefit from the caching in average. On the
other hand, the overhead for synchronous write using
caching is 25% in average, as shown in Figure 11. The
overhead includes writing the data to the data servers and
to the local cache.

5.Conclusions

MPFS, a MPI-based parallel file system is
implemented on a workstation cluster. The
implementation includes full support of MPI-10 filetype
and buftype, asynchronous I/O, shared file pointers,
collective 1/O operations, and limited support of data
layout hints. MPFS enables users to specify both logical
file partition among user processes and physical file data
layout across data servers. It also provides parallel file
access interface to allow a group of user processes to
access a MPFS file in parallel. Since our MPFS
implementation is a user library, it can be easily ported to
any platforms that support Unix file systems and MPICH
which is used as our underlying message passing

environment. The present implementation is built on a

workstation cluster connected by 100Mbit Fast Ethernet.
To date, MPFS does not support FORTRAN interface,
error handling and profiling in MPI-IO specifications.

The experimental measurements show that the
performance of MPIO_Read improves significantly as
the block size increases. When compared with the local
file access, the message passing overhead of MPFS is
about 20%. Since the bandwidth of Fast Ethernet
becomes the performance bottleneck if more than one
data server is used, we believe the system performance
can improve significantly once the network is upgraded.
In addition, the results also indicates that there is no
overhead for asynchronous read functions using
MPIO_Wait when comparing with synchronous read
functions. For caching, if the cache hit-rate is above 33%,
read operations benefit from the data caching,

References

[1] D. A. Patterson, G. Gibson, and R. H. Kaiz, "A case
for redundant arrays of inexpensive disks (RAID),"
SIGMOD Intl. Conf. Management of Data, pp.109-
116, Jun 1988.

[2] P. M. Chen, ei al, "Performance and design
evaluation of the RAID-II storage server," IPPS'93
Workshop on Input/Owiput in Parallel Computer
Systems, pp. 110-120, 1993,

[3] Kent Teriber and Jai Menon. "Simulation Study of

Cacaed RAID3 Designs," Proceedings of the First
Conference on High-Performance Computer
Architecture, pp. 186-197, 1995.

[4] M. P. I. Forum, "MPI: A Message Passing Interface
Standard," May 1994.

[5] P. Pierce, "A concurrent file system for a highly
parallel mass storage subsystern," 4th Conf
Hypercubes, Concurrent Comput. & Appl., voll,
pp.155-160, May 1989.

[6] Erik DeBenedictis and Juan Miguel del Rosario,
"nCUBE Parallel I/O Software," Proceedings of the
Eleventh Annual IEEE International Phoenix
Conference on Computers and Communications,
pp.117-124, 1992.

[7] Peter Dibble, Michael Scott, and Carla Ellis, "Bridge:
A High Performance File System for Parallel
Processors," Proceedings of the Eighth International
Conference on Distributed Computer Systems,
pp.154-161, 1988.

[8] Peter F. Corbett, Sandra Johnson Baylor, and Dror G.
Feitelson, "Overview of the Vesta parallel file
system," IPPS°93 Workshop on Input/Output in
Parallel Computer Systems, pp.1-16, 1993,

[91 M. C. Jih, L. C. Feng and R. C. Chang, "The design
and implementation of the Pasda file system," Proc.
Intl. Computer Symposium, 1994,

[10] IBM, "MPI-IO/PIOUS," http://www.research.ibm.

com/people/prost/sections/mpiio. html

[11] J. H. Hartman and J. K. Ousterhout, "Zebra: A
Striped Network File System," Proceedings of the
USENIX File Systems Workshop, pp.71-78, May,
1992,

[12] J. Susan, et al, "sfs: A parallel file system for the
CM-5," Proceedings of the Summer 1993 USENIX
Conf, pp. 291-307.

[13] Jay Huber, et al., "PPFS: a high performance
portable parallel File System," Proceedings of the
9th ACM International Conference on Superence on
Supercomputing, pp. 385-394, July 1995.

[14] G. Stellner, A. Bode, S. Lamberts, and T. Ludwig,
"Developing applications for multicomputer systems
on workstation clusters,” The Intl. Conf And Exhib.
On High-Performance Computing and Nerworking,
1994,

[15] Steven A. Moyer and V. S. Sunderam, "PIOUS: A
scalable parallel [/O system for distributed
computing environments," Proceedings of the
Scalable High-Performance Computing Conf,,
pp.71-78, 1994,

[16] J. Dongarra, A. Geist, R. Manchek, and V.
Sunderam, "Integrated PVM framework supports
heterogeneous network computing," Computers in
Physics, 7(2):166-75, April 1993,

[17] S. Finberg, B. Nitzberg, and P. Wong, "PMPIO -
A portable MPI-10 library," hiip://lovelace.nas.
nasa.gov/MP-10/pmpio/pmpio. himl

E-132

