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Abstract―Course timetabling is a complex problem that 
cannot be dealt with by using only a few general principles. 
We proposed an artificial intelligence approach that inte-
grates expert systems and constraint programming to im-
plement a course timetabling system. By adopting the ap-
proach, it is easy to formulate and customize for support-
ing requirement changes and the difference between hard 
and soft constraints can be also addressed. However, it is 
very time consuming to achieve a feasible timetable be-
cause the inference engine is CLIPS-based. CLIPS is a 
rule-based language and relies on repeatedly matching 
facts and rules to draw conclusions. To address the prob-
lem, we propose parallelizing the execution of the time-
tabling system in emerging cluster systems. We parallelize 
the inference process of one course by partitioning CLIPS 
rules into multiple running pieces, where each running 
piece is inferred by a slave process. To ensure achieving 
correct solutions, we identify four possible problems that 
might occur if rules are divided improperly. Furthermore, 
how to avoid these problems and how to deal with them 
are also introduced. In the implementation of the system, 
the MPICH library is embedded into the C-based infe-
rence engine for interprocess communication. In addition, 
a programming model, which we transmit facts in C and 
infer rules in CLIPS, is also proposed. Experimental re-
sults show that the proposed parallel timetabling system 
achieves superlinear speedup when running in a cluster 
system. 

Index Terms―Course timetabling, parallel computing, 

CLIPS, expert system, cluster system. 

I. INTRODUCTION 

The course timetabling problem is to allocate a 
set of courses into predetermined time slots (typi-
cally within a week), while satisfying a set of con-
straints of various types. It is a complex problem 
that cannot be dealt with by using only a few gen-

eral principles. To address the timetabling problem, 
many approaches have been proposed for dealing 
with a variety of timetabling programs [2, 4-7, 
11-14, 15].  

We propose an artificial intelligence approach 
that integrates expert systems and constraint pro-
gramming to implement a course timetabling sys-
tem. The proposed approach has the following ad-
vantages. (1) The timetabling systems are easily 
capable of reformulation or customization to sup-
port changes since the timetabling problem varies 
significantly from institution to institution, in terms 
of specific requirements and constraints. (2) It is 
easy to capture knowledge and incorporate it into 
the timetabling system since expertise helps in re-
ducing the search space and in fitting the solution 
to the context. (3) The difference between hard 
constraints and soft constraints can be addressed. 

However, because the inference engine of the 
proposed expert system is CLIPS-based [1], it is 
very time-consuming to achieve a feasible solution. 
To address the problem, we propose parallelizing 
the execution of timetabling in emerging cluster 
system. Because it is hard to assign courses in pa-
rallel without having to solve the assignment con-
flict, we assign courses one by one and parallelize 
the assignment of one course. The CLIPS rules are 
divided into multiple running pieces for parallel 
inferences. Moreover, we propose how to divide 
rules and how to design safe CLIPS codes because 
a simple partitioning method will result in runtime 
errors. Four problems have been pointed out if 
rules are not divided properly. We introduce how to 
avoid them and how to deal with them by careful 
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coding. 
To execute a CLIPS application in parallel in a 

cluster system, the MPICH library is used. Howev-
er, we cannot parallelize CLIPS programs directly 
because the CLIPS language does not support the 
feature. We modified the CLIPS inference engine 
by augmenting MPICH library functions because it 
is C-based. Moreover, we remove the data from the 
CLIPS program to an additional C file, leaving on-
ly the rules in the original CLIPS program. To inte-
grate the CLIPS data into the C file, we have to 
convert the data to C data format, declare and 
process them. The proposed timetabling system has 
been implemented in a cluster system. Experimen-
tal results show that the proposed parallel system 
achieves superlinear speedup.  

II. RELATED WORK 

A wide variety of approaches to the timetabling 
problem have been proposed. Monfroglio et al. [12] 
propose a Prolog-based system that employs back-
tracking for finding feasible timetables. The system 
decomposes and classifies constraints with respect 
to message passing and constraint ordering in order 
to minimize the backtracking and maximize the 
parallelism. Deris et al. [4] propose a con-
straint-based reasoning algorithm to model and 
solve the timetabling problem. The proposed sys-
tem is implemented via an object-oriented approach, 
and can therefore be easily adapted to support 
changes. In [12], operational research models and 
local search techniques are used to assist the con-
straint programming search process by effectively 
reducing the solution search space. The authors 
propose a minimum cost matching algorithm to re-
lax the constraint satisfaction model. Constraint 
logic programming [2] integrates logic program-
ming and constraint solving so as to tackle combi-
natorial problems such as planning, scheduling, and 
resource allocation. This combination helps to 
make constraint logic programs expressive and 
flexible. Gunadhi et al. [6] introduce an automated 
timetabler that combines a data model and a know-
ledge base, developed via object-oriented metho-
dology. Separating out the data, the knowledge, and 
the algorithms provides the flexibility to deal with 
changes, and the incorporation of human expertise 

helps to reduce the feasible solution search space. 
Solotorevsky et al. [14] develop a rule-based lan-
guage, called RAPS, for specifying resource allo-
cation problems and timetabling problems. The 
language enables the specification of a problem in 
terms of resources, activities, allocation rules, and 
constraints, and thereby provides a convenient 
knowledge acquisition tool. Dhar and Ranganathan 
[5] propose the use of an expert system, called 
PROTEUS, for the allocation of teachers to courses, 
and compare it with integer programming tech-
niques. For predictive scheduling of passenger 
trains, Isaai et al. [7] introduce a lookahead, con-
straint-based algorithm that is designed using an 
object-oriented approach. In their approach, expert 
knowledge is used as a heuristic for finding prac-
tical solutions and is combined with the con-
straint-propagation technique. 

CLIPS (C Language Integrated Production Sys-
tem) is a popular tool for building expert systems 
[1]. It consists of three components: facts, rules, 
and an inference engine, where the rules form the 
knowledge base. To solve a problem, CLIPS must 
have data or information with which to reason. 
Each chunk of information is called a fact. By 
matching unknown facts with the rules, the infe-
rence engine draws conclusions from the know-
ledge base. If all the patterns of a rule match facts, 
the rule is activated and put on the agenda. The ac-
tivated rule with the highest priority in the agenda 
will be selected and executed repeatedly until the 
agenda becomes empty. 

Though CLIPS is very suitable for developing 
expert systems, it is very time-consuming to run a 
CLIPS application because of inference processes. 
To address the problem, several studies have been 
proposed to execute a CLIPS program in parallel [3, 
16-19]. 

III. COURSE TIMETABLING EXPERT SYSTEM 

We propose integrating expert systems and con-
straint programming to implement a course time-
tabling system [20]. Expert systems are utilized to 
incorporate knowledge into the timetabling system 
and to provide a reasoning capability for know-
ledge deduction. The constraint hierarchy and the 
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constraint network are utilized to capture hard and 
soft constraints and to reason about constraints by 
using constraint satisfaction and relaxation tech-
niques.  

We propose a 4-tier system framework to im-
plement timetabling systems. In the presentation 
tier, clients can manipulate data (e.g., courses, in-
structors, classrooms, preference time slots and ex-
clusion time slots) via a browser. The flow control 
tier receives requests from clients and controls the 
system flow. In the business logic tier, the applica-
tion software receives system messages from the 
web server and accesses the database in the DB 
server. Scheduling rules and domain knowledge are 
incorporated into the knowledge base. When sche-
duling starts, data stored in the DB server are 
translated into facts that are loaded into the work-
ing memory. By matching facts and rules, the infe-
rence engine can make inferences that achieve a 
solution based on the scheduling rules and domain 
knowledge. The results are stored in the database 
and are displayed in the web page. The clients then 
decide to approve, adjust or reschedule according 
to the analysis of results. 

Expert systems are utilized to incorporate know-
ledge into the timetabling system and to provide the 
reasoning capability for knowledge deduction. The 
C Language Integrated Production System (CLIPS) 
is a productive development and delivery expert 
system tool that provides a complete environment 
for the construction of expert systems. The Web 
pages and the application software are implemented 
using JSP and Java. We adopt JClips [10] to com-
bine CLIPS with Java by embedding the CLIPS 
engine in Java applications. In our previous work 
[13], we proposed a Knowledge Management 
through Knowledge Engineering (KMKE) ap-
proach to capturing knowledge Conceptual Graphs 
(CGs) and translating knowledge into CLIPS rules. 
Both scheduling rules and domain knowledge are 
represented as CLIPS rules and are stored in the 
knowledge base. A feasible solution can be inferred 
from these rules and existing facts. The inference 
engine makes inferences by deciding which rules 
are satisfied by facts and then applies the satisfied 
rules. Separating out the knowledge base, the facts, 
and the inference engine in expert systems provides 

greater flexibility in supporting changes. Changes 
in requirements can be mapped to the modification 
of corresponding rules in the knowledge base, 
while changes in data can be mapped to the mod-
ification of facts. When facts need to be changed, 
the clients can modify the database via a web page. 
New data can then be translated automatically into 
CLIPS facts in the working memory. On the other 
hand, knowledge engineers can add or modify the 
corresponding rules when the requirements are 
changed. Furthermore, as the inference engine is 
independent of the actual rules and facts, it can re-
main unchanged while the rules and facts are 
changed. 

Course timetabling can be formulated as a con-
straint satisfaction problem by (1) treating the time 
slots of courses as a set of variables, each of which 
must be instantiated in a particular domain and (2) 
considering constraints as predicates on variables. 
A solution means a state in which the values of va-
riables satisfy all predicates simultaneously. Con-
straints can be classified as hard or soft. A feasible 
solution to course timetabling should satisfy all 
hard constraints and as many soft constraints as 
possible. We utilize a constraint hierarchy to cap-
ture hard and soft constraints and a constraint net-
work to reason about constraints. 

A constraint hierarchy [8] can be established in 
terms of the strength (denoted as C0, …, Cn) asso-
ciated with each constraint. Constraints at the C0 
level are the strongest and cannot be violated. The 
remaining constraints are classified into different 
levels of strength (i.e., C1, …, Cn) and can be re-
laxed to attain a feasible solution. This constraint 
hierarchy is useful for reasoning about constraints 
using constraint satisfaction and relaxation tech-
niques. 

A constraint network [9] can then be built level 
by level from the constraints at the top level of the 
hierarchy downwards. A feasible solution is 
achieved when all top-level constraints and as 
many weak constraints as possible can be satisfied 
simultaneously. 

We adopt the salience of rules (the priority of 
rules) in CLIPS to realize the strength of con-
straints. Rules with higher salience are executed 



and satisfied first. All scheduling constraints in the 
constraint hierarchy can be represented as CLIPS 
rules with salience. The clients manipulate data via 
web pages, and the data stored in the Oracle DB 
server are translated into CLIPS facts. The CLIPS 
inference engine can then make inferences that 
achieve a feasible solution for the constraint net-
work automatically.  

To construct the course timetabling expert sys-
tem, the requirements of instructors and resources 
are translated into facts; expert knowledge, hard 
and soft constraints are converted into rules; and 
the inference can draw a feasible timetable accord-
ing to the facts and rules, as shown in Fig. 1.  

Facts

Rules

Inference
Engine

Timetable

Requirements
Resources

Expert knowledge
Hard constraints
Soft constraints
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Fig. 1 The construction of the course timetabling 
expert system 

IV. PARALLEL VRESION 

Though the proposed course timetabling expert 
system is applicable to any department by estab-
lishing their won scheduling rules, it takes time 
before the result is available because the inference 
engine is CLIPS-based. To cope with this problem, 
we propose to execute the proposed course time-
tabling system in parallel on the emerging cluster 
system. 

However, the big challenge is that the inherent 
serialization of the inference on course timetabling. 
We have to schedule courses one by one. When 
scheduling a course, we have to check if the course 
satisfies all the constraints and if it has any con-
flicts with other already scheduled courses. Even if 
the time tabling is parallelized by partitioning the 
inference according to some resource such as class 
or professor, it is still required that we have to 
merge all the inferred results sequentially because 
the final merged result should satisfy all the con-
straints. For instance, if the timetabling is divided 
according to classes, different classes can be sche-

duled independently and executed in parallel. 
However, due to parallel timetabling, more than 
one class timetable may require the same classroom 
at the same time slots. Similarly, a professor may 
have two classes at the same time slots. Conse-
quently, we have to solve the above problems after 
parallel timetabling. The already scheduled time-
tables have to compare with one another to see if 
any conflicts occur. Therefore, we have to check all 
already scheduled results in the timetables one by 
one, which in turn may become the bottleneck be-
cause it has to be executed sequentially by the 
CLIPS inference engine. Even if the timetabling is 
divided by other resources, such as professor, we 
still have similar problems: to allocate the same 
resource to more than one timetables at the same 
period. To cope with the problem mentioned above, 
we propose the following parallelization approach.  
4.1 Parallelization method 

Following the feature of CLIPS, we schedule 
courses one by one. However, we partition the 
scheduling of one course into multiple prioritized 
running pieces and execute these pieces in parallel, 
where each running piece consists of many rules. 
Every running piece will return if it has a feasible 
solution. After receiving all the results, the course 
will be scheduled according to the result of the 
running piece that has the highest priority among 
the pieces having feasible solutions. 

We explain the approach more detailed. CLIPS 
contains an inference engine which controls the 
execution of the rules in the knowledge base. The 
basic strategy used is known as forward chaining; 
this leads naturally to bottom-up, data-driven rea-
soning. The key to understanding forward chaining 
is the agenda. The agenda is how CLIPS keeps 
track of which rules are to be executed next. A rule 
is added to the agenda when all its conditions are 
satisfied. When a run command is issued, all the 
rules on the agenda are executed. To specify which 
rule should be matched before which rule, each rule 
is associated with a user-defined salience value. A 
rule with a larger salience value implies it has 
higher priority of performing pattern matching. 
Therefore, all the rules will be matched in the or-
dering specified by their salience values. If all the 



conditions of a rule are satisfied, its actions listed 
on the right hand side will be fired, usually result-
ing in that new rules are added into the agenda and 
the other rules of the same type will not be inferred. 

In the problem of course timetabling, when a 
course, represented as a fact, is selected for infe-
rence, all the rules will be matched with the course 
one by one according to their salience values. If a 
course is scheduled to some time slots by a certain 
rule, the remaining untouched rules will not be in-
ferred and another course will be selected for next 
scheduling. 

For instance, assume that the scheduling of one 
course consists of three running pieces, RPA, RPB 
and RPC as shown in Fig. 2(i). The salience values 
of the rules in RPA are all larger than any one in 
RPB, and that in RPB are all larger than any one in 
RPC. Note that the running piece having larger sa-
lience values has a higher priority of reasoning. 
Consequently, if a course can be scheduled by any 
one of the rules in RPA, all the rules in RPB and RPC 
will not be matched with the course. However, if on 
rule in RPA can be matched with the course, the 
rules in RPB will be inferred for the course. Simi-
larly, if the course can be scheduled by any one of 
the rules in RPB, all the rules in RPC will not be 
matched with the course. The rules in RPC will be 
inferred only when no rule in RPA and RPA can be 
matched with the course. The behavior is the same 
as the nested if-then-else structure in conventional 
algorithmic language such as C and Java.  

To parallelize the nested-if-then-else–like infe-
rence for scheduling one course, we propose a two 
phase parallelization approach. In the first phase, 
the inferences of all running pieces are performed 
in parallel and each of them returns if it has found a 
solution for scheduling the course and the corres-
ponding solution. Each running piece is inferred by 
an independent inference engine. In the second 
phase, we decide which solution will be adopted by 
selecting the one that are inferred in the running 
piece having highest priority of reasoning among 
all the running pieces having solutions. Based on 
the decided result, another course will be selected 
for next scheduling.  

We use the example shown in Fig. 2(i) for fur-

ther explanation. The three running pieces can be 
inferred in parallel and only RPB and RPC have so-
lutions, as shown in Fig. 2(ii). Since RPB has higher 
priority than RPC, the solution SB will be adopted 
for the course. Before scheduling next course, the 
solution SB has to be asserted into every inference 
engine. It is because every inference engine has to 
know which time slots have been allocated to the 
course before it starts to schedule the next course.  

RPA

(i) The scheduling of one course is divided into three running pieces  

(ii) The three running pieces are executed in parallel

RPB RPC

RPA

RPB

RPC

No.

Yes, solution is SB.

Yes, solution is Sc.

Adopted solution is SB.

 
Fig. 2. Timetabling by a sequential method and by 
a parallel method 
 
4.2 How to divide into running pieces 

According to the basic idea of parallelization 
proposed in the previous subsection, the rules will 
be divided into several running pieces according to 
their individual salience values. However, improper 
division might result in wrong solutions or infinite 
loops. Consider the following example. A rule, 
called Rx, has one action, Am, listed on its right 
hand side, where Am has to be inferred by another 
rule Ry. If all its conditions are satisfied at runtime, 
the action, Am, will be added into the knowledge 
base for further inference. The inference engine 
will use Ry to infer Am. If Rx is in the running piece 
RPA and Ry is in RPB after division, there are two 
possible problems incurred.  

The first problem is that the action Am cannot be 
inferred by the inference engine responsible for 
RPA because Ry is in RPB rather than RPA. To cope 
with the first problem, RPB should include Ry to 
ensure that Am can be inferred by Ry. However, af-
ter inferring Am by Ry, the inference engine might 
require other rules not in RPB for further inference. 
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As a result, more and more rules have to be in-
cluded in RPB to draw the conclusion by further 
inference. That is, all the rules in the inference 
chain have to be included in the same running piece, 
which we call the property of self-containment. The 
property of self-containment might lead to no 
possible ways of rule partitioning because a rule 
may included in more than one running piece, 
which may result in duplicated conclusions. We 
have to compare the results and return only one re-
sult. If this problem occurs, parts of the inference 
of scheduling one course have to be executed con-
currently on multiple running pieces, resulting in a 
poorer performance improvement. Fortunately, we 
can avoid this problem by carefully designing the 
application of course timetabling. No rules will fire 
any action that requires rules out of their individual 
belonged running pieces. 

The second problem is that the action Am can be 
inferred only by the rules in RPB. This problem oc-
curs when there are multiple rules, distributed in 
different running pieces, which can be matched 
with the action Am, only the rules in RPB can be 
matched with the action Am, resulting in an unde-
sirable result or infinite loop. For instance, assume 
that the action Am can be inferred by two rules, Rx 
and Ry, where Rx has a higher salience value than 
Ry. Assume that Rx and Ry are RPA and RPB, respec-
tively. Following the sequential execution of the 
original CLIPS inference, Rx will be selected for 
inference first. Assume that Rx will be matched 
with the action Am, resulting in that the inference by 
Rx will not be performed for Am. However, because 
RPB contains only the rule Ry, Am will be matched 
with Ry instead of Rx. The match between Am and Ry 
have three possible results. First, assume that the 
match is successful. The inference result may be 
different from that inferred by Rx. To cope with the 
problem, we have to compare the results from run-
ning pieces and decide the result by the running 
priority. Second, if the match is failed, the inference 
engine will conclude that no feasible solution. This 
result is not harmful because it will be filtered out 
when it returns to the master. Third, if the match is 
failed and the rule Ry fire an action to retract some 
facts from the knowledge base, the inference en-
gine can re-match the action Am only with the rules 

in RPB one by one again though the rules in RPA 
should be matched first, as shown in Fig. 3. If no 
retraction can result in an inference result, the infe-
rence engine will fall in infinite loop. In the appli-
cation of course timetabling, we will retract an al-
ready scheduled course by the lowest-prioritized 
rule if the current selected course cannot be sche-
duled by any other rules. After retracting an already 
scheduled course, the current course will be in-
ferred from the highest-prioritized rule to the low-
est-prioritized rule again. To cope with the third 
problem and according to the feature of the rea-
soning of course timetabling, we propose that for a 
rule having retraction actions, it has to be the low-
est prioritized one in its running piece and the re-
traction action will be executed only once. 

RPA RPB

Retraction point  
Fig. 3 The inference process when a retraction ac-

tion occurs 
4.3 Implementation 

To execute a CLIPS-based expert system in pa-
rallel on a cluster system, the application has to be 
parallelized with MPICH library functions. How-
ever, CLIPS language does not support the feature, 
i.e., we cannot invoke MPICH functions directly 
from a CLIPS program. Therefore, we modified the 
CLIPS inference engine to execute the CLIPS file 
in parallel because the inference engine is written 
in the C language. Moreover, the inference engine 
is coded based on the SPMD model. When being 
executed in parallel, each inference engine will 
read a CLIPS file to build the knowledge base.  

To assign course one by one and execute the as-
signment of one course in parallel, we propose the 
following programming model, as shown in Fig. 4, 
for parallel CLIPS program execution. A CLIPS 
file contains only the rules and all the processes 
will read a CLIPS file for making inference. The 
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nce engine to display the reasoning 
conclusions.  

facts are managed in a C file that will be linked 
with the inference engine. Therefore, the facts have 
to be converted into C-format data. At the run time, 
the data will be distributed to multiple processes to 
reduce the execution time of making inference. 
Meanwhile, we have to convert these C-format data 
and insert into the fact list in the inference engine. 
Similarly, the inference results have to be extracted 
from the infere

Master

timetabling.clp
Rules

RP1.clp

Facts
in the C 
format

Facts

Rules

Rules

RP2.clp

Inference 
Engine

Inference 
Engine

Fact
Result 
and FactsResult 

and Facts

Fact

Master

Slave 2Slave 1

 
Fig. 4 The programming model of parallel CLIPS 

rogram execution 
 

 will be 
done when there is no course in the master. 

brary is 

Table 1 The configuration of our cluster system 

p

We divide the rules of the parallel expert system 
into four running pieces according to the partition 
method mentioned in the previous subsection. Each 
running piece is saved as an independent CLIPS 
file. At runtime, four slave MPI processes will be 
forked for the inferences of these four running 
pieces. Each slave process is associated with a 
CLIPS file containing one running piece. The mas-
ter will send facts one by one to all slaves. After 
receiving one fact, each slave process perform the 
inference according to the fact and its associated 
CLIPS file. As soon as the inference is done, each 
slave sends the inference result back to the master 
process. In addition, the facts in the knowledge 
base will be sent back to the master. Then, the 
master determines which result will be adopted for 
the current course. The result from the slave that 
has the largest priority among all the salves having 
feasible solution will be chosen for scheduling the 

course. Before the master sends next course to 
slaves for further inference, the master will broad-
cast all slaves the facts from the chosen slave. After 
receiving the facts, each slave will replace the 
knowledge base by these facts, which assuring a 
consistent view of the knowledge base before 
scheduling the next course. The scheduling

V. PERFORMANCE EVALUATIONS 

We have constructed a cluster consisting of four 
Intel PCs to evaluate the parallel course timetabling 
expert system. The configuration of our cluster 
system is shown in Table 1. The MPICH2 li
adopted for inter-process communication.  

 
The execution times of the sequential and the 

parallel course timetabling expert systems are 
compared in Fig. 5. The sequential version is ex-
ecuted on one PC in our cluster system while the 
parallel version is executed on five PCs in our 
cluster system. As we can see, the parallel version 
can cut the execution time significantly. The spee-
dup is 12.47, derived by dividing the execution 
time of the sequential version by that of the parallel 
version. The speedup is superlinear because we use 
only five PCs but the speedup is more than five. 
The reason that we can obtain superlinear speedup 
is explained as follows. The total memory space of 
the cluster system is larger than that of one PC. 
Because CLIPS-based applications are memo-
ry-intensive programs, the parallel version can take 
more advantage from larger memory space.  

VI. CONCLUSIONS 

In this paper, we investigate into how to con-
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constraint satisfaction 
and relaxation techniques.  

struct a parallel course timetabling expert system. 
We proposed an artificial intelligence approach that 
integrates expert systems and constraint program-
ming to implement a course timetabling system. 
Expert systems are utilized to incorporate know-
ledge into the timetabling system and to provide a 
reasoning capability for knowledge deduction. Se-
parating out the knowledge base, the facts, and the 
inference engine in expert systems provides greater 
flexibility in supporting changes. The constraint 
hierarchy and the constraint network are utilized to 
capture hard and soft constraints and to reason 
about constraints by using 
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ential and parallel versions.  
The inference of the expert system is imple-

mented in the CLIPS language. To address the 
problem that it is very time consuming to achieve a 
feasible timetable by CLIPS programs, we propose 
parallelizing the execution of assigning one course 
in a cluster system. The rules are divided into mul-
tiple running pieces and each running piece is ex-
ecuted by one slave process. We pointed out that 
improper rule division would result in four possible 
problems. The first problem should be avoided by 
restricting that no rules will fire any action in other 
running piece. The second and the third problems 
can be dealt normally. The fourth problem can be 
solved by the following restriction. A retraction ac-
tion should be performed only once and the asso-
ciated rule has  its d

nning piece.  
Finally, we propose a programming model that 

separating facts and rules into two types of files. 
Facts are processed, transmitted by the C language 
and rules are inferred by the CLIPS language. In-
ter-process communication in a cluster system is 
enabled by incorporating the MPICH library into 
the CLIPS inference engine. Experimental results 
show that the proposed parallel timetabling system 
achieves superlin
cluster system.  
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