
1

A Parallel CLIPS-based Course Timetabling
Expert System

Chao-Chin Wu, Lien-Fu Lai
Dept. Comp. Sci. & Info. Eng.

Nat’l Changhua Univ. of Education
{ccwu, lflai}@cc.ncue.edu.tw

Liang-Tsung Huang
Dept. Information Communication

MingDao University
larry@mdu.edu.tw

Wei-Chao Chang
Dept. Information Communication

National Tsing Hua University
s92610030@mail.ncue.edu.tw

Abstract―Course timetabling is a complex problem that
cannot be dealt with by using only a few general principles.
We proposed an artificial intelligence approach that inte-
grates expert systems and constraint programming to im-
plement a course timetabling system. By adopting the ap-
proach, it is easy to formulate and customize for support-
ing requirement changes and the difference between hard
and soft constraints can be also addressed. However, it is
very time consuming to achieve a feasible timetable be-
cause the inference engine is CLIPS-based. CLIPS is a
rule-based language and relies on repeatedly matching
facts and rules to draw conclusions. To address the prob-
lem, we propose parallelizing the execution of the time-
tabling system in emerging cluster systems. We parallelize
the inference process of one course by partitioning CLIPS
rules into multiple running pieces, where each running
piece is inferred by a slave process. To ensure achieving
correct solutions, we identify four possible problems that
might occur if rules are divided improperly. Furthermore,
how to avoid these problems and how to deal with them
are also introduced. In the implementation of the system,
the MPICH library is embedded into the C-based infe-
rence engine for interprocess communication. In addition,
a programming model, which we transmit facts in C and
infer rules in CLIPS, is also proposed. Experimental re-
sults show that the proposed parallel timetabling system
achieves superlinear speedup when running in a cluster
system.

Index Terms―Course timetabling, parallel computing,

CLIPS, expert system, cluster system.

I. INTRODUCTION

The course timetabling problem is to allocate a
set of courses into predetermined time slots (typi-
cally within a week), while satisfying a set of con-
straints of various types. It is a complex problem
that cannot be dealt with by using only a few gen-

eral principles. To address the timetabling problem,
many approaches have been proposed for dealing
with a variety of timetabling programs [2, 4-7,
11-14, 15].

We propose an artificial intelligence approach
that integrates expert systems and constraint pro-
gramming to implement a course timetabling sys-
tem. The proposed approach has the following ad-
vantages. (1) The timetabling systems are easily
capable of reformulation or customization to sup-
port changes since the timetabling problem varies
significantly from institution to institution, in terms
of specific requirements and constraints. (2) It is
easy to capture knowledge and incorporate it into
the timetabling system since expertise helps in re-
ducing the search space and in fitting the solution
to the context. (3) The difference between hard
constraints and soft constraints can be addressed.

However, because the inference engine of the
proposed expert system is CLIPS-based [1], it is
very time-consuming to achieve a feasible solution.
To address the problem, we propose parallelizing
the execution of timetabling in emerging cluster
system. Because it is hard to assign courses in pa-
rallel without having to solve the assignment con-
flict, we assign courses one by one and parallelize
the assignment of one course. The CLIPS rules are
divided into multiple running pieces for parallel
inferences. Moreover, we propose how to divide
rules and how to design safe CLIPS codes because
a simple partitioning method will result in runtime
errors. Four problems have been pointed out if
rules are not divided properly. We introduce how to
avoid them and how to deal with them by careful

2

coding.
To execute a CLIPS application in parallel in a

cluster system, the MPICH library is used. Howev-
er, we cannot parallelize CLIPS programs directly
because the CLIPS language does not support the
feature. We modified the CLIPS inference engine
by augmenting MPICH library functions because it
is C-based. Moreover, we remove the data from the
CLIPS program to an additional C file, leaving on-
ly the rules in the original CLIPS program. To inte-
grate the CLIPS data into the C file, we have to
convert the data to C data format, declare and
process them. The proposed timetabling system has
been implemented in a cluster system. Experimen-
tal results show that the proposed parallel system
achieves superlinear speedup.

II. RELATED WORK

A wide variety of approaches to the timetabling
problem have been proposed. Monfroglio et al. [12]
propose a Prolog-based system that employs back-
tracking for finding feasible timetables. The system
decomposes and classifies constraints with respect
to message passing and constraint ordering in order
to minimize the backtracking and maximize the
parallelism. Deris et al. [4] propose a con-
straint-based reasoning algorithm to model and
solve the timetabling problem. The proposed sys-
tem is implemented via an object-oriented approach,
and can therefore be easily adapted to support
changes. In [12], operational research models and
local search techniques are used to assist the con-
straint programming search process by effectively
reducing the solution search space. The authors
propose a minimum cost matching algorithm to re-
lax the constraint satisfaction model. Constraint
logic programming [2] integrates logic program-
ming and constraint solving so as to tackle combi-
natorial problems such as planning, scheduling, and
resource allocation. This combination helps to
make constraint logic programs expressive and
flexible. Gunadhi et al. [6] introduce an automated
timetabler that combines a data model and a know-
ledge base, developed via object-oriented metho-
dology. Separating out the data, the knowledge, and
the algorithms provides the flexibility to deal with
changes, and the incorporation of human expertise

helps to reduce the feasible solution search space.
Solotorevsky et al. [14] develop a rule-based lan-
guage, called RAPS, for specifying resource allo-
cation problems and timetabling problems. The
language enables the specification of a problem in
terms of resources, activities, allocation rules, and
constraints, and thereby provides a convenient
knowledge acquisition tool. Dhar and Ranganathan
[5] propose the use of an expert system, called
PROTEUS, for the allocation of teachers to courses,
and compare it with integer programming tech-
niques. For predictive scheduling of passenger
trains, Isaai et al. [7] introduce a lookahead, con-
straint-based algorithm that is designed using an
object-oriented approach. In their approach, expert
knowledge is used as a heuristic for finding prac-
tical solutions and is combined with the con-
straint-propagation technique.

CLIPS (C Language Integrated Production Sys-
tem) is a popular tool for building expert systems
[1]. It consists of three components: facts, rules,
and an inference engine, where the rules form the
knowledge base. To solve a problem, CLIPS must
have data or information with which to reason.
Each chunk of information is called a fact. By
matching unknown facts with the rules, the infe-
rence engine draws conclusions from the know-
ledge base. If all the patterns of a rule match facts,
the rule is activated and put on the agenda. The ac-
tivated rule with the highest priority in the agenda
will be selected and executed repeatedly until the
agenda becomes empty.

Though CLIPS is very suitable for developing
expert systems, it is very time-consuming to run a
CLIPS application because of inference processes.
To address the problem, several studies have been
proposed to execute a CLIPS program in parallel [3,
16-19].

III. COURSE TIMETABLING EXPERT SYSTEM

We propose integrating expert systems and con-
straint programming to implement a course time-
tabling system [20]. Expert systems are utilized to
incorporate knowledge into the timetabling system
and to provide a reasoning capability for know-
ledge deduction. The constraint hierarchy and the

3

constraint network are utilized to capture hard and
soft constraints and to reason about constraints by
using constraint satisfaction and relaxation tech-
niques.

We propose a 4-tier system framework to im-
plement timetabling systems. In the presentation
tier, clients can manipulate data (e.g., courses, in-
structors, classrooms, preference time slots and ex-
clusion time slots) via a browser. The flow control
tier receives requests from clients and controls the
system flow. In the business logic tier, the applica-
tion software receives system messages from the
web server and accesses the database in the DB
server. Scheduling rules and domain knowledge are
incorporated into the knowledge base. When sche-
duling starts, data stored in the DB server are
translated into facts that are loaded into the work-
ing memory. By matching facts and rules, the infe-
rence engine can make inferences that achieve a
solution based on the scheduling rules and domain
knowledge. The results are stored in the database
and are displayed in the web page. The clients then
decide to approve, adjust or reschedule according
to the analysis of results.

Expert systems are utilized to incorporate know-
ledge into the timetabling system and to provide the
reasoning capability for knowledge deduction. The
C Language Integrated Production System (CLIPS)
is a productive development and delivery expert
system tool that provides a complete environment
for the construction of expert systems. The Web
pages and the application software are implemented
using JSP and Java. We adopt JClips [10] to com-
bine CLIPS with Java by embedding the CLIPS
engine in Java applications. In our previous work
[13], we proposed a Knowledge Management
through Knowledge Engineering (KMKE) ap-
proach to capturing knowledge Conceptual Graphs
(CGs) and translating knowledge into CLIPS rules.
Both scheduling rules and domain knowledge are
represented as CLIPS rules and are stored in the
knowledge base. A feasible solution can be inferred
from these rules and existing facts. The inference
engine makes inferences by deciding which rules
are satisfied by facts and then applies the satisfied
rules. Separating out the knowledge base, the facts,
and the inference engine in expert systems provides

greater flexibility in supporting changes. Changes
in requirements can be mapped to the modification
of corresponding rules in the knowledge base,
while changes in data can be mapped to the mod-
ification of facts. When facts need to be changed,
the clients can modify the database via a web page.
New data can then be translated automatically into
CLIPS facts in the working memory. On the other
hand, knowledge engineers can add or modify the
corresponding rules when the requirements are
changed. Furthermore, as the inference engine is
independent of the actual rules and facts, it can re-
main unchanged while the rules and facts are
changed.

Course timetabling can be formulated as a con-
straint satisfaction problem by (1) treating the time
slots of courses as a set of variables, each of which
must be instantiated in a particular domain and (2)
considering constraints as predicates on variables.
A solution means a state in which the values of va-
riables satisfy all predicates simultaneously. Con-
straints can be classified as hard or soft. A feasible
solution to course timetabling should satisfy all
hard constraints and as many soft constraints as
possible. We utilize a constraint hierarchy to cap-
ture hard and soft constraints and a constraint net-
work to reason about constraints.

A constraint hierarchy [8] can be established in
terms of the strength (denoted as C0, …, Cn) asso-
ciated with each constraint. Constraints at the C0
level are the strongest and cannot be violated. The
remaining constraints are classified into different
levels of strength (i.e., C1, …, Cn) and can be re-
laxed to attain a feasible solution. This constraint
hierarchy is useful for reasoning about constraints
using constraint satisfaction and relaxation tech-
niques.

A constraint network [9] can then be built level
by level from the constraints at the top level of the
hierarchy downwards. A feasible solution is
achieved when all top-level constraints and as
many weak constraints as possible can be satisfied
simultaneously.

We adopt the salience of rules (the priority of
rules) in CLIPS to realize the strength of con-
straints. Rules with higher salience are executed

and satisfied first. All scheduling constraints in the
constraint hierarchy can be represented as CLIPS
rules with salience. The clients manipulate data via
web pages, and the data stored in the Oracle DB
server are translated into CLIPS facts. The CLIPS
inference engine can then make inferences that
achieve a feasible solution for the constraint net-
work automatically.

To construct the course timetabling expert sys-
tem, the requirements of instructors and resources
are translated into facts; expert knowledge, hard
and soft constraints are converted into rules; and
the inference can draw a feasible timetable accord-
ing to the facts and rules, as shown in Fig. 1.

Facts

Rules

Inference
Engine

Timetable

Requirements
Resources

Expert knowledge
Hard constraints
Soft constraints

.

.

.

.

.

.

4

Fig. 1 The construction of the course timetabling
expert system

IV. PARALLEL VRESION

Though the proposed course timetabling expert
system is applicable to any department by estab-
lishing their won scheduling rules, it takes time
before the result is available because the inference
engine is CLIPS-based. To cope with this problem,
we propose to execute the proposed course time-
tabling system in parallel on the emerging cluster
system.

However, the big challenge is that the inherent
serialization of the inference on course timetabling.
We have to schedule courses one by one. When
scheduling a course, we have to check if the course
satisfies all the constraints and if it has any con-
flicts with other already scheduled courses. Even if
the time tabling is parallelized by partitioning the
inference according to some resource such as class
or professor, it is still required that we have to
merge all the inferred results sequentially because
the final merged result should satisfy all the con-
straints. For instance, if the timetabling is divided
according to classes, different classes can be sche-

duled independently and executed in parallel.
However, due to parallel timetabling, more than
one class timetable may require the same classroom
at the same time slots. Similarly, a professor may
have two classes at the same time slots. Conse-
quently, we have to solve the above problems after
parallel timetabling. The already scheduled time-
tables have to compare with one another to see if
any conflicts occur. Therefore, we have to check all
already scheduled results in the timetables one by
one, which in turn may become the bottleneck be-
cause it has to be executed sequentially by the
CLIPS inference engine. Even if the timetabling is
divided by other resources, such as professor, we
still have similar problems: to allocate the same
resource to more than one timetables at the same
period. To cope with the problem mentioned above,
we propose the following parallelization approach.
4.1 Parallelization method

Following the feature of CLIPS, we schedule
courses one by one. However, we partition the
scheduling of one course into multiple prioritized
running pieces and execute these pieces in parallel,
where each running piece consists of many rules.
Every running piece will return if it has a feasible
solution. After receiving all the results, the course
will be scheduled according to the result of the
running piece that has the highest priority among
the pieces having feasible solutions.

We explain the approach more detailed. CLIPS
contains an inference engine which controls the
execution of the rules in the knowledge base. The
basic strategy used is known as forward chaining;
this leads naturally to bottom-up, data-driven rea-
soning. The key to understanding forward chaining
is the agenda. The agenda is how CLIPS keeps
track of which rules are to be executed next. A rule
is added to the agenda when all its conditions are
satisfied. When a run command is issued, all the
rules on the agenda are executed. To specify which
rule should be matched before which rule, each rule
is associated with a user-defined salience value. A
rule with a larger salience value implies it has
higher priority of performing pattern matching.
Therefore, all the rules will be matched in the or-
dering specified by their salience values. If all the

conditions of a rule are satisfied, its actions listed
on the right hand side will be fired, usually result-
ing in that new rules are added into the agenda and
the other rules of the same type will not be inferred.

In the problem of course timetabling, when a
course, represented as a fact, is selected for infe-
rence, all the rules will be matched with the course
one by one according to their salience values. If a
course is scheduled to some time slots by a certain
rule, the remaining untouched rules will not be in-
ferred and another course will be selected for next
scheduling.

For instance, assume that the scheduling of one
course consists of three running pieces, RPA, RPB
and RPC as shown in Fig. 2(i). The salience values
of the rules in RPA are all larger than any one in
RPB, and that in RPB are all larger than any one in
RPC. Note that the running piece having larger sa-
lience values has a higher priority of reasoning.
Consequently, if a course can be scheduled by any
one of the rules in RPA, all the rules in RPB and RPC
will not be matched with the course. However, if on
rule in RPA can be matched with the course, the
rules in RPB will be inferred for the course. Simi-
larly, if the course can be scheduled by any one of
the rules in RPB, all the rules in RPC will not be
matched with the course. The rules in RPC will be
inferred only when no rule in RPA and RPA can be
matched with the course. The behavior is the same
as the nested if-then-else structure in conventional
algorithmic language such as C and Java.

To parallelize the nested-if-then-else–like infe-
rence for scheduling one course, we propose a two
phase parallelization approach. In the first phase,
the inferences of all running pieces are performed
in parallel and each of them returns if it has found a
solution for scheduling the course and the corres-
ponding solution. Each running piece is inferred by
an independent inference engine. In the second
phase, we decide which solution will be adopted by
selecting the one that are inferred in the running
piece having highest priority of reasoning among
all the running pieces having solutions. Based on
the decided result, another course will be selected
for next scheduling.

We use the example shown in Fig. 2(i) for fur-

ther explanation. The three running pieces can be
inferred in parallel and only RPB and RPC have so-
lutions, as shown in Fig. 2(ii). Since RPB has higher
priority than RPC, the solution SB will be adopted
for the course. Before scheduling next course, the
solution SB has to be asserted into every inference
engine. It is because every inference engine has to
know which time slots have been allocated to the
course before it starts to schedule the next course.

RPA

(i) The scheduling of one course is divided into three running pieces

(ii) The three running pieces are executed in parallel

RPB RPC

RPA

RPB

RPC

No.

Yes, solution is SB.

Yes, solution is Sc.

Adopted solution is SB.

Fig. 2. Timetabling by a sequential method and by
a parallel method

4.2 How to divide into running pieces

According to the basic idea of parallelization
proposed in the previous subsection, the rules will
be divided into several running pieces according to
their individual salience values. However, improper
division might result in wrong solutions or infinite
loops. Consider the following example. A rule,
called Rx, has one action, Am, listed on its right
hand side, where Am has to be inferred by another
rule Ry. If all its conditions are satisfied at runtime,
the action, Am, will be added into the knowledge
base for further inference. The inference engine
will use Ry to infer Am. If Rx is in the running piece
RPA and Ry is in RPB after division, there are two
possible problems incurred.

The first problem is that the action Am cannot be
inferred by the inference engine responsible for
RPA because Ry is in RPB rather than RPA. To cope
with the first problem, RPB should include Ry to
ensure that Am can be inferred by Ry. However, af-
ter inferring Am by Ry, the inference engine might
require other rules not in RPB for further inference.

5

As a result, more and more rules have to be in-
cluded in RPB to draw the conclusion by further
inference. That is, all the rules in the inference
chain have to be included in the same running piece,
which we call the property of self-containment. The
property of self-containment might lead to no
possible ways of rule partitioning because a rule
may included in more than one running piece,
which may result in duplicated conclusions. We
have to compare the results and return only one re-
sult. If this problem occurs, parts of the inference
of scheduling one course have to be executed con-
currently on multiple running pieces, resulting in a
poorer performance improvement. Fortunately, we
can avoid this problem by carefully designing the
application of course timetabling. No rules will fire
any action that requires rules out of their individual
belonged running pieces.

The second problem is that the action Am can be
inferred only by the rules in RPB. This problem oc-
curs when there are multiple rules, distributed in
different running pieces, which can be matched
with the action Am, only the rules in RPB can be
matched with the action Am, resulting in an unde-
sirable result or infinite loop. For instance, assume
that the action Am can be inferred by two rules, Rx
and Ry, where Rx has a higher salience value than
Ry. Assume that Rx and Ry are RPA and RPB, respec-
tively. Following the sequential execution of the
original CLIPS inference, Rx will be selected for
inference first. Assume that Rx will be matched
with the action Am, resulting in that the inference by
Rx will not be performed for Am. However, because
RPB contains only the rule Ry, Am will be matched
with Ry instead of Rx. The match between Am and Ry
have three possible results. First, assume that the
match is successful. The inference result may be
different from that inferred by Rx. To cope with the
problem, we have to compare the results from run-
ning pieces and decide the result by the running
priority. Second, if the match is failed, the inference
engine will conclude that no feasible solution. This
result is not harmful because it will be filtered out
when it returns to the master. Third, if the match is
failed and the rule Ry fire an action to retract some
facts from the knowledge base, the inference en-
gine can re-match the action Am only with the rules

in RPB one by one again though the rules in RPA
should be matched first, as shown in Fig. 3. If no
retraction can result in an inference result, the infe-
rence engine will fall in infinite loop. In the appli-
cation of course timetabling, we will retract an al-
ready scheduled course by the lowest-prioritized
rule if the current selected course cannot be sche-
duled by any other rules. After retracting an already
scheduled course, the current course will be in-
ferred from the highest-prioritized rule to the low-
est-prioritized rule again. To cope with the third
problem and according to the feature of the rea-
soning of course timetabling, we propose that for a
rule having retraction actions, it has to be the low-
est prioritized one in its running piece and the re-
traction action will be executed only once.

RPA RPB

Retraction point
Fig. 3 The inference process when a retraction ac-

tion occurs
4.3 Implementation

To execute a CLIPS-based expert system in pa-
rallel on a cluster system, the application has to be
parallelized with MPICH library functions. How-
ever, CLIPS language does not support the feature,
i.e., we cannot invoke MPICH functions directly
from a CLIPS program. Therefore, we modified the
CLIPS inference engine to execute the CLIPS file
in parallel because the inference engine is written
in the C language. Moreover, the inference engine
is coded based on the SPMD model. When being
executed in parallel, each inference engine will
read a CLIPS file to build the knowledge base.

To assign course one by one and execute the as-
signment of one course in parallel, we propose the
following programming model, as shown in Fig. 4,
for parallel CLIPS program execution. A CLIPS
file contains only the rules and all the processes
will read a CLIPS file for making inference. The

6

7

nce engine to display the reasoning
conclusions.

facts are managed in a C file that will be linked
with the inference engine. Therefore, the facts have
to be converted into C-format data. At the run time,
the data will be distributed to multiple processes to
reduce the execution time of making inference.
Meanwhile, we have to convert these C-format data
and insert into the fact list in the inference engine.
Similarly, the inference results have to be extracted
from the infere

Master

timetabling.clp
Rules

RP1.clp

Facts
in the C
format

Facts

Rules

Rules

RP2.clp

Inference
Engine

Inference
Engine

Fact
Result
and FactsResult

and Facts

Fact

Master

Slave 2Slave 1

Fig. 4 The programming model of parallel CLIPS

rogram execution

 will be
done when there is no course in the master.

brary is

Table 1 The configuration of our cluster system

p

We divide the rules of the parallel expert system
into four running pieces according to the partition
method mentioned in the previous subsection. Each
running piece is saved as an independent CLIPS
file. At runtime, four slave MPI processes will be
forked for the inferences of these four running
pieces. Each slave process is associated with a
CLIPS file containing one running piece. The mas-
ter will send facts one by one to all slaves. After
receiving one fact, each slave process perform the
inference according to the fact and its associated
CLIPS file. As soon as the inference is done, each
slave sends the inference result back to the master
process. In addition, the facts in the knowledge
base will be sent back to the master. Then, the
master determines which result will be adopted for
the current course. The result from the slave that
has the largest priority among all the salves having
feasible solution will be chosen for scheduling the

course. Before the master sends next course to
slaves for further inference, the master will broad-
cast all slaves the facts from the chosen slave. After
receiving the facts, each slave will replace the
knowledge base by these facts, which assuring a
consistent view of the knowledge base before
scheduling the next course. The scheduling

V. PERFORMANCE EVALUATIONS

We have constructed a cluster consisting of four
Intel PCs to evaluate the parallel course timetabling
expert system. The configuration of our cluster
system is shown in Table 1. The MPICH2 li
adopted for inter-process communication.

The execution times of the sequential and the

parallel course timetabling expert systems are
compared in Fig. 5. The sequential version is ex-
ecuted on one PC in our cluster system while the
parallel version is executed on five PCs in our
cluster system. As we can see, the parallel version
can cut the execution time significantly. The spee-
dup is 12.47, derived by dividing the execution
time of the sequential version by that of the parallel
version. The speedup is superlinear because we use
only five PCs but the speedup is more than five.
The reason that we can obtain superlinear speedup
is explained as follows. The total memory space of
the cluster system is larger than that of one PC.
Because CLIPS-based applications are memo-
ry-intensive programs, the parallel version can take
more advantage from larger memory space.

VI. CONCLUSIONS

In this paper, we investigate into how to con-

8

constraint satisfaction
and relaxation techniques.

struct a parallel course timetabling expert system.
We proposed an artificial intelligence approach that
integrates expert systems and constraint program-
ming to implement a course timetabling system.
Expert systems are utilized to incorporate know-
ledge into the timetabling system and to provide a
reasoning capability for knowledge deduction. Se-
parating out the knowledge base, the facts, and the
inference engine in expert systems provides greater
flexibility in supporting changes. The constraint
hierarchy and the constraint network are utilized to
capture hard and soft constraints and to reason
about constraints by using

0
200
400
600
800

1000
1200
1400
1600

Sequential Parallel

E
xe

cu
tio

n
tim

e
(s

ec
.)

Version
 se-

c
Fig. 5 Execution time comparison between the
qu

the smallest salience value in
ru

ear speedup when running in a

A

r contract number:
NSC98-2221-E-018-008-MY2.

a,

ential and parallel versions.
The inference of the expert system is imple-

mented in the CLIPS language. To address the
problem that it is very time consuming to achieve a
feasible timetable by CLIPS programs, we propose
parallelizing the execution of assigning one course
in a cluster system. The rules are divided into mul-
tiple running pieces and each running piece is ex-
ecuted by one slave process. We pointed out that
improper rule division would result in four possible
problems. The first problem should be avoided by
restricting that no rules will fire any action in other
running piece. The second and the third problems
can be dealt normally. The fourth problem can be
solved by the following restriction. A retraction ac-
tion should be performed only once and the asso-
ciated rule has its d

nning piece.
Finally, we propose a programming model that

separating facts and rules into two types of files.
Facts are processed, transmitted by the C language
and rules are inferred by the CLIPS language. In-
ter-process communication in a cluster system is
enabled by incorporating the MPICH library into
the CLIPS inference engine. Experimental results
show that the proposed parallel timetabling system
achieves superlin
cluster system.

CKNOLWDGEMENT

This research is supported by the National
Science Council of Taiwan unde

REFERENCE
[1] CLIPS, http://www.ghg.net/clips/CLIPS.html
[2] P. Boizumault, Y. Delon and L. Peridy, Con-

straint logic programming for examination
timetabling, The Journal of Logic Program-
ming , pp. 217-233, 1996.

[3] Dana Petcu, “Parallel Jess,” ISPDC 2005, pp.
307–316, 2005.

[4] S. Deris, S. Omatu and H. Ohta, Timetable
planning using the constraint-based reasoning,
Computers and Operations Research, Vol. 27,
pp. 819-840, 2000.

[5] V. Dhar and N. Ranganathan, Integer pro-
gramming vs. expert systems: An experimental
omparison, Communications of ACM, Vol. 33,

No. 3, pp. 323-336, 1990.
[6] H. Gunsdhi, V.J. Anand and Y.W. Yong, Au-

tomated timetabling using an object-oriented
scheduler, Expert System with Applications,
Vol. 10, No. 2, pp. 243-256, 1996.

[7] M.T. Isaai and N.P. Cassaigne, Predictive and
reactive approaches to the train-scheduling
problem: A knowledge management perspective,
IEEE Transactions on Systems, Man, and Cy-
bernetics - Part C: Applications and Reviews
Vol. 31, No. 4, pp. 476-484, 2001.

[8] V. Kumar, Algorithms for con-
straint-satisfaction problems: A survey, AI
Magazine, Vol. 13, No. 1, pp. 32-44, 1992.

[9] A.K. Mackworth, Consistency in networks of
relations, Artificial Intelligence, Vol. 8, No. 1,
pp. 99-118, 1977.

[10] M. Menken, JClips - CLIPS for Jav
http://www.cs.vu.nl/~mrmenken/jclips.

[11] MPICH, http://www.mcs.anl.gov/research/
projects/mpi/mpich1/

[12] A. Monfroglio, Time-tabling through a de-
uctive database: A case study, Data and

Knowledge Engineering, Vol. 3, pp. 1-27, 1988.

9

 Housos, Constraint pro-

rogrammi

Vol. 10, No. 2, pp. 179-186, 2009.

lication in

 Expert Sys-

g”, International
Journal on Artificial Intelligence Tools, Vol. 17,
No. 1, pp. 223-240, Feb. 2008.

[13] L.F. Lai, A knowledge engineering approach
to knowledge management. Information Science,
Vol. 177, pp.4072-4094, 2007.

[14] G. Solotorevsky, E. Gudes and A. Meisels,
Raps: A rule-based language specifying r

Paral

e-

Lan

source allocation and time-tabling problems,
IEEE Transactions on Knowledge and Data En-
gineering, Vol. 6, No. 5, pp. 681-697, 1994.

[15] C. Valouxis and E.
gramming approach for school timetabling,
Computers and Operations Research, Vol. 30,
pp. 1555-1572, 2003.

[16] C.-C. Wu, L.-F. Lai, Y.-S. Chang, “Towards
Automatic Load Balancing for P ng

te

lel Fuzzy Expert Systems in Heterogene-
ous Clusters”, Journal of Internet Technology,

[17] C.-C. Wu, L.-F. Lai, Y.-S. Chang, “A Study
of Designing a Grid-Enabled Expert System

guage”, Journal of the Chinese Institute of
Engineers, Vol. 31, No. 7, pp. 1165-1179, 2008.

[18] C.-C. Wu, L.-F. Lai, Y.-S. Chang, “Using
MPI to Execute a FuzzyCLIPS App
Parallel in Heterogeneous Computing Systems,”
IEEE CIT 2008, pp. 279-284, 2008.

[19] C.-C. Wu, L.-F. Lai, K.-C. Lai, W.-C. Chang,
Syun-Sheng Jhan, “Parallelizing

ms with CLIPS Language for Grid Systems,”
WoGTA’07, pp. 125-131, 2007.

[20] L.F. Lai, C.-C. Wu, N.L. Hsueh, L.T. Huang,
and S.F. Hwang. “An Artificial Intelligence
Approach to Course Timetablin

	Chao-Chin Wu, Lien-Fu Lai

