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Abstract—A graph G is edge-pancyclic if each edge
lies on cycles of all lengths. A bipartite graph is edge-
bipancyclic if each edge lies on cycles of every even length
from 4 to |V (G)|. Two cycles with the same length m,
C1 = 〈u1, u2, · · · , um, u1〉 and C2 = 〈v1, v2, · · · , vm, v1〉
passing through an edge (x, y) are independent with respect
to the edge (x, y) if u1 = v1 = x, um = vm = y and ui 6= vi

for 2 ≤ i ≤ m−1. Cycles with equal length C1, C2, · · · , Cn

passing through an edge (x, y) are mutually independent
with respect to the edge (x, y) if each pair of them are
independent with respect to the edge (x, y). We propose a
new concept called mutually independent edge-bipancyclicity.
We say that a bipartite graph G is k-mutually independent
edge-bipancyclic if for each edge (x, y) ∈ E(G) and for
each even length l, 4 ≤ l ≤ |V (G)|, there are k cycles with
the same length l passing through edge (x, y), and these k
cycles are mutually independent with respect to the edge
(x, y). In this paper, we prove that the hypercube Qn is
(n− 1)-mutually independent edge-bipancyclic for n ≥ 4.

Index Terms—hypercube, bipancyclic, edge-bipancyclic,
mutually independent.

I. INTRODUCTION

For the graph definitions and notations we refer
the reader to [1]. A graph is denoted by G with the
vertex set V (G) and the edge set E(G). The simu-
lation of one architecture by another is an important
issue in interconnection networks. The problem of
simulating one network by another is also called
embedding problem. One particular problem of ring
embedding deals with finding all the possible length
of cycles in an interconnection network [2]–[4].

A path P = 〈v0, v1, · · · , vm〉 is a se-
quence of adjacent vertices. We also write P =
〈v0, · · · , vi, Q, vj, · · · , vm〉 where Q is a path

〈vi, · · · , vj〉. A cycle C = 〈v0, v1, · · · , vm, v0〉 is a
sequence of adjacent vertices. The length of a path
P is the number of edges in P . The length of a
cycle C is the number of edges in C.

A path is a hamitonian path if it contains all the
vertices of G. A graph G is hamiltonian connected
if there exists a hamiltonian path between any two
different vertices of G. A graph G = (B ∪W,E) is
bipartite if V (G) is the union of two disjoint sets
B and W such that every edge joins B with W .
It is easy to see that any bipartite graph with at
least three vertices is not hamiltonian connected. A
bipartite graph G is hamiltonian laceable if there
exists a hamiltonian path joining any two vertices
from different partite sets. A graph G is pancyclic
[1] if G includes cycles of all lengths. A graph G
is called edge-pancyclic if each edge lies on cycles
of all lengths. If these cycles are restricted to even
length, G is called a bipancyclic graph. A bipartite
graph is edge-bipancyclic [5] if each edge lies on cy-
cles of every even length from 4 to |V (G)|. A graph
is panconnected if, for any two different vertices x
and y, there exists a path of length l joining x and y,
for every l, dG(x, y) ≤ l ≤ |V (G)|−1. The concept
of panconnected graphs is proposed by Alavi and
Williamson [6]. It is not hard to see that any bipartite
graph with at least 3 vertices is not panconnected.
Therefore, the concept of bipanconnected graphs is
proposed. A bipartite graph is bipanconnected if,
for any two different vertices x and y, there exists
a path of length l joining x and y, for every l,
dG(x, y) ≤ l ≤ |V (G)| − 1 and (l − dG(x, y))
being even. It is proved that the hypercube is
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bipanconnected [7].
We now introduce a relatively new concept.

Two paths P1 = 〈u1, u2, · · · , um〉 and P2 =
〈v1, v2, · · · , vm〉 from a to b are independent [8]
if u1 = v1 = a, um = vm = b, and ui 6= vi

for 2 ≤ i ≤ m − 1. Paths with equal length
P1, P2, · · · , Pn from a to b are mutually independent
[8] if every two different paths are independent.
Two paths P1 and P2 are fully independent [9] if
ui 6= vi for all 1 ≤ i ≤ m. Paths with equal
length P1, P2, · · · , Pn, are mutually fully indepen-
dent if each pair of them are fully independent.
Two cycles C1 = 〈u1, u2, · · · , um, u1〉 and C2 =
〈v1, v2, · · · , vm, v1〉 passing through an edge (x, y)
are independent with respect to the edge (x, y),
if u1 = v1 = x, um = vm = y and ui 6= vi

for 2 ≤ i ≤ m − 1. Cycles with equal length
C1, C2, · · · , Cn passing through an edge (x, y) are
mutually independent with respect to the edge (x, y)
if every two cycles are independent with respect to
the edge (x, y).

An n-dimensional hypercube, denoted by Qn,
is a graph with 2n vertices, and each vertex u
can be distinctly labeled by an n-bit binary string,
u = un−1un−2...u1u0. There is an edge between two
vertices if and only if their binary labels differ in
exactly one bit position. Let (u, v) be an edge in
Qn. If the binary labels of u and v differ in ith
position, then the edge between them is said to be
in ith dimension and the edge (u, v) is called an ith
dimension edge. We use Q0

n to denote the subgraph
of Qn induce by {u ∈ V (Qn) | ui = 0} and Q1

n the
subgraph of Qn induced by {u ∈ V (Qn) | ui = 1}.
Q0

n and Q1
n are all isomorphic to Qn−1. Qn can be

decomposed into Q0
n and Q1

n by dimension i, and
Q0

n and Q1
n are (n − 1)-dimensional subcubes of

Qn induced by the vertices with the ith bit position
being 0 and 1 respectively. For each vertex u in
Qi

n, i = 0, 1, there is exactly one vertex in Qi−1
n ,

denoted by ū, such that (u, ū) is an edge in Qn. Saad
and Schultz [10] proved Qn is edge-bipancyclic in
the sense that each edge lies on cycles of every
even length from 4 to 2n. Li et al. [7] considered
an injured n-dimensional hypercube Qn where each
edge lies on cycles of every even length from 4 to
2n with n−2 edge faults. Tsai [11] proved that such
injured hypercube Qn contains a cycle of every even
length from 4 to 2n, even if it has up to (2n − 5)

edge faults with some specified conditions. Sun et
al. [12] proved that the n-dimensional hypercube
Qn contains n−1 mutually independent hamiltonian
paths between any vertex pair {x, y}, where x and
y belong to different partite sets and n ≥ 4. Let |F |
be the number of the faulty edges. Hsieh and Weng
[13] showed that when 1 ≤ |F | ≤ n−2, there exists
n−|F |−1 mutually independent hamiltonian paths
joining x to y in Qn − F , where x and y belong to
different partite sets.

We now introduce a new concept. We say that a
bipartite graph G is n-mutually independent edge-
bipancyclic if for each edge (x, y) ∈ E(G), and for
each even length l, 4 ≤ l ≤ |V (G)|, there are n
cycles with the same length l passing through edge
(x, y), and these n cycles are mutually independent
with respect to the edge (x, y). In this paper, we
show that the hypercube has a stronger property
of edge-bipancyclic property. We prove that an n-
dimensional hypercube Qn, for n ≥ 4, is (n − 1)-
mutually independent edge-bipancyclic in the sense
that each edge of Qn lies on n − 1 mutually
independent cycles of every even length from 4
to 2n. Our result strengthens a previous result of
Saad and Schultz [10]. Because each vertex of the
hypercube Qn has exactly n edges incident with it,
we can expect at most n− 1 mutually independent
cycles passing through edge (x, y). Therefore, the
result “n− 1” is tight.

II. PRELIMINARIES

In order to prove our claim, we need the following
previous results.

Lemma 1. [14] The hypercube Qn is hamiltonian
laceable for every positive integer n.

Lemma 2. [7] The hypercube Qn is bipancon-
nected for n ≥ 2.

The hypercube Qn is known to be a bipartite
graph. Let (B,W ) be the vertex bipartition of Qn.
Edges e1, e2, · · · , en in a graph G are called inde-
pendent edges if these edges are pairwise disjoint.

Lemma 3. [12] Let {ei | 1 ≤ i ≤ n − 1} be any
n − 1 independent edges of Qn with n ≥ 2 and
ei = (bi, wi). Then there exist n − 1 mutually fully
independent hamiltonian paths P l

1, · · · , P l
n−1 of Qn

such that P l
i joins from bi to wi.
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Theorem 1. [12] Let x and y be two vertices from
different partite sets of Qn, for n ≥ 4. Then there
exist n− 1 mutually independent hamiltonian paths
joining x to y.

Theorem 2. [15] Let Fv be a set of faulty vertices
in Qn. There exists a path of every odd length from
3 to 2n − 2|Fv| − 1 joining any two adjacent fault-
free vertices in Qn−Fv even if |Fv| ≤ n−2, where
n ≥ 3.

Lemma 4. [12] Qn − {x, y} is hamiltonian lace-
able, if x and y are any two vertices from different
partite sets of Qn with n ≥ 4.

III. MUTUALLY INDEPENDENT
EDGE-BIPANCYCLIC PROPERTY OF HYPERCUBES

To prove our main result, we need the following
lemmas, Lemma 5 to 7.

Lemma 5. Let x and y be two vertices from different
partite sets of Qn with n ≥ 4. There exists a path of
every odd length from 1 to 2n − 3 joining any two
adjacent fault-free vertices in Qn − {x, y}.

By Theorem 2 and Lemma 4, we can prove
Lemma 5 easily.

Lemma 6. Let e1 and e2 be two independent edges
of Q3, ei = (bi, wi) for i = 1, 2. Then Q3 contains
2 mutually fully independent paths P l

1 and P l
2 with

any odd length l ≤ 23 such that P l
i joins from bi to

wi, i = 1, 2.

Lemma 7. Let {ei | 1 ≤ i ≤ n − 1} be n − 1
independent edges of Qn with n ≥ 2, ei = (bi, wi),
i = 1 to n−1. Then there exist n−1 mutually fully
independent paths P l

1, · · · , P l
n−1 of Qn with any odd

length l ≤ 2n − 1 such that P l
i joins from bi to wi,

i = 1 to n− 1.

Proof: It is clear that the result holds for Q2.
We prove the statement by induction on n. By
Lemma 6, the statement holds for n = 3. Suppose
that the result holds for Qn−1, for some n ≥ 4. The
hypercube Qn has n dimensions, and there are only
n − 1 independent edges, so there is at least one
dimension which does not contain any one of these
n − 1 independent edges. We can choose one of
these dimensions to separate Qn into two (n − 1)-
dimensional subcubes Q0

n and Q1
n. We then prove

the result by considering the following three cases.

Case 1. For odd length l and 1 ≤ l ≤ 2n−1 − 1.
Case 1.1. Suppose that there are k independent
edges in Q0

n with 1 ≤ k ≤ n − 2 and there are
n − k − 1 independent edges in Q1

n. By induction
hypothesis, the case is obvious.
Case 1.2. Without loss of generality, suppose that all
the n−1 independent edges are in Q0

n. By induction
hypothesis, there exist n−2 mutually fully indepen-
dent paths P l

1, · · · , P l
n−2 of Q0

n with any odd length
l ≤ 2n−1 − 1 such that P l

i joins from bi to wi for
1 ≤ i ≤ n− 2. By Lemma 2, there is a path Rm of
Q1

n with odd length 1 ≤ m ≤ 2n−1− 3 joining b̄n−1

to w̄n−1. Let P l
n−1 = 〈bn−1, b̄n−1, R

m, w̄n−1, wn−1〉,
then 3 ≤ l ≤ 2n−1 − 1. Note that, bn−1 and wn−1

are adjacent vertices, so we obtain paths P l
n−1 for

all odd lengths l, 1 ≤ l ≤ 2n−1 − 1. Therefore,
there are n − 1 mutually fully independent paths
P l

1, · · · , P l
n−1 of Qn with any odd length l ≤ 2n−1

such that P l
i joins from bi to wi, i = 1 to n− 1.

Case 2. For odd length l and 2n−1 +1 ≤ l ≤ 2n−3.
Case 2.1. Suppose that there are k independent
edges in Q0

n with 1 ≤ k ≤ n − 2 and there are
n − k − 1 independent edges in Q1

n. By induction
hypothesis, there exist k mutually fully independent
paths R1, · · · , Rk of Q0

n with length 2n−1 − 1 such
that Ri joins from bi to wi for 1 ≤ i ≤ k.
We let Ri = 〈bi, ui, vi, Zi, wi〉 for 1 ≤ i ≤ k.
According to induction hypothesis, there exist k
mutually fully independent paths T l′

1 , · · · , T l′
k of

Q1
n with any odd length l′ ≤ 2n−1 − 3 such

that T l′
i joins from ūi to v̄i for 1 ≤ i ≤ k.

Therefore, P l
i = 〈bi, ui, ūi, T

l′
i , v̄i, vi, Zi, wi〉 with

2n−1 + 1 ≤ l ≤ 2n − 3 for 1 ≤ i ≤ k. Again
by induction hypothesis, there exist n − k − 1
mutually fully independent paths Rk+1, · · · , Rn−1

of Q1
n with length 2n−1 − 1 such that Ri joins

from bi to wi for k + 1 ≤ i ≤ n − 1. We let
Ri = 〈bi, ui, vi, Zi, wi〉 for k + 1 ≤ i ≤ n − 1.
By induction hypothesis, there exist n − k − 1
mutually fully independent paths T l′

k+1, · · · , T l′
n−1 of

Q0
n with any odd length l′ ≤ 2n−1 − 3 such that

T l′
i joins from ūi to v̄i for k + 1 ≤ i ≤ n − 1.

Therefore, P l
i = 〈bi, ui, ūi, T

l′
i , v̄i, vi, Zi, wi〉 with

2n−1 + 1 ≤ l ≤ 2n − 3 for k + 1 ≤ i ≤ n − 1.
Hence, there are n − 1 mutually fully independent
paths P l

1, · · · , P l
n−1 of Qn with any odd length

2n−1 + 1 ≤ l ≤ 2n − 3 such that P l
i joins from

bi to wi.
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Case 2.2. Without loss of generality, suppose that
all the n − 1 independent edges are in Q0

n. By
induction hypothesis, there exist n − 2 mutually
fully independent paths R1, · · · , Rn−2 of Q0

n with
length 2n−1− 1 such that Ri joins from bi to wi for
1 ≤ i ≤ n − 2. We let Ri = 〈bi, Zi, ui, vi, zi, wi〉.
Again by induction hypothesis, there exist n − 2
mutually fully independent paths T l′

1 , · · · , T l′
n−2 of

Q1
n with any odd length l′ ≤ 2n−1− 3 such that T l′

i

joins from ūi to v̄i for 1 ≤ i ≤ n − 2. Therefore,
P l

i = 〈bi, Zi, ui, ūi, T
l′
i , v̄i, vi, zi, wi〉 with any odd

length 2n−1 + 1 ≤ l ≤ 2n − 3 for 1 ≤ i ≤ n − 2.
By Lemma 2, there exists a path Rn−1 of Q1

n

with length 2n−1 − 3 joining b̄n−1 to w̄n−1. We
let Rn−1 = 〈b̄n−1, Zn−1, un−1, vn−1, w̄n−1〉. By
Lemma 5, there exists a path T l′

n−1 with every
odd length 1 ≤ l′ ≤ 2n−1 − 3 joining ūn−1 to
v̄n−1 in Q0

n − {bn−1, wn−1}. Therefore, P l
n−1 =

〈bn−1, b̄n−1, Zn−1, un−1, ūn−1, T
l′
n−1, v̄n−1, vn−1, w̄n−1, wn−1〉

with 2n−1 + 1 ≤ l ≤ 2n − 3. So, there are n − 1
mutually fully independent paths P l

1, · · · , P l
n−1 of

Qn with any odd length 2n−1 + 1 ≤ l ≤ 2n − 3
such that P l

i joins from bi to wi.
Case 3. For odd length l and l = 2n − 1. This case
is proved by Lemma 3.

By Case 1 Case 2 and Case 3, the proof is
complete.

We now prove our main result by induction.

Lemma 8. The hypercube Q4 is 3-mutually inde-
pendent edge-bipancyclic.

Theorem 3. The hypercube Qn is (n− 1)-mutually
independent edge-bipancyclic for n ≥ 4.

Proof: Let (u, v) be an edge in Qn, n ≥ 4. We
prove the statement by induction on n. By Lemma 8,
the statement holds for n = 4. Suppose that the
result holds for Qn−1, n ≥ 5. We may choose
a dimension to divide the hypercube Qn into two
subcubes Q0

n and Q1
n so that the edge (u, v) is in Q0

n.
According to the length l of the cycles, we divide the
proof into the following three cases. In each case,
the length l is assumed to be an even number. We
shall find n − 1 mutually independent cycles with
length l passing through edge (u, v).
Case 1. For even length l and 4 ≤ l ≤ 2n−1.
By induction hypothesis, there exist n− 2 mutually
independent cycles with respect to the edge (u, v),

Ck
1 , · · · , C l

n−2 with any even length 4 ≤ l ≤ 2n−1 in
Q0

n. By Lemma 2, there is a path P k of Q1
n with any

odd length 1 ≤ k ≤ 2n−1−3 joining ū to v̄. Then we
have C l

n−1 = 〈u, ū, P k, v̄, v, u〉 with any even length
4 ≤ l ≤ 2n−1. Therefore, there exist n− 1 mutually
independent cycles with respect to the edge (u, v),
C l

1, · · · , C l
n−1 with every even length 4 ≤ l ≤ 2n−1.

Case 2. For even length l and 2n−1+2 ≤ l ≤ 2n−2.
By induction hypothesis, there exist n − 2 mutu-
ally independent cycles with respect to the edge
(u, v), R1, · · · , Rn−2 with length 2n−1 of Q0

n. We
let Ri = 〈u, xi, yi, zi, · · · , v, u〉 for 1 ≤ i ≤ n − 2.
By Lemma 7, for any given odd length k ≤ 2n−1−3
there exist n − 2 mutually fully independent paths
P k

1 , · · · , P k
n−2 all with the same length k, such that

P k
i joins from ȳi to z̄i for 1 ≤ i ≤ n − 2. We

let C l
i = 〈ui, xi, yi, ȳi, P

k
i , z̄i, zi, Ri, vi, ui〉. Then C l

i ,
i = 1 to n − 2 are with any even length l, where
2n−1 + 2 ≤ l ≤ 2n − 2. By Lemma 1, there
exists a hamiltonian path P ′ of Q1

n joining ū to v̄.
Let P ′ = 〈ū, yn−1, zn−1, T, v̄〉. By Lemma 5, there
exists a path Uk′ with every odd length 1 ≤ k′ ≤
2n−1 − 3 joining ȳn−1 to z̄n−1 in Q0

n − {u, v}. We
let C l

n−1 = 〈u, ū, yn−1, ȳn−1, U
k′ , z̄n+1, zn+1, T, v̄, v〉

with any even length l, 2n−1+2 ≤ l ≤ 2n−2. Hence,
there exist n− 1 mutually independent cycles with
respect to edge (u, v), C l

1, · · · , C l
n−1 with any even

length 4 ≤ l ≤ 2n−1.
Case 3. For even length l and l = 2n. This case is
proved by Theorem 1.

By Case 1, Case 2 and Case 3, we complete the
proof.

IV. CONCLUSION

In [1], the author introduced a popular property
called the pancyclicity. A stronger property is edge-
bipancyclicity which was proposed by Mitchem and
Schmeichel in [5]. Another interesting property is
the mutually independent paths. Sun et al. [12]
proved that the n-dimensional hypercube graph
contains n − 1 mutually independent hamiltonian
paths between any vertex pair {x, y}, where x and
y belong to different partite sets and n ≥ 4. In
this paper, we combine the two properties, edge-
bipancyclicity and mutually independent paths, into
a new stronger property called mutually indepen-
dent edge-bipancyclic property, and show that the
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hypercube Qn is (n−1)-mutually independent edge-
pancyclic for n ≥ 4. Our result also strengthens
a previous result of Saad and Schultz [10], in the
sense that the hypercube Qn is not only edge-
bipancyclic but also mutually independent edge-
pancyclic.
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