TERENTAFRZEREEGSR

PROTOOL - Sun RPC FE=ZEHHIEEIL TR
PROTOOL — An Automated Development Tool for Sun RPC Programming

BEE FHE - RES
Hsin-Ta Chiao, Ming-Tone Tsai, Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University
1001 Ta Hsueh Rd., Hsinchu, Taiwan 30050, ROC
E-mail: {gis84532, gis82558, smyunan}@cis.nctu.edu.tw

e

Sun RPC 2 B Ri#:{# SRR — & RPC #
o (BEE LT AEEES © 5% - THESERE
BZRER » W E5E2EHEN - H - EEAHRE
iterative server stub code RYSERMTIF - $1EHER
ERIEE. - $#95%51+T PROTOOL » BEFILETE T
Sun RPC FEX:RYA - tHEEFIFS Sun RPC HEHlER
HoEtiEs - 541 0 PROTOOL BEEEAENERELT
9 concurrent server stub code » iifi B BfEERAET
HiEE T concurrent server _I= concurrency control B
B R FRMAEIE - B3 PROTOOL FEKHY
concurrent server 2%, + SHENFEAIE CEBIF
BTy concurrent server T2, » FEXER L EB1E

S

;I?ﬁﬁjf%? D HER RS o BIREFTA - T
e

Abstract

Sun RPC is the most popular RPC
implementation. However, it has some shortcomings.
First, it is still not fully transparent to programmers. In
addition, it generates inefficient iterative server stub
codes only. To overcome these problems, we designed
a development tool, called “PROTOOL”. It can help
programmers that know nothing about the syntax of
-Sun RPC to write distributed programs based on Sun
RPC infrastructure. Moreover, it can generate stub
" codes for concurrent servers and handles concurrency
control problem introduced by concurrent servers
automatically. According to our measurements, the

performance of concurrent server programs enhanced
by PROTOOL are all most the same with the
performance of handcrafted ones.

Keywords: distributed systems, remote procedure call

(RPC), concurrency control.

1. Intreduction

Distributed systems offer many fascinating features
such like better cost/performance ratio, higher reliability.
However, their software structure is usually very
complex. Programmers have to deal with issues of
communication, concurrency control, heterogeneousity,
etc. Remote procedure call (RPC) [1] is one of the
efforts that try to solve this problem. It models
communications between clients and servers as
conventional procedure calls. The details of
communication are handled by client stubs and server
stubs, which were generated by IDL compilers
according to interface descriptions. To write distributed
programs using RPC, programmers simply undertake the
fellow steps:

1. Build a conventional program.

Split its source codes into two parts, namely,
client part and server part.

Write an interface specification.

Generate stubs using IDL compilers.
Compile and link the client and server
separately with its corresponding stubs.

VoW

This is really much simpler than building it from
scratch but still not fully transparent to programmers.
First, they have to write an interface specification by
themselves. Second, some IDL compilers generate stubs
for concurrent servers, within which the number of
remote procedures that can be executed at one time is
not restricted. As a result, race condition [5] may be
introduced by the concurreni activities within it. To
avoid this problem, programmers must write some codes
to synchronize accesses to shared resources. Third, it is
sometimes necessary to initialize these resources and
requires programmers to modify server stubs manually.
Thus, developing a distributed program is still like a
race of obstacles.

Shani and Gold [9] proposed a development tool
called “MakeDCE” for OSF/DCE RPC to generate
interface specifications and binding codes

E-164

\

R RE/\ AT R E e

automatically. However, it does not emphasize the

server synchronization problem even though the IDL
compiler on DCE generates concurrent server stubs. It
does not handle the server initialization problem,
either.

In this paper, we focus on the Sun RPC[7]. It is
the most popular RPC implementation. However, it
introduces new problems. First, because of its version
control and the restriction of parameter passing, stubs
of it are comprised of two parts: a communication stub
and some interface procedures. An IDL compiler,
called “rpcgen,” generates communication stubs from
an interface specification. To supply interface
procedures, programmers should do more than they
have to do on other platforms. Second, the rpcgen can
generate only iterative servers; that is, at most one
remote procedure can be executed at one time.
Although it avoids the race condition discussed above,
it will have negative impact on performance,
especially for servers that perform I/O frequently.

To solve these problems, we design a GUI-based
automated development tool called “PROTOOL.”
Programmers can use it to build a distributed program
that contains multiple clients and one server. Its inputs
are configuration files. Each configuration file
corresponds to a client or to a server. Writing a
configuration file is so simple that programmers need
no knowledge about Sun RPC syntax. The PROTOOL
generates an interface specification and interface
procedures automatically with the aid of configuration
files. Moreover, it generates not only iterative server
stubs, but also concurrent server stubs. To prevent race
condition happened in concurrent server, it
automatically generates codes for synchronizing the
accesses to shared resources. It also handles server
initialization in a novel way. In summary,
programmets only have to know how to separate their
programs, and the remains are left to PROTOOL. This
will reduce burdens of RPC programmers further.

2. System Overview

In this section we describe how the PROTOOL
works. The details of concurrent server will be
discussed in Section 3.

Figure 1 depicts the components that constitute
the PROTOOL. We create all these components
except the rpcgen. How the PROTOOL works is
described below:

First, users designate the configuration files, the
network protocol, and the server type (iterative or
concurrent server) through PROTOOL’s GUI

A client configuration file contains a list of source
files that constitute the client. Similarly, a server
configuration file also contains a list of source files
that constitute the server. By default, all server
procedures that are triggered directly by client parts

will be exported. Programmers can also cofitrol the.
export list manually through server’s configuration file.
PROTOOL will generate interface description for
these exported procedures automatically. In addition, a
server configuration file may contain group
membership of library procedures (discussed in
section 3.2), and a list of procedures that initialize the
server (discussed in section 3.3).

Figure 1: The Components of PROTOOL

After PROTOOL gathered these inputs, it invokes
a compiler preprocessor (CPP) that deals with CPP
directives, such as #include, #if, #ifdef, and so on,
within all source files. At the meanwhile, a makefile
generator creates makefiles for each client and server.

After the CPP processes all source files, an
interface analyzer will be start up. It first scans all
source files of clients to build a list of procedures
activated by clients. Next, it scans all source files of
the server to build another list of procedures defined
on the server. By comparing these two lists, it
generates a list of server procedures triggered directly
by clients. Then, it modifies the list by referring to the
server configuration file. This list is called interface.
In the last step, this interface is translated into the
format of Sun RPC’s interface specification that will
be used by the interface procedure generator and
rpcgen. After interface analyzer finished its job, these
two components will generate all interface procedures
and communication stubs.

If users wish to have a concurrent server, a shared
resource analyzer will be executed. Otherwise, this
step will be skipped. It parses all source files of the
server to understand how these exported server
procedures access shared resources. After the shared
resource analyzer ends, a source code modifier will be-
invoked. It modifies default iterative server stubs and
makes them become concurrent server stubs. Besides,

E-165

FERENTAEZERERES

it also adds synchronization codes to sérver’s source
files automatically.

Afier all things done, users can use these
makefiles to produce executable programs. Figure 2
shows an example of the input and output files of the
PROTOOL.

Figure 2: The Input and Output Files o
PROTOOL -

3. Issues of Concurrent Servers

This section describes the details of the shared
resource analyzer and the source code modifier. First,
we introduce how the source code modifier changes
iterative server stubs to concurrent server stubs. Later,
we describe how to avoid race condition and deadlock
problem within a concurrent server. Finally, we
discuss how to initialize servers.

3.1 Server Stubs for Concurrent Servers

Let us investigate how the source code modifier
takes advantage of LWP library [8]-an
implementation of thread packages on SunOS-to
_make RPC servers concurrent.

> We developed a new request dispatcher, ie.,
sve_run(), to replace the old one generated by rpcgen.
This function is called by server stub afier server
registers itself to DNS server and endpoint mapper. It
has a dispatching loop to dispatch any valid remote
procedure calls from clients.

Our new sve_run() is shown in Figure 3. Before
the while loop begins, it allocates a private stack for

the server’s main thread by calling lwp_setstkeache().

Then, it enters the dispatching loop. Within the

dispatching loop, it first calls select() to check all the -

registered sockets for any incoming requests. If there
is no request available, it will block, and yield the

control to one of the eligible threads. If a new valid -

request does show up (see the default case within the
switch statement), it will create a new thread by
calling kwp_create() and set the initial program
counter of this thread as sve_getregset(). To make
remote procedures finish their job faster, it lower the
-main thread’s priority and calls lwp_yield() to pass

the control to other non-blocking threads. After getting -

the control, the new thread retrieves the request
message, unmarshals the parameters and calls the
desired procedure. Then, the service can be
undertaken. Finally, the reply will be sent back to the
client and the new thread will be terminated
automatically.

#define MAXSVC 10
#define MAXPRIO 10
#define MINPRIO 1

void sve_run() {

fd_set readids = sve_fdsef;
int size = getdtablesize();
thread_t fid; .
twp_setstkcache(1024, MAXSVC + 1);
while(1) {
switch(select(size,&readfds, NULL,NULL,NULL)) {
case -1 :
defauit: . :
. if(lbemp(readfds, svc_fdset, sizeof(fd_set)))
continue;

wp_create(&tid, sve_getregset, MINPRIO, 0,
iwp_newstk(), 1, readfds);

Iwp_setpri(SELF, MINPRIO);

lwp_yield(tid);

fwp_setpri(SELF, MAXPRIO);

}
}
}

Figure 3: The new sve_run() for concurrent server
stubs

3.2 Synchronizing Accesses to Shared
Resources

Threads within a server program share many
resources, such as variables, files, etc. Therefore,
accesses to these shared ‘resources must be
synchronized to avoid race condition. This
synchronization process is called concurrency control.
Because concurrency control is provided by
PROTOOL automatically and not - aware by
programmers, it has to guarantee the property of
serializability of remote procedure execution[6]. It
employs two-phase locking protocol{6] to guarantee
this property. However, two-phase locking protocol
may cause remote procedures to deadlock. If such
situation occurred within a transaction processing
system, it will abort one or more fransactions at run

E-166

PERE\+AEEH EReE

time to break tie. However, in an RPC server, there is
no way to abort a remote procedure and recover
everything modified by it. Thus, we apply a compile-
time deadlock prevention scheme here. Each remote
procedure acquires locks on -shared items in a
predefined order known at compile-time, then
deadlock can be prevented[4].

To implement the scheme mentioned above, we
employ two components within PROTOOL, i.e., the
shared resource analyzer and the source code modifier.
They interact like a simple two-phase compiler. At the
first phase, the shared resource analyzer recognizes
shared variables accessed by each procedure on a
server, and builds a procedure activation graph on the
server side. In this version of PROTOOL, it
recognizes only global .and static variables that have
no aliases. In next version, we will enhance this
component to handle other shared resources.

- Figure 4: An Example of Procedure Activation
Graph

The procedure activation graph contains three
kinds of procedures: Procedures belong to the first
kind are boundary procedures (dark boxes in figure
4). Only remote clients can activate them. Procedures
of the second kind are internal procedures that have
procedure definition in server’s source files (boxes of
light color in figure 4). They are invisible to clients. In
addition, they can activate each other without any
constraint, even activate themselves. This implies that
there may be direct or indirect procedure recursion.
Library procedures are of the third kind. They have
no procedure definition. Because of the lack of source
codes, there is no way to judge which variables within
these libraries are shared by these library procedures.
Therefore, we try to divide these library procedures
into some independent groups in advance. Among
procedures within different independent groups, there
are no shared resources. The PROTOOL provides
some default library procedure groups. Programmers
can provide their customized group membership

through server configuration file. You can imagine
procedures within a library procedure group shared a
“big” variable. As long as you activate one of these
procedures, you will access this big variable once.
Hence, the problem of library procedure activation can
be reduced to the problem of accessing shared variable.
In figure 4, procedure activation is denoted by a
directed link. Any procedures within a server are
prohibited to activate remote procedures in another
server. '

Take procedures in figure 4 as an example. Sets
a,b,...,s denote shared variables that can be accessed
by procedures AB,...,S directly (library procedure
activation is regarded as an access to a shared
variable), Sets a’,b’,...,s” denote shared variables that
can be accessed by procedures A, B,...,S directly or
indirectly through procedure activation. What the
source code modifier want to know are shared
variables that boundary procedure can accessed
directly or indirectly. In this example, they are set a’,
b’, ¢’, d’. We propose an algorithm in figure 5 to get
them. It traverses the procedure activation graph from
each boundary procedure. Its kemnel is a function
called compute_accessed() that gathers the shared
variables accessed directly or indirectly by an internal
procedure. More precisely, compute_accessed(z, path)
collects the shared variables accessed directly or
indirectly by internal procedure z. If z is an end node
in procedure activation graph, it will return the set of
shared variables accessed by z directly. If z is a
procedure presented in the path of the traverse, it will
return a null set. (A path is a set of procedures. It
shows the activation trail from a boundary procedure
to the procedure currently traversed.) If there are still
some internal procedures can be activated by gz,
compute_access() will recursively trigger itself to
collect the sets of shared variables that can be directly
or indirectly accessed by these procedures. Then, it
returns the union of these sets of shared variables to its
caller. ‘ .

At the second phase, the source code modifier
first collects all shared variables accessed by boundary
procedures. Then, it allocates a lock for each accessed
shared variables and gives these locks a sequential
order. It knows how these boundary procedures access
shared variable. Hence, it can insert codes that acquire
locks for corresponding shared variable at the
beginning of each boundary procedure. Note that each
boundary procedure will acquire locks in the
sequential order given by the source code modifier.
Consequently, deadlock among boundary procedures
can be prevented. In addition, it also inserts codes that
release all holding locks at the end of each boundary
procedure. Therefore, the serializability of remote
procedure execution can be guaranteed.

E-167

TERENFAFREHERGH

SET_VAR s[#_BOUNDARY_PROCEDURE];

for(each boundary procedure x) {
slx]= ¢;
for(each internal procedure y that can be activated by x)
s[x] = six] U compute_accessed(y, ¢ U x);

SET_VAR compute_accessed(PROC z, SET_PROC path) {
SET_VAR sz=¢;

if(z is already presented in path)

return(¢);
else if(z does not activate any procedures

defined on server's source file)
return{The set of shared variables
accessed directly by 2z);

else {

for(each internal procedure ¢ that can be activated by z)

sz = sz U compute_accessed(z, path U 2);
return sz;

}
}

Figure 5: An Algorithm to Collect Shared Variables
Accessed by Each Boundary Procedure

3.3 Initialization of Servers

Initjalizing servers is sometimes necessary, such
as for some files or for shared variables, and requires
programmers to modify server stubs manually. We
provide an elegant solution such that programmers
only have to collect the codes for initializing the
server into some initialization functions, and register
them in the server configuration file. Accordingly, the
codes for activating these initialization functions
would be inserted into the server's main() function by
the source code modifier. Then, these functions will be
executed automatically before dispatching any remote
procedure calls from clients.

4., Performance Measurements

In this section, we measure the performance of
our concurrent server on SunOS environment. We take
the dictionary program in Chapter 22 of Comer’s book
[3] as the test example, and use two different ways to
handle the synchronization problem of the server. One
is let PROTOOL to generate synchronization codes
automatically, and named it “automated method.”
Another is to add synchronization codes by hand, and
it is called “handcrafted method.” We will compare
the performance of these two kinds of servers.

We choose TCP as network protocol; start
measurements with two clients coexisted, and increase
the number of clients in turn until ten. There are three
operations in the dictionary program: insertion,
deletion, and lookup. Our client first inserts 5000
different strings to server's database, then lookups any
4500 strings out of the 5000 ones, and finally deletes

these 4500 strings. After that, we compute the elapsed
time for each set of operations (three sets, totally). We
repeat the same process for ten times and compute the
average time of each set of operations. Table 1 to
Table 3 present these results in seconds

Client # . L
2 3 4 5 6 7 8 2 110
model

Automated |1.02{1.03[1.04{1.05[1.08{1.10]1.15{1.21[1.36
Method

Handcrafted [1.02{1.03[1.04{1.05{1.06(1.07 | 1.11]1.161.21

Method

Table 1: Measurements of the Insert Operation
for Different Servers

Client #
21314151167 8§ (9 }10
Model

Automated |1.03[1.05{1.06{1.09(1.10|1.15}1.19|1.27{1.44
Method

Handcrafted (1.03{1.03(1.04{1.05{1.06|1.07 | 1.11[1.16]1.21

Method

Table 2: Measurements of the Lookup Operation
for Different Servers

Client #
213|418 |617 819110
Model

Automated [1.03[1.04{1.05/1.06(1.09]|1.16]1.24{1.43/1.58
Method

Handcrafted {1.03]1.03[1.04[1.05(1.07]1.11|1.15]1.25]1.31
Method

Table 3: Measurements of the Delete Operation
for Different Servers

The measurements show that the handcrafted
server is efficient than the automatically generated one.
However, how much superior is it? The results show
that the differences are all within 20% and we can
conclude that generating synchronization codes
automatically is feasible.

5.Conclusion

Complicated software development is the biggest
drawback of distributed systems. The PROTOOL
provides a way to overcome this troublesome problem.
It can handle an application that is comprised of one or
more clients and a server at once, and creates a more
powerful and efficient server. Users of PROTOOL
need not to know any syntax about Sun RPC, and the
only thing they must keep in mind is how to separate a
program into clients and a server. In conirast, the
rpegen of Sun RPC can handle only one client and one
server ai once, and generate only inefficient iterative
servers. Users of rpcgen must learn how to write
interface specifications and interface procedures. This
will be a trouble if users are not familiar with them.

Concurrent servers introduce the problem of
synchronizing accesses to shared resources. The

E-168

hERE AR PR

PROTOOL uses a deadlock-free approach to deal with
this problem and modifies the source files for users
automatically, The measurement shows that servers
generated by the PROTOOL perform well compared
with the server that contains handcrafied
synchronization codes.

In the next version of PROTOOL, we will try to
enhance our shared resource analyzer to handle shared
variables with aliases, and augment it to deal with
other shared resources such as files.

References

[1] AD. Birrell and B.J. Nelson, “Implementing
Remote Procedure Calls,” ACM Trans. on
Computer Systems, vol.2, pp.39-59, 1984,

[2] B.D. Marsh, M.L. Scott, T.J. Leblanc, and E.P.
Markatos, “First-Class, User-Level Threads,” Proc.
of Thirteenth Symp. on Operating - Systems
Principles, ACM, pp.110-121, 1991.

[3] Douglas E.Comer, Internetworking with TCP/IP
Vol. III: BSD socket version, 2nd Ed., pp.277-313,
Prentice-Hall, 1996.

[4] G. Coulouris, J. Dollimore, and T. Kindberg,
Distributed Systems — Concepts and Design,
Addison-Wesley Publishing Company Inc., 1994,

[5] G.R. Andrews and F.B. Schneider, “Concepts and
Notations for Concurrent Programming,”
Computing Surveys, vol. 15, pp. 3-43, March 1983.

[6] J. Gray and A. Reuter, Transaction Processing —
Concepts and Techniques, Morgan Kanfmann
Publishers, 1993.

{71 Sun Microsystems, Inc., Network Programming
Guild, March 1990.

[8] Sun Microsystems, Inc., Programming Utilities &
Libraries: Light Weight Processes, pp.17-47,
March 1990.

[9] U. Shani and I Gold, “Distributed-application
Development Tools for DCE/OSF”, Proc. of
First International Workshop on Services in
Distributed and Networked Environments, pp.
34-41, 1994, '

E-169

