PERE/ T\ FREHERTS

Software Test Automation for Multi-Platform Client/Server Applications

Huey;Der Chu , Feng-hao Liu* ,C.C.Yang*

Graduate School of Defense Informati

National Defense Management College
ChungHo, Taipei 23500, TATWAN
jchu@mis.ndme.edu.tw

*Softwate Engineering Laboratory

Elecironic Department, National Taiwan

University of Science and Technolog

Abstract

To assist a solution to the problem of the test
environment spanning nudtiple platforms, this paper
applies mobile agents to automated test execu tion. A test
driver can be launched by a mobile agent to remote client
sites to run the tests. During the testing, the mobile agent
will use the Network Class Server to dynamically load th
classes relevant to this test. The test result on each client
site will be sent back by the mobile agent. The mobile agent
roams across different platforms and finally it arrives at th
application server site to bring back the trace file for
inspecting the interaction behaviour among clients. This
work can really let the tests run on multiple client sites
across different platforms.
Keywords: Mobile Agents, Automated Test Execution,
Integrated Test Environment

1 Introduction

Current testing tools with capture/playback paradigm have
some limitations for client/server applications {10,12]. The
common one is a lack of consideration of the real world
operating environment across multiple platforms. These
testing tools emulate a multi -user environment and ends at
the client site but are not designedto test the server,
therefore, their products may not provide a way to test the
effect of multiple users of the software. Moreover, these
testing tools focus on two -tier client/server applications.
However, the Gartner Group found 80% were planning for
multi-tier (at least three-tier) client/server applications [12].
For client/server applications, some test scripts for
middleware can be very hard to capture/playback
automatically [9], for example, the communication
mechanism between clients and servers uses technology
like an RPC pr otocol that current capture/playback tools
cannot effectively capture.

This paper introduces a flexible infrastructure for mobile
agent computing: VISITOR [2], which can support flexible
communication and co-operation between mobile agents
and local agents which may provide some services through
the agent broker. Furthermore, combining with the Java
Remote Method Invocation (RMI), mobile agents can make
use of distributed objects to accomplish such tasks as
sending the results back to the home machine, Th ese local
agents are like offices which receive visitors and provide

C-393

some services to them, while the mobile agents are like
visitors which move around one office to another for their
particular goals.

Based on VISITOR, a simple three-tier bankin
application with an integrated test environment has been
implemented, which is big énough to address middleware
testing issues such as Java RMI and JDBC. The test driver
is launched by a mobile agent to remote client sites to run
the tests. During the testing, the mobile agent will use the
Network Class Server to dynamically load the classes
relevant to this test such as the Test Data Generator and
Test Results Validator. The test result on each client site
will be sent back by the mobile agent. The mobile agen t
roams across different platforms and finally it arrives at the
application server site to bring back the trace file for
inspecting the interaction behavior among clients. The
application of VISITOR to automated test execution can let
the tests really run on multiple client sites across different
platforms.

Firstly, in this paper, the problem of current testing tools
is addressed.; secondly, the concept of mobile agents is
introduced; thirdly, the framework of VISITOR is proposed
fourthly, the application of VISITOR to the automated
test execution is described; fifthly, the concept of
automated test execution through mobile agents across
multiple platforms is illustrated on a three-tier client/server
application with Java RMI and JDBC and finaly,
summarizes the work and offers suggestions for further
study.

2 Current Testing Tools

Test execution is a process of feeding test input data to the
application and collecting information to determine the
correctness of the testrun. It is natural to assume that
automating test execution must involve the use of a test
execution tool which requires an environment to run it, t
accept inputs and to produce outputs{ 7]. Some tools
require additional special-purpose hardware as part of their
environment; some require the presence of a software
development language environment.

For a sequential software, this process can be
accomplished without difficulty. Many testers do not have
strong programming skills. This combined with the
repetitive nature of much testing, 1 eads people to use

capture/playback techniques and tools. All
capture/playback tools are an elaboration and more modern
implementation of these simple ideas. Although simplistic,
the importance and impact of capture/playback should not
be under-estimated. These tools are often the first test tool a
tester may see and are also the primary means by which the
test process is migrated from a purely manual process to a
mostly automated process.

Indeed there are many tools that allow test scripts to be
recorded and then played back, using screen captures for
verification. However, there are some inherent problems
with the capture/playback paradigm [11,13]: Firstly, test
automation is only applied at the final stage of testing when
it is most expensive to go back and correct the problem.
Secondly, the testers do not get an opportunity to create test
scripts until the application is finished and turned over and
thirdly, the problem that always crops up is that application
modifications are made, invalidating the sc reen captures
and then the interface controls change, making playback
fail. Moreover, for client/server applications, some test
scripts can be very hard to capture/playback automatically
[12]: Firstly, the communication mechanism between
clients and servers uses technology like an RPC protocol
that current capture/playback tools cannot effectively
capture. Secondly, simulation and thirdly, there are
non-deterministic behaviours in a distributed application.
Repeated executions of a distributed application w ith the
same test script may execute different paths and produce
different results. This is called thenon -reproducible
problem. Therefore, some mechanisms are required in
order to exercise these test scripts.

3 Mobile Agents

An agent is an object that is autonomous enough to act
independently even when the user or application that
created it is not available to provide guidance and handle
error. Agents can receive requests from external sources,
such as other agents, but each individual agent decides
whether or not to comply with external requests. In the
computer world, an agent is a computer program whose
purpose is to help a user perform some tasks (or set of tasks)
[8]. To achieve this aim, it maintains a persistent state and
can communicate with its owner, other agents and the
environment in general. Agenis can do routine work for
users or assist them with complicated tasks. In addition,
they can mediate between incompatible programs and thus
generate new, modular and problem-oriented solutions thus
saving work.

Mobile agents [1,3] provide a new alternative paradigm
for distributed object computing on the WWW. A mobile
agent is a computer object that can move througha
computer network under its own control, migrating from
host to host and interacting with other agents and resources
in order to satisfy requests made by its clients. They may
move around on behalf of their users seeking out, filterin
and forwarding information or even doing business in their
own name. Possible applications for mobile a gents
include information retrieval, data -mining, network
management, electronic commerce, mobile computing,
remote control and monitor, etc. Therefore, mobile agents
show a way to think about solving software problems in a
networked environment that fits more naturally with the
real world.

The concept of mobile agents is in contrast to the
concept of Java Applets. In the latter case, a program is
downloaded from remote computers to execute locally,
while in the former, a program is sent to remote machines

C-394

to execute remotely, When mobile agents execute remotely,
there may not be any transactions in the home machine.
The advantages of mobile agents are [3): firsiy, they offer
an effective paradigm for distributed applications,
particularly in partially connected computing; secondly,
they can provide a pervasive, open, generalized framework
for the development and personalization of network
services; thirdly, they move the programmer away from the
rigid client/server model to the more flexible peer -to-peer
model in which programs communicate as peers and act as
either clients or servers depending on their current needs
and fourthly, they allow ad-hoc, on-the-fly applications that
represent what would be an unreasonable investment of
time if a code had to be installed on each network site
rather than dynamically dispatched.

Nowadays, there are already some frameworks for
mobile agents, such as the Aglet and the Java -to-go. They
all support dispatching a segment of code io remote
machines to execute, however they donot give proper
support to the co -operation between mobile agents and
services in remote machines. This next section introduces a
flexible infrastructure for mobile agent computing:
VISITOR [2], which can support flexible communication
and co-operation between mobile agents and local agents
which may provide some services through the agent broker.
Furthermore, combining with the Java Remote Method
Invocation (RMI), mobile agents can make use of
distributed objects to accomplish such tasks as sendin g the
results back to the home machine. VISITOR shows a
paradigm for service-providers to provide services and for
service-clients to get services in a networked environment
that fits more naturally with the real world.

The application of VISITOR to soft ware testing, Mobile
Testing Agent [5], has been implemented and can be
downloaded at the MObile Software Testing (MOST
wesite (http:/Awww.casq.org/most/) constructed and
maintained by Hue -Der Chu 1998.

4 The Architecture of VISIT

The architecture of the VISITOR is shown as in Figure 1
which consists of a network of agent servers, agent clients
and a security server.

Fiaure 1: The architesture of VISITOR

These components communicate with one another based
on Java sockets. Agent servers are destinations which
mobile agents want to visit. Agent Servers are also the
hosts which accommodate mobile agenis and provide
services to them. Ageni Clients are applications which
launch mobile agents to the agent servers for accomplishin
their particular tasks. In this framework, the agent servers
are like offices which receive visitors and provide some
services to them, while the mobile agents are like visitors
which move around one officeto another for their
particular goals.

4.1 Agemt servers

In each agent-server, there are five types of componenis:
The Agent Broker (AB), service agents, the receiving agent,
mobile agents and the network class server.

An AB is a stockbroker among agents. All other agents
have to be registered with the AB. The AB keeps them as
resources. When an agent is created, it sends a message to
the AB to register its existence and address. When an agent
A wants to communicate with another agent B, A first
transmits a message to the AB to ask B's address. The AB
would acknowledge with B's address if B exists. When B
first receives A's message, it also need to ask the AB for
A's address. Afterwards, A and B would communicate with
each other directly.

Furthermore, if an agent, for example a service agent,
could provide some service, it would send the ABa
message to register that service. When some agent, for
example a new coming mobile agent wants the service, it
would request the AB. If the service has been registered,
the AB would return the agent's address that can provide
that service. Then, they would dialogue directly as normal.

Service agents provide services for other agents. When
they are created, they would register the service with the
AB which they can provide. The services they can provide
are various, from general information services to particular
commercial services.

It is the receiving agent that is responsible for receivin
and instantiating coming mobile agents. It also creates

execution environments and forks a thread for the agent run.

There is only one receiving agent in each ageni-server. For
the structure of the receiving agent, see section 5. 1.

Mobile agents come from remote agent clients. When
they arrive, the receiving agent creates the execution
environment for them and they would register with the AB.
Together with main classes, aknowledge bas e which
include initial information is sent. The receiving agent will
save thig knowledge as a specific file. A mobile agent will
run in a separate thread to accomplish its tasks. It can als
make use of services which are provided by execution
environments or service agents. For the structure of mobile
agents, see section 5.2.

The Network Class Server listens to the network. If there
is a request for loading a class from this machine, it is
responsible for finding, loading and sending the class to the
destination. When a mobile agent is launched, only the
main class is sent. the auxiliary classes are loaded on
demand from the home machine or the previous machine,
where a network class server is set up.

4.2 Agent clients

Agent clients designand launch mo bile agenis for
accomplishing their particular tasks. The clienis may be
located in an agent-server or in a separate machine. For the
latter, a network class server has to be set up for remote

class loading. In the case where there is no network class
server set up, the agent launcher has to send all class of the
agent, or the class loader would fail.

Arriving at remote agent servers, mobile agents can
execute home transactions by the Java RMI. For example,
when a mobile agent retrieves information in rerm ote agent
servers, it can make use of the RMI to display the result on
the home machine simultaneously.

The picture above characterises a flexible agent-oriented
method of constructing client applications, producing ane
paradigm for distributing computing.

4.3 Security server

The security Server is listening to the network. When
clients want to launch a mobile agent for accomplishin
their particular tasks, they have to register with the securit
server to gain a key, which the mobile agent will bring ith
it. The agent servers will check the key to see whether or
not it is valid. If the key is valid, the process will continue,
if not the server will send back an error message to the
client.

§ A General Structure of Agents

The static structure of an agent is designed following the
Java Agent Template (JAT). An agent consists of three
parts: a message handler, a resource manager and a
knowledge base. The message handler sends and receives
Knowledge Query and Manipulation Language (KQML)
messages by the communication interface Comuminterface.
The message handler is also responsible for message
processing.

The resource manager is responsible for managing
resources which the agent possesses. There are five types of
resources: Languages, interpreters, classes, files and
addresses in the JAT.

The knowledge base includes the initial information of
agents and the information about the services which it can
provide. When the agent moves from one machinet
another, the information in the knowledge base will move
along.

An agent executes within a AgentContext which is the
execution environment of the agent. Agents could make use
of services in the agent-serverbythe Contextlnterface
which is implemented by the AgentContext. When an agent
artives at a new agent-server, the receiving agent will
initiate the agent with the knowledge base, which is sent
with the underlying agent. When an agent leaves the
machine, it will clean up the environment. The initiate and
cleanup methods are provided by the Agentinterface.
Dynamically, an agent is a thread. When an agent moves t
a new agent-server, a new thread is created, on which the
agent is running.

5.1 Structure of the Receiving Agents

The receiving agent inherits from a general agent but the
receiving agent has its specific functions in VISITOR. The
layers of a receiving agent are as shown in Figure 2.

Figure 2: Layers of a Reeeiving Agent

When the receiving agent starts up, it forks a thread to
execute the Rowuter, which in turn forks a thread to execute
the Listener. Based on Java Sockets and severSockets , the
Transmission layer provides semantics of the agent -packet
transmission. The Listener is monitoring the network to see
if a new packet is coming. If so, the Listener makes use of
the methods providedbythe Transmission layer to receive
the packet and pass it to the Router. The Router unpacks
the packet and instantiates the coming agent first, then
checks if the underlying machine is the destination of the
agent. If not, the Router would rout the agent to the correct
machine. If it is true, the Router would initiate the agent,
create its execution environment and pass it to the receiving
agent. The receiving agent forks a new thread to execute
the new coming agent.

It is the Network Class Server (NCS) that implements
the dynamic class loading. The principle of dynamic class
loading is shown as in Figure 3.

Launch

Nelwork

Londer

Request

i
retrieve

retrieve

i
H
i

Class

Remote Class Lib.

- Local Class Lib.

Figure 3: Dynamic Class Loading

The NCS is listening on the network, when a Network
Class Loader (NCL) asks for classes it will find, load and
transport the classes. The NCS not -only can load classes
from the local class library but can also load classes from a
remote class library.

The layer structure of a NCS is as shown in Figure 4.
Like the agent-server, it is also based on Java Sockers and
serverSockets.

Figure 4: The Layers of Network Class Server

In the context of VISITOR, when the Router in the agent
server instantiates a coming mobile agent, it will load the
classes relevant to the agent dynamically.

5.2 Communication between Agenis

Agents communicate with each other using the KQML [9],
which is a high-level language intended for the run -time
exchange of knowledge between intelligent systems.
Logically the KQML message consists of three layers:
the content layer, the message layer, and the
communication layer. The content layer includes the actual
content of the message in the programs' own knowledge
representation of the message. KQML can car

C-396

expressions encoded in any representation langnage such as
the Knowledge Interchange Format (KIF), the KQML or
even ASCII strings.

The communication layer encodes a set of message
features which describe the lower lev el communication
parameters, such as the identity of the sender and recipient,
and a unique identity associated with the communication.

It is the message layer that is used to encode a message
that one application would like to transmit to another. The
message layer forms the core of the KQML and determines
the kinds of interaction one can have witha
KQM -speaking agent. A primary function of the message
is to identify the protocol to deliver the message andt
supply a speech act or performative which the sender
attaches to the content (such as an assertion, aquery, a
command orany of a set of known performatives). In
addition, since the content may be opaque to the
KQM -peaking agent, this layer also includes optical
features which describe the content language, the ontology
it assumes and some type of description of the content such
as a descriptor naming a topic with the ontology.

Syntactically, a KQML message is a ASCH string called
a performative, which consists of a performative's. name
and a list of its parameters. A parameter is represented as
keyword/value pair. The keyword, that is the parameter
name must begin with a colon and must precede the
corresponding parameter value.

Here is anl example of a KQML message, which is used
as an initial message in our framework

(evaluate :sender kbase :receiver agent
‘language KQML :ontology agent
:content(tell-resource :type address
:name AB
:value mis.ndme.edu.tw:5001))

In this message, the KQM performative is the evaluate,
the content is (tell-resource :type address :name AB :value
mis.ndmc.edu.tw:5001), another KQML message which
tells the agent that the AB's addressis
mis.ndme.edu.tw:5001, the ontology assumed is agent, the
receiver and sender of the message are agent and kbase
respectively, and the content is written in the language
KQML.

The value of the content keyword is content level, the
values of :sender and :receiver belong to communication
level, and the performarive’s name (evaluate)
with :language and :ontology form message layer.

When an agent ClientA moves to an agent-server, it
would transmit a message like the following tothe AB for
telling its existence

(evaluate :sender Client
content (tell-resource
:type address -
:name Client
:value mis.ndmc.edu.tw:54100)
ontology agent :receiver AB
language KQML)

Suppose that there was already another a gent ClientB
which sent the following message to the AB when it started
up.

(evaluate :sender ClientB
:content (tell-resource
‘type address
mname ClientB
:value mis.ndmc.edu.tw: 4103)
:ontology agent :receiver AB
Jlanguage KQML)

When the agent ClientA wants to communicate with the
ClientB, it would first send the following message to AB
(evaluate :sender Client
:content (ask-resource
itype address :name ClientB)
:ontology agent :receiver AB
:language KQML)

The AB would answer with the message below
(evaluate :sender AB
content (tell-resource :type address
:value mis.ndme.edu.tw:
:name ClientB)
:ontology agent :receiver AB
:language KQML)

After that, the ClientA would dialogue with Client
directly.

6 Automated Test Execution Through VISITOR

6.1 A Simple Banking Application

A banking application is an embedded software system
which is commonly seen inside or outside banks to drive
the machine hardware and to communicate with the bank's
central banking database. This app lication accepts
customers requests and produces cash, account information,
database updates and so on. In this Section, a Simple
Banking Application (SBA) will be designed as a 3 -tier
client/server application.

Within a banking enterprise, more specifically a
corporate and distributed database collection for the
personal data of customers, the balance status of customers,
the password data and account type data. The corporation
seeks to assimilate their data sources into one virtual data

store and access it through a common interface.

There are four business activities at this application:
check balance, deposit money, withdraw money and print
the statement. This standard transaction * will accept
customer requests (checking, depositing, withdrawing and
printing) after the customer has input the account id, the
account type and the correct password on the Client site.
SBA will retrieve the balance from the database on the
Database Server site, process the request on the Application
Server site and save th e balance back to the database. It
also will produce the balance or print a banking statement
to the customer. It has been implemented with an integrated
test environment using Java RMI and JDBC [4].

6.2 The Integrated Test Environment

Based on the framework for automating statistics-based
testing [5], a Statistics-based Integrated Test Environment
(SITE) isbuilt and can provide automated support for the
testing process, to address two main issues, deciding when
to stop testing and determining how good the software is
after testing. It consists of computational components,
control components and an integrated database. The
computational components will include the Modeller for
modelling the applications as well as the quality plan, the
SIAD/SOAD Tree Editor for specifying input and output
messages, the Quality Analyst which includes the statistical
analysis for determining the sample size for the statistical
testing and the test coverage analysis for evaluating the test
data adequacy, the Test Data Generator for generating test
data, the Test Tracer for recording testing behaviours on the
server side and the Test ResultsValidator for inspecting the
test results as well as examining the "happened before"
relationship. The architecture of SITE is as shown in Figure
5.

Test Results

/ Validator

Product
Unit

Quality
Analyst

Test
Driver

Test Data
Generator

Testing
Database

‘ \u

Ordering
File

Test
Execution

J:

Test
Manager

SIAD/SOAD
Tree Editor

Hodel ler

Figure 5. An Integrated Test Environment for the Banking Application

C-397

There are two control components, the Test Manager and
the Test Driver. The Test Manager receives commands from
the tester and corresponds with the functional module t
execute the action and achieve the test requirements. It
executes twomain tasks: data management and control
management. In data management, the Test Manager
maintains an integrated database which consists of static
data files and dynamic data files which are created,
manipulated and accessed during the test process. The
static files include a SIAD/SOAD tree file, a random
number seed file and a quality requirement file. The
dynamic files include an input unit file, a product unit file,
a test ordering file, a defect rate file, a file for the defect
rate range and a sample size file.

In control management, the Test Manager controls three
main functional modules: the Modeller, the SIAD/SOAD
Tree Editor and the Test Driver. The Modeller is used for
receiving the test plan such as test requirements and test
methods from the users, creating test plan documentation
and saving some values for the testing database. The
documentation produced by the Modeller provides support
for test planming to the Test Driver as well as the
SIAD/SOAD Tree Editor for specifying messages among
events, The SIAD/SOAD Tree Ediior is used to create the
SIAD/SOAD tree file that can be used to describe the
abstract syntax of the test cases as well as to trace data
occurring during the test. The SIAD/SOAD tree file
provides the structure tothe Test Data Gener ator for
generating input unit and the Quality Analyst to inspect the
product unit. The Test Driver executes the main task of
testing which includes the Test Data Generator, the Test
Execution, the Test Results Validator and the Samplin
Processor. It has been implemented with an integrated test
environment using Java RMI and JDBC [4].

6.3 The Application with VISITOR

The application of VISITOR to the automated test
execution on the banking application is as shown in Figure
6.

The test driver sets up the test execution environment for
the banking application, initiating the Test Data Generator
to generate an input unit, sending it tothe Test Execution t
execute the application and getting the product unit and
delivering it to the Test Results Validator. The test driver is
launched by a mobile agent to remote client sites to run the
tests. During the testing, the mobile agent will use the
network class server to dynamically load the classes
relevant to this test such as the Test Data Generator and the
Test Results Validator. The test result (pass/fail) on each
client site will be sent back by the mobile agent with Java
RMIL The mobile agent roams across different platforms
and finally it arrives at the application server site to brin
back the paths trace file for inspecting the testing order.

This framework has been- implemented with the Java
Agent Template (JAT) and the Java Remote Method
Invocation (RMI). The JAT provides a fully functional
template for constructing agents which communicate
peer-to-peer with a community of other agents distributed
over the Internet. However, JAT agents are not migratory
but rather have a static existence on a single host. As an
improvement, the Java RMI is used to let JAT agents
dynamically migrate to foreign hosts in this implementation
As a result ofthe Java RMI not currently working
effectively well on the Netscape Browser currently, the
implementation of MTA (Mobile Testing Agent), the name
of a mobile agent forthe automated testing in this
implementation, is not available with Java Applet, but with
stand-alone style. It can be downloaded at the MObile
Software Testing (MOST) web site
(http://www .casq.org/most/) which is under the web site for
Chinese Association for Software Quality (CASQ)
constructed and maintained by Hue -Der Chu 1998.

6.4 Discussion

Current testing tools with the capture/playback paradigm
emulate a multi-user environment and ends at the client site
but are not designed to test the server, as referred to in the

Section 2. The application of mobile agents to automated

back by
mebile
agent

(RMI)

Client 2

the paths trace
file back

Tester

Figure 6: Automated Test Execution Through a Mobile Agent

C-398

test execution can let the tests really run on multiple client
sites across different platforms and go to the server sitet
bring the paths trace file back to thehome site for
inspection of the test ordering.

Often, automated testing is introduced very late in the
implementation process and is restricted to regression
testing. The earlier the testers incorporate an automated test
approach into the development process, the greater the
return on the investment. In this implementatio n for
antomated testing through mobile agents, changin
syntactic structures such as screen layouts does not
interfere with test execution since any changes for these
structures can be done by the SIAD/SOAD Tree Editor
before the test execution. In other words, some testin
activities involving components such as the Modeller and
the SIAD/SOAD Tree Editor can be done early.

However, VISITOR cannot be used to solve the
non-reproducible problem in this paper. Therefore, a
complementary mechanism is required in order to achieve
the global goal of client/server testing.

7. Conclusion

To assist a solution to the problem of the test environment
spanning multiple platforms, the concept of mobile agents
was introduced in this paper. A mobile agent is a computer
object that can roam over the Internet under its own control
migrating from host to host and interacting with other
agents and resources in order to satisfy requests made by its
clients. Based on the concept of mobile agents, the test
driver can be launched by a mobile agent to remote client
sites to run the tests and the paths trace file on the server
side can also be sent back to the user for inspecting the test
ordering. This concept has been implemented on a 3-tier
banking client/server application with Java RMI and JDBC.
It is completely different from current automated testin
tools. The major advantages of this approach are the
interaction behaviours between clients and server can be
recorded in a paths tracer file which can be inspected and
the tests can be really run on multiple clients across
different platforms.

In practice, the software development methodologies
typically employ a combination of server software testin
methods, techniques and tools. The need to combine testin
tools is further visible. Therefore, before the multi -user test
executions, a dynamic test plan is needed to classify the
testing types between multiple users on different platforms
and will be extended in future work..

C-399

References

[11Chen, J., “A flexible framework for mobile agent
systems,”. Available a
http://www.casg.org/most/chen.ps.

[2]Chen, J., Greenwood, S. and Chu, H., “VISITOR:
Java-based Infrastructure for Mobile Agent Computing,”
Proc. in10 ™ International Conference on Software
Engineering and Knowledge Engineering (SEKE’98)
June 18-20, 1998, San Francisco, USA.

[3]1Chess, D., Harrison, C. and Kershenbaum, A., “Mobil
agents: Are they a good idea?’ Lecture Notes in
Computer Science 1222, 25-45.

[41Chu, H., Distributed Testing: Towards Qualit
Programming in the Automated Testing of Distributed
Applications, Europe Arts, Science & Culture Publishin
C. Ltd., Feb. 1999, ISBN 1-902409-07-8.

[5]Chu, H., Dibson, J.E. andLiu, I.C., “FAST. a
framework for automating statistics-basd testing,
Software Quality Journal, 6(1), 13-36.

[6]Chu, H., Dobson, J.E., Chen, J. and Greenwood, S.,
“The Application of Mobile Agents to Softwar
Testing,” Proc. in 15 * International Conference an
Exposition on Testing Computer Software (T'CS’98) ,
June 8-12, 1998, Washington, D.C., USA.

[7)Fewster, M. and Graham, D Software Test Automation:
Effective Use of Test Execution Tools (ACM Press)
Addison-Wesley Pub Co; Aug. 1999, ISBN:
0201331403.

[8]Lingnau, A. and Drobnik, O., “AnHTTP -based
infrastructure for mobile agents,” Available a
hitp://www.w3.org/pub/Conferences/WWWd/.

[9]Mayfield, J., Labrou,Y. and Finin, T., “Evaluation of
KQML as an agent communication language,” Availabl
at http://www.cs.umbc.edu/lait/papers/kaml -eval.ps.

[10] Mooney, K. and Chadwick, D., “Overcorning the
Challenges of Testing Client/Server Applications,
Available a
http://www.rational.com/support/techpapers/challenges/.

{11] Pettichord, B., “Success with Test Automation,”
Proc. in 9 International Software Quality Week
(QW'96), May 1996, San Francisco, USA.

[12] Quinn, S.R. and Sitaram, M., “Shrink-wrapped and
custom tools easethe testing of client/serve
applications,” Byte, Sept. 1996, 97-102.

[13] Zallar, M., “Automated Software Testing - A
Perspective,” Proc. in 10 “ International Software
Quality Week (QW'97), May 1997, San Francisco, USA.

»

